A toolbox for improved recycling of critical metals and materials in low-carbon technologies
Abstract
The shift towards renewable energy sources combined with other factors, such as population increase, digitalisation, and a need to decrease carbon footprint, leads to increasing metal consumption. To meet this growing demand and avoid accumulation of waste in landfills, efficient recycling methods are needed. Current pyrometallurgical and hydrometallurgical methods achieve complete digestion of end-of-life materials using high temperatures and high consumption of chemicals, respectively. These methods can be applied to recover critical metals from end-of-life materials but suffer from inherent limitations when it comes to complex end-of-life materials made of interpenetrated layers of metals, inorganics and organics. This critical review describes a set of chemical and physical tools for improved recovery of metals from various waste streams, with a strong focus on the renewable energy sector (wind turbines, solar cells) as well as lithium-ion batteries and catalysts for hydrogen production. These tools target weaknesses at the interfaces between different layers to liberate the valuable metals. Physical methods used for size reduction and separation, ultrasound to process brittle materials, hydrogen decrepitation, selective dissolution and bio-metallurgical methods to process metals are among those reviewed. Management of inorganic and organic fractions is also emphasised, with pyrolysis and solvolysis to process organics and ways to recycle these materials. Limitations and future directions are discussed, providing a comprehensive guide to improve recycling of metals with versatile tools.
- This article is part of the themed collection: RSC Sustainability Recent Review Articles