New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system†
Abstract
Cu-containing photocathodes are generally limited by fast photocorrosion under working conditions. Hence stabilization of these materials is a key factor in their potential application for the light-induced hydrogen evolution reaction (HER). In order to identify new materials, oxidized Cu–Si–Ti metallic thin film precursor materials libraries were evaluated using a combinatorial approach. High-throughput photoelectrochemical characterization using an automated optical scanning droplet cell was performed on a material library to analyze doping and alloying effects on the light-induced HER. The results revealed that compositions near Ti-doped CuSiO3 (dioptase and copper-polysilicate) and Si-doped Cu3TiOx act as comparatively stable and highly active materials for HER.
- This article is part of the themed collection: Water splitting and photocatalysis