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Soft elastic surfaces as a platform for particle self-assembly
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We perform numerical simulations to study self-assembly of nanoparticles mediated by an elastic

planar surface. We show how the nontrivial elastic response to deformations of these surfaces leads to

anisotropic interactions between the particles resulting in aggregates having different geometrical

features. The morphology of the patterns can be controlled by the mechanical properties of the surface

and the strength of the particle adhesion. We use simple scaling arguments to understand the formation

of the different structures, and we show how the adhering particles can cause the underlying elastic

substrate to wrinkle if two of its opposite edges are clamped. Finally, we discuss the implications of our

results and suggest how elastic surfaces could be used in nanofabrication.
I. Introduction

Elastic surfaces are ubiquitous in nature and technology and

appear across all length scales, from the cellular microenviron-

ment to large-scale objects such as bridges and buildings. The

mechanical properties of these surfaces play an important role

both in their biological function and in their wide usage in

material engineering. For instance, it is known that the stiffness

of an elastic substrate alters the morphology and dynamics of

tissue cells adhering onto it.1 Variable cytoskeleton assembly2

and cell spreading3 on substrates of different mechanical prop-

erties are two nice examples of this. Furthermore, surfaces’

response to external stress have been exploited in metrology4,5

and in the production of micro- and nano-scale patterned

surfaces that may serve as components with novel optical, elec-

tronic and magnetic properties.6

We are interested in understanding how elastic surfaces can be

used to template aggregation of nanocomponents. The idea of

using interfaces, specifically fluid ones, as a means of driving self-

assembly of arbitrary building blocks was first introduced by

Whitesides et al.7,8 In this case, the presence of floating objects on

a fluid interface induces local deformations in its profile which

are minimized when the objects are isotropically driven close to

each other.9,10 By manipulating the tension of the interface, and

by tailoring the chemistry of the building blocks, millimeter-size

objects, microchips and microcomponents have been successfully

self-assembled.11–13 Unlike fluid interfaces, whose large scale

physical properties are dominated by their surface tension, elastic

surfaces resist stress and respond to it in a spring-like fashion.

Elastic surfaces bend and stretch in response to deformations.

The resulting macroscopic behavior is characterized by strong

nonlinearities.14 The mechanical properties of macroscopic
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elastic sheets have recently been the subject of intense investi-

gation.4,15–19 Under an applied force an elastic surface deforms in

a way that minimizes the energy associated with the deformation.

It is easy to show14,19 that the ratio between stretching and

bending energies for an arbitrary deformation of amplitude h on

a flat elastic sheet of thickness t scales as Es/Eb � (h/t)2. There-

fore, for sufficiently thin sheets, bending is the preferred mode of

deformation and unstretchability can be thought of as an overall

geometrical constraint to the deformations. The net result is that

thin elastic surfaces respond to an external applied stress with

stretch-free deformation involving (when possible) exclusively

uniaxial bending. Skin wrinkling under applied stress16,18 and

stress focusing via d-cone formation of crumpled paper19 are two

examples of this phenomenon.

Such nontrivial phenomenology extends to the micro-scale.

There are several artificial and naturally occurring examples of

microscopic elastic surfaces, including graphite-oxide sheets,20,21

graphene sheets,22,23 cross polymerized biological membranes,24

cross polymerized hydrogels,3 buckypaper,25–27 the spectrin-actin

network forming the cytoskeleton of red blood cells,28,29 and very

recently they have been fabricated using close-packed nano-

particle arrays.30 Our expectation is that diffusible particles

adhering over an elastic surface should be driven to aggregate

into configurations that reduce the mechanical cost of the overall

surface deformation. These configurations will depend on the

geometry of the surface, its elastic properties and the strength of

the adhesion (the applied force).

We have recently shown how the response to deformations of

elastic nanotubes can alter the elastic properties of a flexible

filament binding to it,31 and that elastic nanotubes and nano-

shells can drive self assembly of nanoparticles in a variety of

patterns that depend on the interplay between bending and

stretching rigidities of the template, and the amount of defor-

mation of the surface.32,33 In this paper we explore the phase

behavior of nanoparticles adhering onto a planar (extended)
This journal is ª The Royal Society of Chemistry 2011
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elastic substrate as a function of the mechanical properties of the

substrate, namely its stretching and bending rigidity, and the

strength of the adhesion. We also analyze the role of the

boundaries of the elastic sheet and their influence on the aggre-

gation patterns. Our findings suggest that the geometrical

features of the anisotropic aggregation of the particles can be

tuned in a variety of patterns by controlling the elastic parame-

ters of the problem.
Fig. 1 Illustration of the triangulated mesh model used in our simula-

tions. The surface beads of diameter s (blue spheres) are set at the nodes

of each triangular element to enforce surface-self-avoidance and are

linked to their first neighbors with springs of the constant Ks and the

equilibrium length rB (measured form the beads centres). The surface

connectivity is kept constant, and apart from boundary nodes each

surface bead has six neighbors. The dihedral angle 1-2-3-4 from which

bending energies are computed is also indicated. This energy is minimized

when all angles between neighboring triangles are equal to p.
II. Methods

The elastic plane is modeled via a standard triangulated mesh

with hexagonal symmetry.34 To impose surface self-avoidance we

place hard beads at each node of the mesh. Any two surface

beads interact via a repulsive truncated-shifted Lennard-Jones

potential:

ULJ ¼
8<
:

43

��s
r

�12

�
�s
r

�6

þ 1

4

�
; r# 21=6s

0; r. 21=6s

(1)

where r is the distance between the centers of two beads, s is their

diameter, and 3 ¼ 100kBT.

We enforce the surface fixed connectivity by linking every bead

on the surface to its first neighbors via a harmonic spring

potential

Ustretching ¼ Ks(r � rB)
2. (2)

Here Ks is the spring constant and it models the stretching

rigidity of the surface. r is the distance between two neighboring

beads, rB ¼ 1.23s is the equilibrium bond length, and it is

sufficiently short to prevent overlap between any two triangles on

the surface even for moderate values of Ks.

The bending rigidity of the elastic surface is modeled by

a dihedral potential between adjacent triangles on the mesh:

Ubending ¼ Kb(1 + cosf) (3)

where f is the dihedral angle between opposite vertices of any

two triangles sharing an edge and Kb is the bending constant.

Particles of diameter sc ¼ 10s are described via the repulsive

truncated-shifted Lennard-Jones potential introduced in (1) with

s / sc. The generic binding between the nanoparticles and

surface is described by a Morse potential:

UMorse ¼
�
D0ðe�2aðr�rNBÞ � 2e�aðr�rNBÞÞ ; r# 10s

0; r. 10s
(4)

where r is the center-to-center distance between a nanoparticle

and a surface-bead, rNB is bead-nanoparticle contact distance

rNB ¼ 5.5s andD0 is the binding energy. The interaction cutoff is

set to 10s and g ¼ 1.25/s.

The simulations were carried out using the LAMMPS

molecular dynamics package35 with a Langevin dynamics in the

NVT ensemble. Dimensionless units are used throughout this

paper. The timestep size was set to dt ¼ 0.002s0 (s0 is the

dimensionless time) and each simulation was run for a minimum

of 5$106 iterations. In this study we considered unconstrained

and edge-constrained sheets. To minimize edge effects in

unconstrained sheets we considered surfaces with an overall
This journal is ª The Royal Society of Chemistry 2011
circular geometry. Two different equilibrium radii Rplane x 50s

and Rplane x 60.4s were explored. To preserve the mechanical

stability of the sheet the nanoparticles were placed both on top

and at bottom of the surface. When edge-constrained surfaces

were considered, a rectangular shape was selected and the

particles were placed only on one side of the plane. For this

specific case we considered two surface equilibrium areas, A x
(176� 152)s2 and Ax (244� 212)s2. In both cases a wide range

of nanoparticle surface fractions between 10% and 60% was

explored. Typical values of s � 10–20 nm would imply particles

of diameter �100–200 nm and surfaces of area A � 200–

1000 mm2. Fig. 1 illustrates the model used in our simulations.
III. Results

We find that elastic surfaces can drive nanoparticle aggregation.

The geometry of the aggregates can be tuned into a variety of

patterns controlled by the mechanical properties of the surface

(Ks and Kb) and the strength of the particle’s adhesion (D0). Let

us begin by looking at the role of the membrane’s stretching

rigidity. Fig. 2a) shows a diagram of the different aggregates

obtained for different values of Ks as a function of the extent of

the surface deformation (regulated by D0) at fixed bending

rigidity Kb. Fig. 2c) shows simulation snapshots of the corre-

sponding patterns. As expected, when D0 is small the surface is

basically unaffected by the presence of the particles and the

particles behave effectively as a low-density two-dimensional

hard sphere fluid. In the opposite limit, when the particles bind

very strongly, the membrane undergoes large local deformations

limiting the diffusion of the particles and resulting in kinetically

trapped configurations. Repeating the simulations under the

same conditions leads to a different not well defined configura-

tion. We call this phase the arrested phase.

The intermediate regime is characterized by five distinct

structured phases. For small values of Ks the aggregation is

completely driven by the minimization of the bending energy. As

a result particles aggregate into a two-dimensional hexagonal

crystal. This is what happens for instance in lipid bilayers where
Soft Matter, 2011, 7, 8324–8329 | 8325
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a bending-mediated isotropic, V � �r�4, interaction can drive

surface inclusions at a separation r from each other to aggre-

gate.36 Upon a small increase in Ks the hexagonal crystal rear-

ranges into square lattices. As Ks is further increased we find that

the crystalline aggregate is disrupted in favor of a network of

short connected lines. This phase is the consequence of balancing

the stretching and the bending energy: the former preferring the

stretch-free uniaxial deformations, and the latter driving in-plane

isotropic aggregation.

For even larger values of Ks the connected network is dis-

rupted and particles arrange into straight parallel lines.

Increasing Ks at this points only leads to a larger stiffness of the

linear aggregates. This transition is completely driven by the

stretching energy. The parallel lines start appearing when Ks T

Kb. This is clearly shown in Fig. 2b) where we show how the

formation of straight and connected aggregates depend on both

stretching and bending constants. For Ks/Kb [ 1 one indeed

recovers the thin and unstreachable sheet limit for which only

stretch-free (uniaxial) deformations are possible. The most

dramatic consequence of this property of elastic plates is the fifth,

folded phase. This phase occurs for larger values of D0, when

particles tend to increase the contact area with the membrane as

much as possible. In this region the surface immediately folds

into a well organized higher three-dimensional hexagonal struc-

ture (Fig. 2c).

To better characterize the dependence of the different phases

on Ks, from the hexagonal to the square lattice, from the
Fig. 2 (a) Phase diagram of nanoparticles binding to an elastic planar surface

the surface isRx 60.4s and the number of nanoparticles isN¼ 40. The lines s

in the direction of lower line connectivity. (b) Boundary between connected to

serves as a guide to the eye. (c) Simulation snapshots of the seven observed pha

shown with the larger number of particles than the other phases.

8326 | Soft Matter, 2011, 7, 8324–8329
connected network to the linear one, we also measured the

frequency of particle contacts as a function of Ks. Fig. 3 shows

the probability distribution of the number of the nearest neigh-

bors as a function of Ks in the different phases. The connectivity

decreases when increasing Ks, going from the six neighbors of the

hexagonal phase to the four of the square lattice, and finally to

the two and three neighbors of the connected and the straight

lines. For the linear aggregates the significant difference is not in

the location of the peak of the distribution (indeed a large

number of particles will have two neighbors even in the con-

nected linear aggregates), but in the relative height of P (n ¼ 3).

It should be emphasized that the number of connections does

decrease continuously with increasing Ks. It is tempting to

interpret these data in terms of a single growing length scale that

sets the size for the average distance between any two nodes in

the linear network, and consider the straight-line phase as the

limiting behavior in which this distance becomes larger than the

surface. A simple mean field calculation balancing stretching and

bending energies19 points to the length scale lpf h1/2(Ks/Kb)
1/4R1/2,

which qualitatively produces the correct phenomenological

behavior, but unfortunately the small system sizes analyzed in

this study prevent us from making such a link more concrete.

It is important to stress that the free boundaries of the

membrane play an important role. Indeed, it is not clear whether

the linear phases indicated in Fig. 2 are stable with respect to

folding. In fact, in a few cases our longest simulations of the

linear phases resulted eventually in a folded phase.We expect this
. In this case the bending rigidity isKb¼ 150kBT; the equilibrium radius of

eparating the different phases serve as a guide to the eye. The arrow points

straight parallel lines as a function of Ks and Kb. The dashed Kb ¼ Ks line

ses. For the sake of clarity the hexagonal and the square crystal phases are

This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 Probability distributions of particle contacts in a self-assembled

aggregates for different values of Ks, and constant Kb ¼ 150kBT. From

right to left the distributions refer to the planar hexagonal crystal, the

planar square crystal, the interconnected lines, and the straight parallel

lines.
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to be an effect of the free boundary of the surface that can be

taken care of by applying a small external tension or by clamping

the outer edge of the surface. To show that this is indeed the case,
Fig. 4 (a) Phase diagram of nanoparticles binding to a clamped rectangular

depend only onD0: the gas phase and straight parallel lines phase (SL). These

the plane is (176 � 152)s2. (b) Line separation l as a function of the mecha

coverages: f¼ 38.7% (cross symbols) and f¼ 21.2% (circle symbols). The stra

inset shows the dependence of l on the particle surface coverage, shown fo

(middle), 0.51s1/2 (bottom). (c) Simulation snapshots of linear aggregates fo

coverage densities. The equilibrium surface area is A ¼ (176 � 152)s2.

This journal is ª The Royal Society of Chemistry 2011
we considered a rectangular elastic sheet in which two opposite

sides (edges) are kept fixed (clamped). In the absence of the

adhering particles the sheet remains flat to its equilibrium size.

Once the particles bind to it we observe only two phases for

moderate values of Ks, the gas phase and the straight-linear

phase. The former appears when D0 is insufficient for the parti-

cles to deform the membrane, while the latter occurs when D0

crosses a certain threshold value which depends mainly on the

bending rigidity of the plane (Fig. 4a).

The linear structures formed in this phase always appear to be

perpendicular to the constrained sides of the membrane (Fig. 4b).

However we observe that the distance between them can be tuned

by changing Ks and Kb. This kind of pattern is reminiscent of the

wrinkle pattern that occurs when a thin elastic sheet is subjected

to a longitudinal stretching strain.16,17 The sheet is then unable to

contract laterally near the clamped boundaries, so it wrinkles to

accommodate the in plane stress. Cerda and Mahadevan showed

that, for a constant tension, the wavelength of the wrinkles scales

as l � (L)1/2 � (Kb/Ks)
1/4.17

Indeed, we find the same reasoning can be applied here.

Instead of having an external force stretching the plane, the
elastic surface. Two phases are observed for different values of Kb and

data refer to the case in which Ks ¼ 150kBT/s
2,N¼ 60, and the area of the

nical properties of the surface. We show data for two different surface

ight lines represent the fit of the data to the scaling law l� (Kb/Ks)
1/4. The

r three different values of the (Kb/Ks)
1/4 parameter: 1.35s1/2(top), 0.9s1/2

r three different combinations of the elastic parameters and the surface

Soft Matter, 2011, 7, 8324–8329 | 8327
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particles binding to the surface act as the stress source causing the

sheet to wrinkle perpendicularly to the fixed sides of the plane.

Since the wrinkles are the regions where the particles can gain the

highest contact area with the surface, i.e. the highest binding, the

particles follow the wrinkle pattern resulting in the straight

parallel aggregates. We believe that destabilization of the linear-

connected phase is due to the implicit symmetry breaking

imposed by the way the membrane is clamped, in fact, when

clamping is enforced on all four edges of the sheet, the phase

reappears.

We also analyzed the dependence of the wavelength of the

particles’ lines with Kb and Ks and it appears to nicely follow the

theoretical prediction of Cerda and Mahadevan (Fig. 4b).

Nevertheless, two extra parameters play a role in determining the

separation between the lines in this case: the surface coverage and

the particle’s binding energy. Since particle binding to the surface

is favorable, once the particle’s density becomes larger than that

required to completely fill the wrinkles with particles, new lines

(wrinkles) form in between the preexisting ones, bringing the

preexisting ones closer together. The inset in Fig. 4b) shows the

decrease in l with the increase in the particle density, for two

different values of Ks. In addition to that, we find that the

increase inD0 (for constantKs andKb) also brings the lines closer

together. Higher binding increases the amplitude of the wrinkles

(analogous to increasing the strain tension in [16]), which

decreases the surface area accessible to the particles, effectively

increasing the density.

It should be stressed that the mechanism driving self-assembly

of particles into linear aggregates that we describe is significantly

different from the controlled wrinkling methods recently devel-

oped for the fabrication of patterned surfaces.6 There the wrin-

kles are preformed by compressing the substrate, and particles

trivially arrange along the wrinkles’ axis to maximize their

binding energy, in our case the surface is not pre-wrinkled, and

the linear aggregates develop (in a reversible manner) as a result

of a more delicate balance between the energies of the system and

the collective behavior of the particles. Interestingly, once the

wrinkled phase is formed it is possible to control the overall

direction of the lines by simply applying a small external tension.

For instance, the release of the surface clamping and simulta-

neous application of a small tension in the direction perpendic-

ular to the direction of the wrinkles, results in a reorientation of

the lines along the direction of the tension. This supports our

assumption of the reversibility of the line-forming process and

suggests even richer potential application of this approach for

periodical patterning.
Conclusions

In this paper we show how elastic surfaces can template self-

assembly of nanoparticles, in a similar way to fluid interfaces. We

show how by tuning the relative cost of bending and stretching

energies (i.e. the thickness of the sheet) it is possible to control the

geometry of the aggregates. The formation of the different linear

aggregates, for thin sheets, is an explicit manifestation of the

anisotropic interaction between the nanoparticles. When the

surfaces become effectively unstretchable, particles arrange into

macroscopic ordered parallel lines whose separation can be

controlled by the elastic parameters of the surface. Clamping of
8328 | Soft Matter, 2011, 7, 8324–8329
the edges across the membrane substantially improves the peri-

odic ordering in the system.

The physical properties of our model can be mapped onto

a model of a thin sheet supported on an elastic foundation if the

stretching rigidity of the plane is substituted by the stiffness of the

elastic foundation. Therefore, the results of our theoretical study

are quite general and may suggest novel use of the elastic inter-

faces in nano/micromechanics and material engineering. Possible

experimental systems where our predictions could be tested

include cross-polymerized or crystalline lipid bilayers, thin

polymeric sheets, ultra-thin cross-linked nanoparticle-

membranes or possibly free standing liquid crystalline films in the

presence of colloidal particles. More generally, in any elastic

substrate that can be locally deformed by the interaction with

a diffusable binding component.
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