Growth methodologies of boron nitride nanotubes and their neutron shielding applications: a review
Abstract
This review provides a comprehensive overview of the growth methodologies and neutron shielding applications of Boron Nitride Nanotubes (BNNTs). BNNTs have garnered significant attention because of their unique combination of high thermal stability, mechanical strength, and exceptional neutron absorption properties. Synthesis methods for BNNTs, including laser ablation, thermal plasma treatment, chemical vapour deposition (CVD), and ball milling have been thoroughly examined, highlighting their mechanisms, advantages, and challenges. Each method contributes uniquely to the quality and applicability of BNNTs in terms of scalability and production efficiency. This study focused on the applications of BNNTs in neutron absorption, particularly in aerospace engineering. BNNTs have shown promising potential in enhancing the safety and longevity of space missions by providing effective radiation protection. Furthermore, their potential in medical applications, particularly in Boron Neutron Capture Therapy (BNCT) for cancer treatment, has been explored. BNCT offers a targeted approach to cancer therapy by utilizing the high boron-10 content of BNNTs for precise and localized treatment. This review also provides an outlook on the future of BNNT research, emphasizing the need for more efficient growth methods to facilitate wider adoption and commercialization. The versatility of BNNTs across various fields, from space exploration to medical science, underscores their potential as materials of significant scientific and technological importance. As research progresses, BNNTs are expected to play a pivotal role in advancing materials science and offer innovative solutions to complex challenges.
- This article is part of the themed collection: Recent Review Articles