Issue 2, 2021

Ring opening polymerization of ε-caprolactone through water

Abstract

Ring opening polymerization (ROP) is commonly used to synthesize biodegradable polymers such as polycaprolactone (PCL). These reactions typically demand anhydrous reagents and inert atmosphere, only attainable through the use of complex setups including glove boxes and Schlenk lines. Because of these practical limitations, ROP is typically inaccessible to the non-expert. Herein, we have developed two techniques for limited ROP of ε-caprolactone (CL) without previous drying of reagents by simply conducting the reaction in a laboratory oven. In the first method, a vacuum oven was used to evaporate water from a traditional ROP reaction with stannous octoate (Sn(Oct)2) as the catalyst. In the second method, we ‘polymerize through’ water using titanium isopropoxide (TTIP) to simultaneously quench residual water and catalyze ROP. Using these two methods, we achieved variable chain length (degree of polymerization (DP) 25–500) and molecular weight distribution (Đ = 1.3–1.5) of PCL. We found that ROP with TTIP works better for higher molecular weights up to DP 500 than Sn(Oct)2 under vacuum. Moreover, we investigated the living nature of ROP with TTIP where a block copolymer of PCL-PLA was achieved.

Graphical abstract: Ring opening polymerization of ε-caprolactone through water

Supplementary files

Article information

Article type
Communication
Submitted
20 ኦክቶ 2020
Accepted
02 ዲሴም 2020
First published
07 ዲሴም 2020

Polym. Chem., 2021,12, 159-164

Ring opening polymerization of ε-caprolactone through water

S. Atta, J. Cohen, J. Kohn and A. J. Gormley, Polym. Chem., 2021, 12, 159 DOI: 10.1039/D0PY01481H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements