Issue 29, 2020

Orientational ordering in heteroepitaxial water ice on metal surfaces

Abstract

Heteroepitaxial growth of crystalline ice thin films of water on metal substrates under ultrahigh vacuum provides an excellent opportunity to investigate the interior and surface structures of crystalline ice that are closely related to their physicochemical properties. Here we present the spectroscopic studies of the orientational ordering and the surface relaxation of crystalline ice films grown on two representative metal surfaces: Pt(111) and Rh(111). A versatile tool for exploring these structures is sum frequency generation (SFG) vibrational spectroscopy; homodyne detection of SFG signals serves as a good measure of orientational ordering in the interior of crystalline ice films while heterodyne detection enables us to determine the direction of water molecules at the interface with metal substrates, in the interior of crystalline ice films, and at their surfaces. Water molecules on the wetting layer of Pt(111) are preferentially oriented in H-down configuration, and the configuration is passed along into the interior of crystalline ice films. In contrast, water molecules on Rh(111) are adsorbed in a mixture of H-down and H-up configurations, leading to orientationally disordered crystalline ice films. The inter-layer distance at the top of the surface is modulated alternately in accordance with the orientation of molecules hydrogen bonded to the bilayer underneath. Therefore, the molecular orientation also plays an important role in their surface relaxation.

Graphical abstract: Orientational ordering in heteroepitaxial water ice on metal surfaces

Article information

Article type
Perspective
Submitted
01 ኤፕሪ 2020
Accepted
11 ጁን 2020
First published
12 ጁን 2020

Phys. Chem. Chem. Phys., 2020,22, 16453-16466

Orientational ordering in heteroepitaxial water ice on metal surfaces

T. Sugimoto and Y. Matsumoto, Phys. Chem. Chem. Phys., 2020, 22, 16453 DOI: 10.1039/D0CP01763A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements