Issue 3, 2024

Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics

Abstract

Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.

Graphical abstract: Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics

Article information

Article type
Critical Review
Submitted
10 ኦክቶ 2023
Accepted
28 ኖቬም 2023
First published
28 ኖቬም 2023

Analyst, 2024,149, 614-637

Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics

Y. Shen, H. Gwak and B. Han, Analyst, 2024, 149, 614 DOI: 10.1039/D3AN01739G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements