Juan Pablo
Correa Baena‡
*a,
Ludmilla
Steier‡
b,
Wolfgang
Tress
bc,
Michael
Saliba
c,
Stefanie
Neutzner
df,
Taisuke
Matsui
e,
Fabrizio
Giordano
b,
T. Jesper
Jacobsson
a,
Ajay Ram
Srimath Kandada
d,
Shaik M.
Zakeeruddin
b,
Annamaria
Petrozza
d,
Antonio
Abate
b,
Mohammad Khaja
Nazeeruddin
c,
Michael
Grätzel
b and
Anders
Hagfeldt
*a
aLaboratory for Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015-Lausanne, Switzerland. E-mail: juan.correa@epfl.ch; anders.hagfeldt@epfl.ch
bLaboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015-Lausanne, Switzerland
cGroup for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015-Lausanne, Switzerland
dCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3 20133 Milano, Italy
eAdvanced Research Division, Panasonic Corporation, 1006, (Oaza Kadoma), Kadoma City, Osaka 571-8501, Japan
fDipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milano, Italy
First published on 25th August 2015
The simplification of perovskite solar cells (PSCs), by replacing the mesoporous electron selective layer (ESL) with a planar one, is advantageous for large-scale manufacturing. PSCs with a planar TiO2 ESL have been demonstrated, but these exhibit unstabilized power conversion efficiencies (PCEs). Herein we show that planar PSCs using TiO2 are inherently limited due to conduction band misalignment and demonstrate, with a variety of characterization techniques, for the first time that SnO2 achieves a barrier-free energetic configuration, obtaining almost hysteresis-free PCEs of over 18% with record high voltages of up to 1.19 V.
From the earlier studies, it was realized that the perovskite absorber material transports both holes and electrons.4–6 Naturally, this led towards the investigation of a thin film perovskite configuration with only a compact TiO2 as the ESL.7 However, this device architecture shows pronounced hysteresis of the current–voltage (J–V) curve,8–10 especially for fast voltage sweeps and to our knowledge no PCE of over 18% in this architecture has been reported without hysteresis and the stabilized power output. Xing et al. showed that planar devices, using PCBM as the ESL and methyl ammonium lead iodide (MAPbI3) as the absorbing and transporting material, had a much improved J–V hysteretic behaviour when compared to the TiO2 ESL, which they linked to the improved interfacial charge transfer. Wojciechowski and co-workers showed that modifying the TiO2 surface with fullerene derivatives can work towards high efficiency PSCs.8 Recent studies have shown the potential of SnO2-based ESLs,11–14 but so far these devices have not shown high efficiency without hysteretic behaviour.
Using a low temperature atomic layer deposition (ALD) process to fabricate SnO2 ESLs, we demonstrate that planar PSCs can achieve almost hysteresis-free PCEs of above 18% with voltages exceeding 1.19 V. We show that this is not the case for the planar TiO2. We choose SnO2 considering the favourable alignment of the conduction bands of the perovskite materials and the ESL and show an energy mismatch in the case of TiO2. Thus, using SnO2, which has a deeper conduction band, enables us to fabricate planar devices with high efficiencies, long term air stability and improved hysteretic behaviour, while keeping the processing at low temperatures (<120 °C), which is the key for process upscaling and high efficiency tandem devices.15
It is important to note that the UPS measurements were carried out on perovskite films as thick as 400 nm. Since UPS is a surface measurement (measuring roughly the conditions in the first 10 nm), it is therefore a simplified picture of our device energetics. Guerrero et al. have shown that the energetics throughout the perovskite film can be different and that band bending can be induced when employing thick films.17 In addition, work by some of us has also shown that ion migration is induced in the perovskite material,18 which further complicates the energetic model in the device. Indeed, these two factors play a major role in the electronic configuration of the device and it is something that will be further investigated more in depth in future studies. However, with these measurements we elucidate that there is an intrinsic difference between the two ESLs, which lead to an understanding that there is an energetic barrier at the TiO2, but not at the SnO2/perovskite interface.
To further investigate this phenomenon, we prepared planar devices of typical stack architecture: glass/FTO/ESL/perovskite/HTL/gold contact as seen in the cross-sectional scanning electron microscopy (SEM) image in Fig. 2a. We deposited a 15 nm thick ESL of SnO2, TiO2 or Nb2O5 by ALD. The mixed perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, was spin-coated on the electrode using a similar composition as reported by Jeon et al.19 A doped spiro-MeOTAD was spin-coated as the HTL and, finally, the gold top electrode was deposited by thermal evaporation.
Fig. 2b shows the X-ray photoelectron spectroscopy (XPS) of the 15 nm thick TiO2 and SnO2 layers. For TiO2, no peaks other than oxygen O 1s at 528 eV, titanium Ti 2p at 458.5 eV and Ti 2p1/2 464.2 eV were detected confirming the deposition of TiO2 without traces of cross contamination.20 We detect no signal from the underlying FTO indicating conformal and pinhole-free TiO2 coverage, which we further confirm by SEM (see ESI,† Fig. S4a). Similarly, we confirm the formation of pure SnO2 observing the oxygen peak O 1s at 530.9 eV and Sn4+ peaks at 495.6 eV as well as at 487.2 eV. The top-view SEM image also indicates a pinhole-free deposition of SnO2 (see ESI,† Fig. S4b).
In order to further understand the results by UPS in a device configuration we performed femtosecond transient absorption (TA) measurements. With this we intended to understand electron injection dynamics from the perovskite into the ESLs, and therefore, indirectly probe whether an energetic barrier exists for TiO2 or SnO2. The measurements were performed on devices with SnO2 and TiO2 and the mixed perovskite under short circuit conditions, wherein the charge injection can be resolved in time. In Fig. 3, we show the TA dynamics taken at a probe wavelength of 750 nm – the peak of the photobleach (PB) of the perovskite. The PB band, spectrally located at the onset of the absorption spectrum of the semiconductor (ESI,† Fig. S3), corresponds to the photo-induced transparency in the material due to the presence of electrons and holes in the bottom and top of the conduction and valence bands, respectively.17 Hence, the magnitude of this feature is correlated with the photo-induced carrier population and every mechanism changing the initial population, like electron/hole injection, results in its quenching. We observe a PB decay in the nanosecond timescale for both TiO2 and SnO2-based devices. However, while in the TiO2-based device the dynamics do not strongly differ from the one probed from the pristine perovskite deposited on bare glass,21 in the case of SnO2 the decay is much faster. In fact, the carrier population is reduced by approximately 60% in 1.5 ns. As both devices embody the same hole extracting layer, we conclude that the striking difference observed can be considered as the signature of different electron injection dynamics. This strongly supports our hypothesis of better electron extraction in pristine SnO2 when compared to TiO2-based devices, due to favorable energetic alignment.
We note that the poor charge extraction in the TiO2 based device may appear to be surprising. However, it must be considered that, in thin film PSCs in the presence of planar TiO2 as the electron extracting layer, solar cells generally show Jsc comparable to those using a mesoporous TiO2 layer only when the device is pre-polarized.8,9,22–24 Indeed, some of us have recently demonstrated that the PB dynamics become faster when measured just after keeping the TiO2-based device at 1 V for a few seconds, suggesting that the electron transfer is suddenly activated.23 This indicates that upon polarization, the TiO2/perovskite interface is modified and such a modification is needed to allow for an efficient charge transfer, as also predicted by De Angelis et al.25
We investigated the different electronic properties of devices with TiO2 or SnO2 ESLs by analyzing the current density–voltage curves based on the mixed perovskite. In Fig. 4a, we observe a representative SnO2 device with high performance and low hysteresis between the backward and the forward scan (Table 1). This is indicative of good charge collection independent of voltage. In stark contrast, a representative TiO2-based device shows strong hysteresis and low current densities (<5 mA cm−2). This difference can also be seen in Fig. 4b where we show transient photocurrents recorded at 0.8 V resembling closely operating device conditions at the maximum power point. After ∼50 s, we observe a steady photocurrent when switching from an open circuit to 0.8 V. After switching from open circuit to 0.8 V, the current for the TiO2 device drops by 70% from 10 to a stabilized 3 mA cm−2, whereas that for the SnO2 drops by only 10% from 23 to a stabilized 20.2 mA cm−2. The stabilized current is in good agreement with the current seen in the J–V curve at 0.8 V, which is found to be 20.7 mA cm−2 (Fig. 4a). In addition, SnO2-based devices showed good long-term stability; unencapsulated devices stored in dry air were measured for over 30 days with no significant PCE variability (ESI,† Fig. S5). Small variations were found for 12 devices made in different batches with an average PCE of 16.7% (ESI,† Fig. S6). Integrating the external quantum efficiency (EQE) yielded a Jsc of 18 mA cm−2 (ESI,† Fig. S7a), which is in very good agreement with the measured Jsc in Fig. S7b (ESI†).
ESL | Scan direction | J sc (mA cm−2) | V oc (V) | FF | PCE (%) | Light intensity (mW cm−2) |
---|---|---|---|---|---|---|
SnO2 | Backward | 21.3 | 1.14 | 0.74 | 18.4 | 98.4 |
Forward | 21.2 | 1.13 | 0.75 | 18.1 |
We note that for both TiO2 and SnO2, we observe open circuit voltages of around 1.14 V, which are close or even exceeds most devices prepared with mesoporous interlayers. Additionally, some of our SnO2 devices yielded stabilized voltages of over 1.19 V (ESI,† Fig. S7c) approaching the thermodynamic maximum Voc of approx. 1.32 V.26 This suggests exceptionally good charge selectivity and a low degree of charge recombination in our planar perovskite/SnO2 devices.
To understand the reason for the reduced photocurrent for the TiO2 based device, we performed current–voltage scans at various voltage sweep rates. These are shown in Fig. 4c and d, where only the backward scan is plotted which is obtained after the device was preconditioned at 1.2 V for 10 s. For the SnO2 device there is only a slight increase of the photocurrent when increasing the rate from 10 to 10000 mV s−1. Slightly enhanced sweep rates allow us to collect almost all the photogenerated charges reaching a maximum Jsc density of 23 mA cm−2. The dependence on the scan rate is much more pronounced for the TiO2-based device showing high current densities of ca. 20 mA cm−2 for the scan at 10 V s−1 with a massive drop to about 5 mA cm−2 when scanned at 10 mV s−1. This implies a low charge collection efficiency in the planar perovskite/TiO2 device at slow scan rates, though light absorption and photocurrent generation in the perovskite material is the same as for the perovskite/SnO2 configuration. The results are also in good agreement with the transient photocurrent in Fig. 4b, the electron injection characteristics in Fig. 3 and our proposed band alignment measured by UPS in Fig. 1, clearly indicating a barrier free charge transport across the perovskite/SnO2 in contrast to the perovskite/TiO2 interface. We investigated devices with ALD Nb2O5 as the ESL (ESI,† Fig. S8) which has a similar conduction band position as TiO2.27 With this, we can crosscheck if the energy level alignment is indeed critical for high hysteresis and can exclude the fact that other properties of SnO2 or TiO2 are responsible for the above results. Very similar to TiO2, the Nb2O5-based devices exhibited large hysteresis behavior and very low photocurrent densities (ESI,† Fig. S8). Several independent studies have shown similar or even more pronounced trends irrespective of the TiO2 deposition method. Spin-coating,8,9,23,28–30 sputtering30,31 and spray pyrolysis32 of TiO2 have all been demonstrated to yield highly hysteretic J–V curves in planar PSCs.
To further confirm what is found in the literature and show that our results are not unique to the ALD technique, we prepared TiO2 by spray pyrolysis and found that the J–V curves exhibit strong hysteretic behavior (ESI,† Fig. S9). In this case, the forward scan shows an s-shaped J–V curve indicative of an unstabilized power output.33 However, the devices using spray-pyrolysed TiO2 showed an increase in the Jsc in the backward scan when compared to ALD TiO2. In order to understand the difference between these two layers, we investigated the effect of the ESLs using spiro and gold-only devices. The perovskite-free devices were investigated in reverse bias to understand whether the ESLs suffer from pinholes. Our results, summarized in ESI,† Fig. S10, show improved blocking properties for the ALD layers of both TiO2 and SnO2 when compared to spray pyrolysed TiO2. This difference likely explains the cause of increased photocurrent of the latter, which we can see in ESI,† Fig. S9.
