Advancements in removing common antibiotics from wastewater using nano zero valent iron
Abstract
The pollutants such as heavy metals, organic matter, and nitrates in soil and water pose challenges to environmental remediation technology. Nano zero valent iron has shown enormous potential in the field of environmental remediation due to its excellent adsorption performance. By using carbon based materials, rock minerals, biomolecules, etc., as supporting materials for nZVI, and through structural and performance modifications, its performance has been successfully optimized, reducing defects such as aggregation and easy oxidation of the material. This article compares and summarizes the modification effects of different loadings on nZVI, and comprehensively reviews the latest progress, preparation methods, and application of nZVI particles in soil and water remediation. Specifically, this article explores in detail the impact and mechanism of nZVI particles in commonly used antibiotics contaminated environments. Firstly, the combination methods of different types of materials with zero valent iron, as well as the synthesis methods and application scenarios of nZVI, were integrated. Secondly, the interaction mechanism between pollutants and nZVI was introduced in detail, including adsorption, redox reactions, and co-precipitation. Subsequently, environmental factors that affect repair efficiency were emphasized, such as pH value, coexisting components, oxygen, contact time, and temperature. Finally, the challenges faced by the application of nZVI in actual polluted soil and water bodies, as well as the prospects for its long-term efficacy and safety evaluation, are proposed to promote further development in the future.
- This article is part of the themed collection: 2024 Reviews in RSC Advances