Issue 3, 2018

Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route

Abstract

Biomass-based nanomaterials such as bacterial cellulose (BC) are one of the most promising building blocks for the development of sustainable materials with the potential to outperform their conventional, synthetic, counterparts. The formation of BC occurs at the air–water interface, which has been exploited to engineer materials with finely controlled microtopographical features or simple three-dimensional morphologies for a wide range of applications. However, a high degree of control over the 3D morphology of BC films across several length scales (micro to macro) has not yet been achieved. Herein, we describe a simple yet customizable process to finely engineer the morphology of BC in all (x, y, z) directions, enabling new advanced functionalities, by using hydrophobic particles and superhydrophobized surfaces. This results in hollow, seamless, cellulose-based objects of given shapes and with sizes from ca. 200 μm to several centimeters. We demonstrate some of the unique properties of the process and the resulting objects via post-fabrication merging (biowelding), by in situ encapsulation of active cargo and by multi-compartmentalization for near limitless combinations, thus extending current and new applications for example in advanced carbon materials or regenerative medicine.

Graphical abstract: Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route

Supplementary files

Article information

Article type
Communication
Submitted
28 ዲሴም 2017
Accepted
26 ፌብሩ 2018
First published
27 ፌብሩ 2018

Mater. Horiz., 2018,5, 408-415

Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route

L. G. Greca, J. Lehtonen, B. L. Tardy, J. Guo and O. J. Rojas, Mater. Horiz., 2018, 5, 408 DOI: 10.1039/C7MH01139C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements