Ti3C2/CuWO4/Pt nanozyme: photothermal-enhanced chemodynamic antibacterial effects induced by NIR†
Abstract
With the growing issue of antibiotic resistance, it has become increasingly crucial to develop highly efficient antimicrobial materials. While the single-component nanozyme systems exhibited some catalytic activity, their efficiency remains suboptimal. This study presents a Ti3C2/CuWO4/Pt hybrid nanozyme composed of photothermal agents and nanozymes, which leverages the photothermal effect to enhance nanozyme activity and achieve efficient antimicrobial effects. The composite material exhibited peroxidase (POD)-like catalytic activity, effectively converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). Meanwhile, the Ti3C2/CuWO4/Pt material demonstrated high photothermal conversion ability, which not only promoted the generation of ·OH under near-infrared (NIR) light irradiation, but also facilitated copper (Cu2+) ions release from the CuWO4 nanozyme, thereby further augmenting its catalytic activity. After 4 to 5 min of light irradiation, the Ti3C2/CuWO4/Pt nanozyme exhibited significant antimicrobial performance against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In summary, this work presents a Ti3C2/CuWO4/Pt nanoplatform that utilizes the photothermal effect to enhance the chemodynamic antimicrobial activity, showcasing its potential applications in antibiotic-free antimicrobial fields.