Issue 47, 2023

Redox-active ligands – a viable route to reactive main group metal compounds

Abstract

Anionic redox-active ligands such as o-amidophenolates, catecholates, dithiolenes, 1,2-benzendithiolates, 2-amidobenzenethiolates, reduced α-diimines, ferrocenyl and porphyrinates are capable of reversible oxidation and thus have the ability to act as sources of electrons for metal centres. These and other non-innocent ligands have been employed in coordination complexes of base transition metals to influence their redox chemistry and afford compounds with useful catalytic, optical, magnetic and conducting properties. Despite the focus in contemporary main group chemistry on designing reactive compounds with potential catalytic activity, comparatively few studies exploring the chemistry of main group metal complexes incorporating redox-active ligands have been reported. This article highlights relevant chemical reactivity and electrochemical studies that probe the oxidation/reduction of main group metal compounds possessing redox-active ligands and comments on the prospects for this relatively untapped avenue of research.

Graphical abstract: Redox-active ligands – a viable route to reactive main group metal compounds

Article information

Article type
Frontier
Submitted
20 ሴፕቴ 2023
Accepted
16 ኖቬም 2023
First published
21 ኖቬም 2023
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2023,52, 17666-17678

Redox-active ligands – a viable route to reactive main group metal compounds

G. G. Briand, Dalton Trans., 2023, 52, 17666 DOI: 10.1039/D3DT03100D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements