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Zeolitic imidazolate framework-8 (ZIF-8) is a highly porous material with remarkable structural properties
and high drug-loading capacity, and hence this material presents as an exceptional candidate for
advanced drug delivery systems. Herein, we comprehensively review the recent developments in ZIF-8
synthesis techniques and critically discuss innovative approaches such as the use of green solvents and
advanced methods such as microwave- and ultrasound-assisted syntheses. The multifunctional
applications of ZIF-8-based biomaterials in biomedical engineering are critically explored with their
pivotal roles in antibacterial and anticancer therapies, drug delivery systems, bone tissue engineering,
and diagnostic platforms such as biosensing and bioimaging. The present review also clarifies some

innovations of ZIF-8-based materials in pH-sensitive and glucose-responsive drug delivery systems and
Received 5th December 2024 ffolds for b ti Despite th . d ¢ L itical
Accepted 19th April 2025 scaffolds for bone regeneration. Despite these promising advancements, we analyze critical concerns,
such as the release of Zn(i) ions, potential cytotoxicity, and biocompatibility challenges, which remain
DOI: 10.1039/d4na01015a significant hurdles to the broader adoption of ZIF-8. Addressing these outlined challenges may be

rsc.li/nanoscale-advances necessary in realizing the potential of ZIF-8 in biomedical applications.
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1. Introduction

Zeolitic imidazolate frameworks (ZIFs), a subclass of metal-
organic frameworks, possess exceptional properties, such as
thermal and chemical stability, high porosity, and tunable
surface chemistry."” ZIF-8, a prototypical member of the ZIF
family, is composed of zinc clusters (Zn**) and imidazolate
linkers (2-Hmim). This material has a chemical formula of Zn(2-
Hmim),, having the same topology as sodalite-type zeolites with
a Zn-[2-Hmim]-Zn angle of 145° and a pore aperture of 3.4 A.?
Structurally, each building unit of ZIF-8 is a Zn(2-Hmim),
tetrahedron, while the crystal structure exhibits a rhombic
dodecahedral or cubic shape.* These structural characteristics
endow ZIF-8 with high flexibility and multifunctionality,
recently offering key benefits for application in lithium sulfur
batteries,®> electrocatalysis, as nanocomposite scaffolds in
wound healing,” pH-responsive drug delivery systems,® perov-
skite photovoltaics,® and in water treatment.'® As a result, efforts
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to broaden its scope in biomedical engineering have attracted
great attention.

Biomedical engineering leverages interdisciplinary
approaches between materials and medical sciences to solve
healthcare problems, and ZIF-8 materials hold significant
advantages in this domain." Indeed, the pH-sensitive drug
release of ZIF-8 is advantageous for applications such as cancer
treatment, where acidic tumor microenvironments enable
precise drug release while minimizing off-target effects.'> Pos-
sessing highly porous and versatile structure, ZIF-8-based
carriers have a high drug-loading capacity and hence can be
incorporated with diverse therapeutic agents for targeted drug
delivery systems.*® Another promising avenue for ZIF-8 is in
tissue engineering, wherein ZIF-8-based scaffolds are often
combined with biopolymers or loaded with bioactive molecules
to promote osteogenesis, angiogenesis, and bone integration.™
These systems not only facilitate the healing of critical-sized
bone defects but also exhibit antibacterial properties, an
essential feature for preventing infections." Importantly, the
pore structure and surface chemistry of ZIF-8 can be still
modulated via functionalization, enabling tailored solutions for
specific medical applications.*®

This review systematically discusses recent developments in
ZIF-8 synthesis methods and critically examines the multi-
functional applications of ZIF-8-based materials in biomedical
engineering with a focus on their emerging roles in antibacte-
rial therapy, anticancer therapy, drug delivery, bone tissue
engineering, biosensing and bioimaging for diagnostic systems
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Fig. 1 A schematic flowchart to show the synthesis strategies, struc-
ture characterization, and biomedical applications of ZIF-8 materials.

(Fig. 1). Unlike previous reviews that focus on either the general
properties of ZIFs or their applications in a specific domain, we
expect this work to bridge multiple biomedical disciplines to
provide a holistic perspective on the versatility of ZIF-8. The
present review discusses the latest advancements in pH-
sensitive and glucose-responsive drug delivery systems, inno-
vative scaffolds for bone regeneration, and theranostic plat-
forms integrating diagnostic and therapeutic functionalities.
This review also recommends future research studies to address
current limitations, such as toxicity and scalability. Alongside
future prospects, this review supplies novel insights into the
design and development of next-generation ZIF-8-based
biomedical materials, making them an indispensable resource
in the field.

2. Synthesis strategies

2.1. Background

ZIF-8 is composed of Zn clusters and imidazolate ligands; thus,
Zn>" and 2-methylimidazole (2-Hmim) are two major precursors
(Table S17). Several studies have reported that ZnO can also be
used as an alternative to Zn>" salt.”2° Since water is a by-
product of the process, this strategy is more inexpensive and
sustainable than the ones used, Zn>* and 2-methylimidazole."”
However, the growth of ZIF-8 from ZnO may require several
specific conditions. For example, ZIF-8 crystals are grown on
cotton fibers as a “scaffold”,* on Al,O5;/ZnO hollow fibers,* on
a polyacrylonitrile support via magnetron sputtering,* or under
the exposure of both ultrasound and microwave irradiations."”

The mole ratio between Zn>" and 2-methylimidazole (2-
Hmim) is a key factor since it is often associated with yield,
purity, and characteristic of obtained ZIF-8 materials.>* Table
S17 reveals that this ratio ranges from 1: 2 to 1 : 8. Some studies
have reported the mole of 2-Hmim can be higher than that of
Zn>*.2*>* A larger mole ratio of 2-Hmim can lead to higher yields
and complete reactions. However, 2-Hmim is an expensive
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linker chemical, resulting in the fact that the total production
cost is more likely to be very high. Unreacted 2-Hmim molecules
can get stuck inside the pores of ZIF-8, decreasing the surface
area of the resulting materials. An excessive amount of 2-Hmim
when released into water sources without proper treatment can
also become a new pollutant or can be a toxin to microorgan-
isms and aquatic species.>® Consequently, optimizing the mole
ratio between Zn>' and 2-Hmim in various ZIF-8 synthesis
methods should be investigated.

For synthesis of MOFs, solvents and additives play a vital role
in the nucleation, crystal growth, crystallite size, morphology
control, surface area, topology, and stability.>® The commonly
used solvents for ZIF-8 preparation are H,O, methanol (MeOH),
and N,N-dimethylformamide (DMF). In some cases, a mixed
solvent can be a feasible solution to curb the use of harmful
solvents such as DMF, MeOH, etc.”” Triethylamine [TEA,
N(CH,CH3);] is often added as a basic additive to facilitate the
deprotonation of 2-Hmim, accelerating the reaction rate
between Zn”>* and 2-Hmim to form new frameworks.>® Although
TEA is toxic and flammable, the addition of this reagent into the
reaction solution offers undebatable advantages, ie., mini-
mizing the amount of 2-Hmim and reducing the synthesis
duration.” The additives can be butylamine, polyamine, and
sodium hydroxide.

There are currently many methods used for synthesis of ZIF-
8, such as the solvent method, water-based method, sol-
vothermal method, hydrothermal method, ultrasound-assisted
method, microwave-assisted method, and mechanochemical
method. Among them, the water-based method is preferable
since this method uses water as the main solvent, while the
mechanochemical method often does not use or only uses
a small amount of solvents. Ultrasound-assisted and
microwave-assisted methods offer many advantages such as the
rapid synthesis process. However, these methods can present
several shortcomings, which are clarified in the next
subsections.

2.2. Solvent method

In this method, polar solvents such as MeOH or mixed solvents
such as ammonium hydroxide (NH,OH) in water are often used
(Table S17). Because these solvents have low boiling points, ZIF-
8 synthesis is preferred at room temperature (RT). Kiwaan
et al.*” used a mixed solvent of H,0 and NH,OH (1 : 7 by vol.) for
the synthesis of ZIF-8 for 10 min. However, the surface area of
ZIF-8 synthesized by the solvent method was relatively low due
to the low dissolution of 2-Hmim in NH,OH/H,O solvent. In
this case, the residual organic linkers still remain trapped in the
pores of as-obtained ZIF-8. Thus, the use of this mixed solvent
for ZIF-8 synthesis was rarely reported in the solvent method.
MeOH was widely used because the resulting ZIF-8 exhibited
a higher surface area (1291-1932 m* g~ ). This solvent can easily
dissolve both Zn*>* and 2-Hmim, facilitating the reaction
between them at room temperature. According to Table S1,7 as
the Zn** to 2-HMim ratio increased (1:8-1:3.5), the reaction
time tends to increase (1-24 h). An excessive amount of ligand
accelerates the nucleation and crystal growth of ZIF-8. In these

© 2025 The Author(s). Published by the Royal Society of Chemistry
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cases, the kinetic rate of ZIF-8 synthesis in MeOH media can be
controlled by the mole ratio of reagents. Meanwhile, Cheng
et al.*® increased both the Zn>" to 2-HMim ratio (1:8) and
reaction time (48 h) to produce ZIF-8 in MeOH at room
temperature. However, the surface area did not increase
significantly (1115.2 m? g~'), suggesting that a prolonged
reaction time may affect the porosity of ZIF-8. The highest
surface area of ZIF-8 synthesized by the solvent method was
1932 m? g ' at a high Zn**/2-HMim ratio (1 : 7) and low reaction
time (1 h).** There is a disadvantage of the solvent method using
methanol as solvent, that is high toxicity. The recovery of
methanol and residual Zn metal from the mixture after ZIF-8
synthesis is also a costly and time-consuming process.

2.3. Water-based method

Water is a non-expensive, highly polar, and clean solvent for
material synthesis. However, several organic reagents limitedly
dissolve in water, reducing the total production yield. In such
cases, a mixed solvent of water and an organic solvent (e.g., ¢
BuOH, MeOH, DMF) is more appropriate. The use of water as
a solvent for ZIF-8 synthesis offers several advantages. First,
water can be used to replace some toxic or expensive solvents
such as MeOH, and DMF. Second, the aqueous reaction is often
carried out at room temperature. However, the amount of 2-
Hmim is largely high at a 1: 70 ratio,*" or a prolonged reaction
time (48 h) is required.*® Moreover, the surface area of ZIF-8
obtained by this method is lower than that of ZIF-8 obtained
by the solvent method.*

2.4. Solvothermal method

Over the past decades, hydrothermal synthesis has been applied
to synthesize zeolites, nanoparticles, polymers, porous metal-
organic or inorganic-organic hybrid materials.*> The sol-
vothermal synthesis normally takes place inside a Teflon-lined
steel autoclave to obtain a temperature higher than the
boiling point of the used solvents. Moreover, the pressure of
this process is higher than the atmospheric pressure (1.0 atm,
760 mm Hg). During the hydrothermal process, the temperature
of solvothermal reactions can reach up to 250 °C.** The major
safety concern is that the reactants need to be dissolved under
high temperature and pressure conditions; it is therefore
necessary to be equipped with various protection accessories.
Different single solvents can be used for the solvothermal
preparation of ZIF-8-based materials.’® Mixed solvents are also
used, i.e., either mixture of organic solvents, such as methanol
(MeOH), ethanol (EtOH), acetonitrile (MeCN), N,N-dime-
thylformamide (DMF), and N,N-diethylformamide (DEF) or
mixture of organic solvents and inorganic solvents, such as
water.** According to Table S1,f DMF serves as a common
solvent since it can easily dissolve the organic ligand 2-Hmim
and zinc salts. DMF also offers great advantages such as high
boiling point and high polarity, which are necessary for the
solvothermal process. Considering DMF as a solvent, the
temperature and time for the solvothermal synthesis of ZIF-8
often fall in the range 100-140 °C and 18-24 h, respectively.
The synthesis conditions at these temperatures and time are

© 2025 The Author(s). Published by the Royal Society of Chemistry
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adequate for crystal growth during the solvothermal
process.'*?73
2.5. Hydrothermal method

The hydrothermal method is a kind of wet chemical method to
produce nanomaterials such as metal oxides and spinel
ferrites.>*® Typically, precursors are mixed together using an
aqueous solution and heated at a high temperature (200-300 °C)
to reach a high vapor pressure.** High temperature and pressure
conditions allow precursors to react rapidly. Same as sol-
vothermal methods, hydrothermal reactions are often carried
out in specially sealed vessels or high-pressure resistant
autoclaves.'**

Synthesis of ZIF-8 by the hydrothermal method has been re-
ported in the past studies. For example, Li et al.*® hydrothermally
synthesized ZIF-8 at 120 °C for 6 h using H,O as a solvent.
However, the Zn>* to 2-Hmim mole ratio was reported to be up to
1:57, resulting in a very large amount of residual 2-Hmim as
a toxic waste. By adding TEA as an additive, Butova et al.”® reduced
this ratio to 1:2 for the hydrothermal synthesis of ZIF-8. This
materials had an exceptionally high surface area of 1340 m*
¢ ', The reaction duration was quite long (24 h), which can be
a weakness of this method. Malekmohammadi et al.** addressed
these disadvantages (high temperature and long duration) by
using a mixed solvent of MeOH and H,O with a ratio of 2:15.
Consequently, the formed ZIF-8 offered a very high yield of 97% at
25 °C for 20 h.

2.6. Ultrasound-assisted method

Compared with conventional synthesis methods (hydrothermal
and solvothermal), non-conventional microwave-assisted
methods (sonochemistry) bring special reaction conditions,
i.e., supply high energy for a very short time, and enhance the
chemical activity of reactants.*>** This technique uses high-
frequency waves (20-1000 kHz) to exert acoustic cavitation,
which leads to the formation, expansion, and flash collapse of
bubbles or “hot spots”.** Therefore, hot spots receive extremely
high temperature (5000 °C) and pressure (1000 atm), and boost
the rate of reactions.

Ultrasound-assisted ZIF-8 synthesis is mainly conducted in
MeOH or H,O at room temperature and with a Zn*'/2-Hmim
ratio from 1: 2 to 1: 70 (Table S1%). For instance, Nalesso et al.*>
surveyed the effect of various micromixing rates, ultrasound
frequencies, calorimetric powers, and ultrasound times on the
formation of ZIF-8 nanocrystals using H,O as the solvent. The
authors concluded that frequency and power of sonication had
a negligible impact on the crystal properties such as crystal-
linity, purity and yield. Interestingly, ZIF-8 nanocrystals were
produced with a small size (80 nm) within only 5 s of sonication
(Fig. 2a and b). However, sonication by shockwaves resulted in
a decreased surface area of ZIF-8. The use of surfactant aids the
nucleation and crystal growth, augmenting the production of
ZIF-8. Indeed, Luan Tran et al.** used Pluronic P-123 (a copol-
ymer) as a surfactant to reduce the time for the ultrasound-
assisted synthesis of ZIF-8 from 10 min to 1 min. Cho et al.®®
compared the production yield of ZIF-8 between sonochemical

Nanoscale Adv., 2025, 7, 3941-3960 | 3943
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Fig. 2 Ultrasonic generator equipment with a step-up transformer (a) and the glass vial reactor for ZIF-8 placed in an ultrasonic bath (b). This
figure has been reproduced from ref. 42 with permission from Elsevier, copyright 2021. Ultrasound-assisted synthesis of ZIF-8 using TEA and
NaOH additives (c) and morphological comparison of ZIF-8 between solvothermal and sonochemical methods (d). This figure has been

reproduced from ref. 43 with permission from Elsevier, copyright 2013.

and solvothermal methods. The space-time yield (STY, kg per
m?® per day) results showed that the STY of the former (~1200
times) was higher than that of the latter. Moreover, the crys-
tallite size of ZIF-8 prepared by the sonochemical method was
considerably smaller than that of ZIF-8 prepared by sol-
vothermal methods (Fig. 1c and d).

2.7. Microwave-assisted method

Microwave heating is one of the widely used non-conventional
methods for pyrolytic conversion of biomass into biochars,
bio-oils and biogases,*™ electrification of the clinker for
cement manufacturing,*® food processing,* and nanomaterial
synthesis.>*** In this method, the electromagnetic field with
a frequency from 300 MHz to 300 GHz is induced to rotate
dipolar molecules instantaneously.** This process gives rise to
heating energy from collision among molecules. Microwaves
are irradiated from the inside to outside so that the sample was
uniformly heated (Fig. 3).

The interaction degree between molecules and the electro-
magnetic field significantly depends on the dielectric proper-
ties.”® As a result, the selection of solvent plays a key role in the
formation of nucleation, crystal growth and MOF particles,
thereby reducing the synthetic duration to a few minutes or few
hours.”®* Common solvents, including MeOH, DMF, mixed
MeOH/DMF, and so forth, are used for ZIF-8 synthesis (Table
S1t). Similar to conventional and non-conventional methods,
TEA is often added in the solvent to assist the deprotonation of
2-Hmim. However, several main disadvantages of microwave
heating are indicated, such as limited scalability, well-equipped

3944 | Nanoscale Adv, 2025, 7, 3941-3960

and complex instruments to protect operators from microwave
irradiation, difficulty in reaction temperature control, and
heavy energy consumption.®

(a) Microwave oven

(d) Heating

(c) Stirring Microwave (e) PCL Foam

o
.

VVVYOE
AAAW

Fig. 3 A real photograph of a microwave oven (a) and a cylindrical
mould reactor (b). The processes of stirring (c), microwave heating (d)
and the formation of a biodegradable shape memory crosslinked-
polycaprolactone (PCL) foam (e). This figure has been reproduced
from ref. 54 with permission from Springer Nature copyright 2015.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The reaction between ZnO nanoparticles and 2-methylimidazole during dry milling to produce ZIF-8. This figure has been reproduced
from ref. 57 with permission from Royal Society of Chemistry, copyright 2020.

2.8. Mechanochemical method

Mechanochemistry has been used to produce ZIF-8 through the
use of mechanical forces (e.g., grinding and milling) to initiate
chemical reactions.”” In this method, agglomerated ZnO parti-
cles are milled into ZnO nanoparticles, which act as a precursor
to react with 2-methylimidazole without the use of solvent
(Fig. 4). The mechanochemical energy exerts pressure on the
surface of ZnO nanoparticles to generate a local heating source
and a high-entropy system for the synthesis of ZIF-8.® The
mechanochemical method is considered a solvent-free and
toxic chemical-free method, hence this method may be
a potentially greener alternative to traditional chemical
synthesis methods.* However, several disadvantages should be
indicated that high energy consumption and mechanical
equipment may be required for milling or grinding ZnO parti-
cles to reduce their size to a nano-scale.

Taheri et al.>” conducted a one-step mechanochemical pro-
cessing of ZnO nanoparticles and 2-methylimidazole for 12 h of
milling. By fixing the ball-to-powder mass ratio (10:1) and
controlling the stoichiometric mixture of two precursors, ZIF-8
nanocrystals were formed with a conversion yield of 100%
based on ZnO nanopowder. ZIF-8 had a size of about 80 nm,
good dispersion, and a surface area of up to 1885 m> g~ *. Wei
et al.® successfully encapsulated enzymes in ZIF-8 to form
biocomposites for enhancing enzymatic biological activities. In
this study, the mechanochemical processing of ZnO and 2-
methylimidazole was carried out for only 2.5 min and of as-
obtained ZIF-8 and enzymes for another 2.5 min. The main
findings indicated that the mechanochemical method was used
to not only create ZIF-8 rapidly but also encapsulate enzymes
effectively.

2.9. Large-scale synthesis

The large-scale production of uniform, narrow-size, and highly
crystalline ZIF-8 has been conducted by Kim et al.** In this study,
the authors used a 2 L water batch experiment at room temper-
ature without surfactants to obtain a ZIF-8 powder mass of 55 g
(nearly 92% in yield). The ZIF-8 particle sizes were from 500 to

© 2025 The Author(s). Published by the Royal Society of Chemistry

520 nm. The synthesis procedure was considered safe due to the
use of deionized water instead of an organic solvent. However, the
production mass of ZIF-8 by this protocol was still relatively small.

Through an intermediate phase transformation strategy,
Deacon et al.®> produced up to 1 kg of nano-scale ZIF-8 on a pilot
scale with a production yield of 81% and a space-time yield of 25
kg per m® per day. Different from the synthesis procedure re-
ported by Kim et al.,** these researchers first synthesized ZIF-L
on a large scale using 2.22 kg of 2-methylimidazole and 1.3 kg
of zinc nitrate hexahydrate, then transformed ZIF-L into ZIF-8
by dispersing in 2-propanol at 80 °C for two days. Large-scale
synthesized ZIF-8 through the transformation route possessed
an outstanding surface area (Sppr: 1745 m”> g '), which was
higher than that of ZIF-8 synthesized using the original route.
These findings suggest a promising strategy to synthesize ZIF-8
on a large scale.

3. Structural characterization of ZIF-8

3.1. Crystal structure

Constructed from one Zn*' site and four imidazolate linkers,
the basic ZIF-8 structure includes two flexible gates, e.g., a four-
membered ring and a six-membered ring, forming a tetrahedral
topology (ZnN,).* The six-membered ring (diameter, 3.4 A) is
the most typical configuration for ZIF-8 since the guest mole-
cules can access this gate (Fig. 5). This departure leads to the
best CO,/CH, separation performance of ZIF-8.** Based on XRD
analysis, ZIF-8 has main peaks at 7.3 (011), 10.4 (002), 12.7°
(112), 14.7° (002), 16.4° (013), and 18° (022), suggesting that ZIF-
8 exhibits a highly crystalline structure.®

The effect of in situ or post-synthetic modification on the
crystal structure of ZIF-8 was studied. Take in situ synthesis for
example, by adding a cationic polyelectrolyte modifier such as
poly(diallyldimethylammonium chloride) in a mixture of Zn**
and 2-Hmim in water, Zhang et al.*® observed that the intensity
of main peaks tended to decrease considerably and even dis-
appeared in the (002) plane. This outcome could be attributable
to the crystal defects and the formation of a dense dia-
framework. Similarly, the addition of Zn>* and Fe** that leads

Nanoscale Adv., 2025, 7, 3941-3960 | 3945
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(a) The structural and topological simulation of ZIF-8 and (b) five different aperture structures of ZIF-8. This figure has been reproduced

Fig. 5
from ref. 64 with permission from Elsevier, copyright 2021.

to the formation of ZnFe,0O, nanoparticles into ZIF-8 particles
dispersed in ethylene glycol, can decrease the crystallinity of
ZIF-8.°° A minor peak shift was also observed for ZnFe,0,/ZIF-8
compared with ZIF-8, associated with interactions such as
electrostatic and magnetic forces.

The effect of solvent on the crystal structure of ZIF-8 was also
reported. Indeed, Tezerjani et al.*” observed the alteration in the
ZIF-8 structure synthesized using three different solvents,
including H,0, MeOH, and DMF. Compared with the use of
MeOH, these authors found that the synthesis of ZIF-8 using
DMF solvent resulted in an increase in crystallinity and
a decrease in the crystallite size in all three synthesis methods:
mixing, solvothermal and sonochemical. For the synthesized
ZIF-8 in water, the presence of an amorphous phase along with
the divergence in the position of main diffraction peaks at (001),
(002), (112), and (222) has been observed. These findings re-
flected the heavy dependence of crystal structure of ZIF-8 on the
solvent.

3.2. Pore structure

Solvent plays a vital role in the pore structure among various
factors. Most ZIF-8 crystals were synthesized using organic
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solvents such as MDF, MeOH, and TEA (Table S1f). Organic
solvents enhance the mixing and contact between Zn*>* and 2-
HMim, accelerating the nucleation and crystal growth. The
structure of ZIF-8 in these cases was reported to be highly
porous, including microporous and mesoporous. For example,
Santoso et al.®® found that the pore volume of ZIF-8 synthesized
in two solvents including DMF and 2% AcOH in H,O (TEA as
a directing agent) was 0.54 cm® g~ ' and 0.43 cm® g7, respec-
tively. Moreover, the pore sizes were measured as 2.1 nm and
3.2 nm, respectively, indicating that solvent profoundly affected
the pore structure of ZIF-8.

Cheng et al.*® investigated the effect of crystal growth rate on
the pore volume of ZIF-8 samples. In this study, ZIF-8 crystals
were grown in three solvents including NH,OH in water (1:1.26
by vol.) for 10 min, MeOH for 24 h, and H,O for 24 h to form ZIF-
8-A, ZIF-8-M, and ZIF-8-W, respectively. Although the reaction
time of ZIF-8 synthesis in each solvent was considerably
different, the total pore volume of ZIF-8 samples insignificantly
changed between 0.68 for ZIF-8-M and 0.54 cm® g~ for ZIF-8-A
and ZIF-8-W. Along with a minor change in the surface area, the
authors suggested that the microporous structure of ZIF-8 relied

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Possible role of CTAB surfactant and L-histidine co-template in the formation of mesoporous ZIF-8 crystals. This figure has been
reproduced from ref. 69 with permission from Royal Society of Chemistry, copyright 2014.

negligibly on the growth rate, but relied heavily on solvents and
other factors.

The use of H,O as a solvent was reported in some cases but
often required a very high ratio of 2-HMim.*?*"*** This
approach is more likely to lead to lower porosity and yield of the
resulting ZIF-8. Wu et al® reported the addition of cetyl-
trimethylammonium bromide (CTAB) surfactant into H,O
solvent to form mesoporous ZIF-8. The authors suggested that
only CTAB as a single template did not foster the formation of
mesopores because Zn>* was entrapped in the hydrophilic outer
layer. When r-histidine was added, it acted as a co-template that
helps to create a stable electrostatic interaction between CTAB
micelles and Zn** ions (Fig. 6). After solvent extraction, ZIF-8
obtained a mesoporous structure. Additionally, other
synthesis strategies including host-guest chemistry, template,
post-synthetic ion exchange, core-shell structure and precursor
support can affect the pore structure of ZIF-8 and its derivatives
but have been uncommonly reported.®

3.3. Surface area

Surface areas of ZIF-8 are often varied, and dependent on many
factors such as the synthesis method, the solvent or mixed
solvent, and the Zn>" to 2-Hmim ratio (Table S1t). Overall, the
solvent synthesis using MeOH often brings high surface areas of
ZIF-8, from 1000 to 2000 m> g~ '. Similarly, the solvothermal
method using DMF results in a relatively high surface area of
ZIF-8, at larger than 900 m” g~ *. The sonochemical method may
be a preferable and safe approach to synthesize ZIF-8 with high
surface areas (891-2000 m” g '). By contrast, it should be
difficult to control the surface area of ZIF-8 through the
microwave-assisted method. This drawback can be due to very
fast heating of microwave irradiation affecting the nucleation
and crystal growth. Importantly, unreacted 2-Hmim can be
trapped in pores or the 6-membered ring gate of ZIF-8, leading
to a considerable reduction in its surface area.” Finally,
considering the high surface area, green synthesis of ZIF-8
using H,O at room temperature can have great potential for
commercialization.*?*

© 2025 The Author(s). Published by the Royal Society of Chemistry

The effect of solvent on the surface area of ZIF-8 was studied
in earlier literature. For instance, Kiwaan et al.*’ synthesized
ZIF-8 crystals by using ammonium hydroxide in water. They
mixed Zn(NO3),-6H,0 salt with 2-methylimidazole and then
dissolved the obtained mixture in ammonium hydroxide solu-
tion to initiate ZIF-8 crystallization under stirring. The results
showed that the synthesized ZIF-8 material possessed
a moderate surface area of 495.19 m> g~ " and a pore volume of
0.28 cm® g~ '. However, this method has some limitations such
as time consuming and poor porosity of resulting ZIF-8.

By changing the solvent to MeOH, the surface area of ZIF-8
can be enhanced. Indeed, Xu et al® achieved a very high
surface area (1932 m” g~') for ZIF-8 synthesized using MeOH
solvent at room temperature for 12 h. Ostad et al.”* compared
the effect of different solvents on the surface area of ZIF-8,
which followed the order: ammonia (1568 m”> g~ ') > H,O/
EtOH (1:8, by vol%) (1356 m* g~ ') > MeOH (1333 m?* g™ 1).
Upon refluxing ammonia-based as-synthesized ZIF-8 in MeOH
at 70 °C for 1 day, the authors observed a slight increase (about
13%) in surface area. This improvement can be attributable to
the solvent extraction of ammonia from the pores of ZIF-8 when
immersed in MeOH.

3.4. Crystallite size

The effect of the type of solvent, surfactant, Zn>*/2-HMim, and
synthesis method on ZIF-8 crystallite size has been studied
(Table S17). For example, Cheng et al.*® reported a very large size
of ZIF-8 (~1000 nm) synthesized via the solvent method using
a mixture of H,O and NH,OH at a volume ratio of 1:1.26. By
changing this ratio up to 1:7 under the same conditions,
Kiwaan et al.”” obtained ZIF-8 nanocrystals with a very low
average size (38.1 nm). The higher concentration of NH,OH
increases the pH, which affects the reaction rate between of
Zn®* and 2-HMim in basic solutions. Similarly, the solvent
seemed to be a major factor that controls ZIF-8 crystallite size in
the ultrasonication method.** The authors replaced NH,OH
with H,O and used Pluronic P-123 as a surfactant. As a result,
the ZIF-8 size was found to decrease from 2000 nm to 50-

Nanoscale Adv, 2025, 7, 3941-3960 | 3947
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Fig.7 The shape and size of ZIF-8 crystals synthesized upon addition of triethylamine at various equivalent Zn®* ratios: (a) 2.6 mol; (b) 5.1 mol; (c)
25.5 mol. (d) Average particle size of ZIF-8. This figure has been reproduced from ref. 28 with permission from Elsevier, copyright 2017.

100 nm. A surfactant added into a 2-HMim solution in H,O
resulted in good dispersion of the obtained ZIF-8 particles.

Addition of additives influences the particle size of ZIF-8
crystals. For example, Butova et al”?® found that increasing
triethylamine (TEA) at various equivalent Zn>" ratios of 2.6-
25.5 mol resulted in decreased average particle size of ZIF-8
from 985 nm to 96 nm (Fig. 7). The authors critically rational-
ized the role of TEA as a structure-directing agent so that 2-
HMim can interact with the Zn>" ions favorably. As a result, the
addition of TEA was minimized at 25.5 mol equivalent Zn>" but
still allowed the formation of small-size ZIF-8 particles.

By using machine learning analysis to assess the influence of
synthetic variables, Allegretto et al.”* predicted that the 2-HMim
precursor concentration rather than the Zn>* concentration was
the most significant factor for synthesis of ZIF-8 in H,O. A
higher concentration of 2-HMim precursor led to a significant
decrease in ZIF-8 crystallite size during the water-based
syntheses.>**" Similarly, Nalesso et al** used the ultrasound-
assisted method for synthesis of ZIF-8 in H,O at a high ratio
of 2-HMim/Zn>" (70:1) to obtain a small size of ZIF-8 nano-
crystals (80 nm) using H,O. However, the hydrothermal method
appeared not to reduce the size of ZIF-8 despite the high 2-
HMim/Zn*" ratio of 57 : 1.* This phenomenon might be due to
the high reaction temperature accelerating the nucleation and
growth of ZIF-8 crystals that increase their size.

3.5. Morphology

ZIF-8 exhibits a wide range of morphologies such as hexagon,
cube, rhombic dodecahedron, microsphere, and polyhedron, as
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shown in Table S1.} It is also found that polyhedra including
dodecahedron and hexagon are common shapes of ZIF-8. The
cubic shape of ZIF-8 has been rarely reported in previous
studies.*»”*7* It seems that there is no relationship between the
ZIF-8 shape and synthesis method. However, conventional
methods such as solvothermal and hydrothermal methods
often result in the formation of dodecahedral or polyhedral
shape. Meanwhile, the diversity of ZIF-8 shape appears to be
more common in advanced synthesis methods such as US- and
MW-assisted methods.

According to Table S1,7 the solvent considerably affects the
morphology of ZIF-8. As methanol is used as a solvent, ZIF-8 has
two major shapes including polyhedron and dodecahedron. By
contrast, in the solvothermal method, DMF was often used to
synthesize ZIF-8 with diverse morphologies such as polyhedron,
cube, hexagon, dodecahedron, and dodecahedron. Moreover,
additives such as HCOONa and trimethylamine (TEA) or
surfactants such as Pluronic P-123 commonly gave rise to the
formation of ZIF-8 with a dodecahedral shape. Thus, the type of
solvent and additives should be investigated to control the
morphology of ZIF-8.

Speaking of the effect of synthesis methods, Lee et al”
conducted a range of synthesis methods (solvothermal using
DMF and methanol, sono-chemical,
mechanochemical, dry-gel conversion, and microfluidic) for
morphological properties of ZIF-8 (Fig. S1t). The authors
observed that all ZIF