Issue 39, 2024

Concrete-based energy storage: exploring electrode and electrolyte enhancements

Abstract

The exploration of concrete-based energy storage devices represents a demanding field of research that aligns with the emerging concept of creating multifunctional and intelligent building solutions. The increasing need to attain zero carbon emissions and harness renewable energy sources underscores the importance of advancing energy storage technologies. A recent focus has been on structural supercapacitors, which not only store electrochemical energy but also support mechanical loads, presenting a promising avenue for research. We comprehensively review concrete-based energy storage devices, focusing on their unique properties, such as durability, widespread availability, low environmental impact, and advantages. First, we elucidate how concrete and its composites revolutionize basic building blocks for the design and fabrication of intrinsically strong structural materials. Afterward, we categorized concrete into two major parts of a supercapacitor, i.e., electrode and electrolyte materials. We further describe the synthesis of concrete-based electrodes and electrolytes and highlight the main points to be addressed while synthesizing porous surface/electroactive matrices. The incorporation of carbon, polymers, metals, etc., enhances the energy density and durability of electrode materials. Furthermore, as an electrolyte, how concrete accommodates metal salts and the mode of diffusion/transport have been described. Although pure concrete electrolytes exhibit poor ionic conductivity, the addition of conducting polymers, metal/metal oxides, and carbon increases the overall performance of energy storage devices. At the end of the review, we discuss the challenges and perspectives on future research directions and provide overall conclusions.

Graphical abstract: Concrete-based energy storage: exploring electrode and electrolyte enhancements

Article information

Article type
Review Article
Submitted
02 ጁላይ 2024
Accepted
23 ኦገስ 2024
First published
11 ሴፕቴ 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 28854-28880

Concrete-based energy storage: exploring electrode and electrolyte enhancements

D. N. Bangera, S. Y. N. and R. A. Nazareth, RSC Adv., 2024, 14, 28854 DOI: 10.1039/D4RA04812A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements