Self-assembled methodologies for the construction of DNA nanostructures and biological applications
Abstract
Over the past decades, deoxyribonucleic acid (DNA), as a versatile building block, has been widely employed to construct functionalized nanostructures. Among the diverse types of materials, DNA related nanostructures have gained growing attention due to their intrinsic programmability, favorable biocompatibility, and strong molecular recognition capability. The conventional construction strategy for building DNA structures is based on Watson–Crick base-pairing rules, which are mainly driven by the hydrogen bonding of bases. However, hydrogen bonding-based DNA nanostructures cannot meet the requirements of specific morphology and multifunctionality. Currently, various functional elements have been introduced to expand the synthetic methodologies for constructing the DNA hybrid nanostructures, including small molecules, peptide polymers, organic ligands and transition metal ions. Besides, the potential applications for these DNA hybrid nanostructures have also been explored. It has been demonstrated that DNA hybrid structures with various properties can be extensively applied in the fields of magnetic resonance, luminescence imaging, biomedical detection, and drug delivery systems. In this review, we highlight the pioneering contributions to the methodologies of DNA-based nanostructure assembly. Furthermore, the recent advances in drug delivery systems and biomedical diagnosis based on DNA hybrid nanostructures are briefly summarized.
- This article is part of the themed collection: Biomaterials Science Recent Review Articles, 2024