A similar trend was found for planar devices using MAPbI3 (ESI,† Fig. S11). Here, the current densities measured are slightly higher in the backward but lower in the forward scan, suggesting the same limitation for charge extraction as noted above. This also matches our UPS results in Fig. 1b, where the conduction bands of perovskite and TiO2 are misaligned and highlights the importance of correct band alignment in all planar perovskite devices. Other studies3,19 have shown high performance at stabilized currents in thin mesoporous TiO2 based ESLs, and we note that this may be due to a proper band alignment intrinsic to the mesoporous TiO2/perovskite interface which is different from the planar configuration with the TiO2 used in this study.
We hypothesize that the preconditioning under forward bias leads to accumulation of negative charge and ion migration at the ESL–perovskite interface inducing a high electric field and/or dipole formation at this interface.10,22 An elevated electric field or possibly a reduced conduction band offset can facilitate electron injection into the ESL. After releasing the positive bias, this beneficial effect lasts for a few seconds only, which is the time needed for this charge to be removed. Sweep rates in this time range give rise to large hysteresis. For the SnO2 devices, the energy levels are already well aligned without biasing the device. Thus, charge collection is efficient showing high FF and Jsc independent of the scan rate (Fig. 4c).
Atomic layer deposition (ALD) of semi-crystalline TiO234 was carried out in a Savannah ALD 100 instrument (Cambridge Nanotech Inc.) at 120 °C using tetrakis(dimethylamino)titanium(IV) (TDMAT, 99.999% pure, Sigma Aldrich) and H2O2. TDMAT was held at 75 °C and H2O2 at room temperature. The growth rate was 0.07 nm per cycle at a N2 flow rate of 5 sccm as measured by ellipsometry.
SnO2 was deposited at 118 °C using tetrakis(dimethylamino)tin(IV) (TDMASn, 99.99%-Sn, Strem Chemicals INC) and ozone at a constant growth rate of 0.065 nm per cycle measured by ellipsometry. TDMASn was held at 65 °C. Ozone was produced using an ozone generator (AC-2025, IN USA Incorporated) fed with oxygen gas (99.9995% pure, Carbagas) producing a concentration of 13% ozone in O2. Nitrogen was used as a carrier gas (99.9999% pure, Carbagas) with a flow rate of 10 sccm.
Nb2O5 was deposited at 170 °C and a carrier gas flow rate of 20 sccm using (tert-butylimido)bis(diethylamino)niobium (TBTDEN, Digital Specialty Chemicals, Canada) and ozone with a constant growth rate of 0.06 nm per cycle. TBTDEN was held at 130 °C.
The spiro-OMeTAD (Merck) solution (70 mM in chlorobenzene) was spun at 4000 rpm for 20 s. The spiro-OMeTAD was doped at a molar ratio of 0.5, 0.03 and 3.3 with bis(trifluoromethylsulfonyl)imide lithium salt (Li-TFSI, Sigma Aldrich), tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)–cobalt(III) tris(bis(trifluoromethylsulfonyl)imide) (FK209, Dyenamo) and 4-tert-butylpyridine (TBP, Sigma Aldrich), respectively.22,35,36 As a last step 70–80 nm of gold top electrode were thermally evaporated under high vacuum.
The EQE spectra were measured under constant white light bias with an intensity of 10 mW cm−2 supplied by a LED array. The superimposed monochromatic light was chopped at 2 Hz. The homemade system comprises a 300 W Xenon lamp (ICL Technology), a Gemini-180 double-monochromator with 1200 grooves per mm grating (Jobin Yvon Ltd) and a lock-in amplifier (SR830 DSP, Stanford Research System). The EQE integration was performed according to the following equation
Footnotes |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee02608c |
‡ JPCB and LS contributed equally to this work. |
This journal is © The Royal Society of Chemistry 2015 |