N2O decomposition over (CaO)1-x(MO)xoxide systems (M=Ti, Cr):relation with photoluminescence

(Note: The full text of this document is currently only available in the PDF Version )

Loukia A. Loukatzikou, Antonios T. Sdoukos and Philip J. Pomonis


Abstract

(CaO)1-x(MO)xoxide systems (M=Ti, Cr;x=0–1), prepared at 1150 °C under atmospheric conditions, were investigated for their photoluminescence as well as for their catalytic activity in N2O decomposition in the temperature range 400–650 °C. As shown by XRD analysis, the solids are either multicomponent systems or simple phase oxides. Titanium addition to CaO of up to 30% results in a significant enhancement of the catalytic activity, while chromium addition beyond 1% has the reverse effect; solids rich in Ti or Cr are rather inactive. Thus, the systems showing considerable activity are either simple phase CaO, or CaO–CaTiO3 mixed oxides. The photoluminescence intensity of the catalysts was found to be suppressed by addition of Cr or Ti (>0.5%) to CaO. Although the catalytic activity is affected in different ways by addition of Ti or Cr, and a variety of structural composition are noted for the (CaO)1-x(MO)xcatalysts, a relation between catalytic activity and photoluminescence is observed, not only across each sample series, but also for the total set of catalysts.


References

  1. A. Cimino, Chim. Ind., 1974, 56, 27 Search PubMed.
  2. J. C. Vickerman, Spec. Per. Rep. Catal. II, 1979, 107 Search PubMed.
  3. P. Pomonis and J. C. Vickerman, J. Catal., 1978, 55, 88 CrossRef CAS.
  4. P. Pomonis and J. C. Vickerman, J. Catal., 1984, 90, 305 CrossRef CAS.
  5. S. Louis Rai and V. Srinivasan, J. Catal., 1980, 65, 121 CrossRef.
  6. L. G. Tejuca and J. L. G. Fierro, Adv. Catal., 1989, 36, 237 CAS.
  7. H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier, Amsterdam, 1989 Search PubMed.
  8. L. A. Loukatzikou, A. T. Sdoukos and P. J. Pomonis, Catal. Lett., 1996, 41, 113 CrossRef CAS.
  9. L. A. Loukatzikou, A. T. Sdoukos and P. J. Pomonis, J. Mater. Chem., 1996, 6, 887 RSC.
  10. Ch. Kordulis, L. Vordonis, A. Lykourgiotis and P. Pomonis, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 627 RSC.
  11. P. Pomonis, Ch. Kordulis and A. Lykourgiotis, J. Chem. Soc., Faraday Trans., 1990, 86, 711 RSC.
  12. Ch. Kordulis, H. Latsios, A. Lykourgiotis and P. Pomonis, J. Chem. Soc., Faraday Trans., 1990, 86, 185 RSC.
  13. E. R. S. Winter, Discuss. Faraday Soc., 1959, 28, 183 RSC.
  14. K. V. Ramanujachary and C. S. Swamy, J. Catal., 1985, 93, 279 CrossRef CAS.
  15. L. G. J. De Haart and G. Blasse, J. Solid State Chem., 1986, 61, 135 CrossRef CAS.
  16. A. Amtout and R. Leonelli, Solid State Commun., 1992, 84, 349 CrossRef CAS.
  17. M. Anpo, Res. Chem. Intermed., 1989, 11, 67 CAS.
  18. M. Anpo, M. Tomonari and M. A. Fox, J. Phys Chem., 1989, 93, 7300 CrossRef CAS.
  19. M. Wiegel, M. Hamoumi and G. Blasse, Mater. Chem. Phys., 1994, 36, 289 CrossRef CAS.
  20. G. A. M. Dalhoeven and G. Blasse, Chem. Phys. Lett., 1980, 76, 27 CrossRef CAS.
  21. R. L. Nelson, A. J. Tench and B. J. Harmsworth, Trans. Faraday Soc., 1967, 63, 1427 RSC.
  22. R. L. Nelson and A. J. Tench, Trans. Faraday Soc., 1967, 63, 3039 RSC.
  23. E. R. S. Winter, J. Catal., 1969, 15, 144 CrossRef CAS.
  24. E. R. S. Winter, J. Catal., 1970, 19, 32 CrossRef CAS.
  25. K. V. Ramanujachary, N. Kameswari and C. S. Swamy, J. Catal., 1984, 86, 121 CrossRef CAS.
  26. Ming-Cheng Wu, C. M. Truong, K. Coulter and D. W. Goodman, J. Am. Chem. Soc., 1992, 114, 7565 CrossRef CAS.
  27. Ming-Cheng Wu, C. M. Truong, K. Coulter and D. W. Goodman, J. Catal., 1993, 140, 344 CrossRef CAS.
  28. A. G. Anshits, E. N. Voskresenskaya and L. I. Kurteeva, Catal. Lett., 1990, 6, 67 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.