Issue 7, 2020

A poly(3,4-propylenedioxythiophene)/carbon micro-sphere-bismuth nanoflake composite and multifunctional Co-doped graphene for a benchmark photo-supercapacitor

Abstract

Efficient storage of sunlight in the form of charge is accomplished by designing and implementing a photo-supercapacitor (PSC) with a novel, cost-effective architecture. Sulfur (S)- and nitrogen (N)-doped graphene particles (SNGPs) are incorporated in a TiO2/CdS photoanode. The beneficial effects of SNGPs such as the high electrical conductance promoting fast electron transfer to TiO2, a suitably positioned conduction band that maximizes charge separation, and its' ability to absorb red photons translate into a power conversion efficiency of 9.4%, for the champion cell. A new composite of poly(3,4-propylenedioxythiophene)/carbon micro-sphere-bismuth nanoflakes (PProDOT/CMS-BiNF) is integrated with the photoanode to yield the PSC. The photocurrent produced under 1 sun irradiance is directed to the supercapacitor, wherein, the synergy between the faradaic and electrical double layer charge accumulation mechanisms of PProDOT and CMS-BiNF bestows storage parameters of an areal capacitance of 104.6 mF cm−2, and energy and power densities of 9 μW h cm−2 and 0.026 mW cm−2. An overall photo-conversion and storage efficiency of 6.8% and an energy storage efficiency of 72% exhibited by the PSC are much superior to those delivered by a majority of the PSCs reported in the literature on the otherwise highly efficient perovskite solar cell or the expensive Ru dye based solar cells.

Graphical abstract: A poly(3,4-propylenedioxythiophene)/carbon micro-sphere-bismuth nanoflake composite and multifunctional Co-doped graphene for a benchmark photo-supercapacitor

Supplementary files

Article information

Article type
Paper
Submitted
07 ፌብሩ 2020
Accepted
03 ሜይ 2020
First published
04 ሜይ 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 2925-2942

A poly(3,4-propylenedioxythiophene)/carbon micro-sphere-bismuth nanoflake composite and multifunctional Co-doped graphene for a benchmark photo-supercapacitor

A. Das, M. Ojha, P. Subramanyam and M. Deepa, Nanoscale Adv., 2020, 2, 2925 DOI: 10.1039/D0NA00103A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements