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In the quest to enhance the efficiency and durability of n—i—p perovskite solar cells (PSCs), engineering
hole-transporting conjugated polymers with well-matched energy levels, exceptional film-forming
properties, rapid hole transport, and superior moduli is paramount. Here, we present a novel approach
involving the customization of a conjugated polymer, designated as p-DTPF4-EBEH, comprising
alternating units of an oxa[5]helicene-based polycyclic heteroaromatic (DTPF4) and 5,5'-(2,5-
di(hexyloxy)-1,4-phenylene)bis(3,4-ethylenedioxythiophene) (EBEH), synthesized through palladium-
catalyzed direct arylation. Relative to homopolymers p-DTPF4 and p-EBEH, p-DTPF4-EBEH
demonstrates a proper HOMO energy level, hole density, and hole mobility, alongside superior film-
forming capabilities. Remarkably, compared to the commonly used hole transport material spiro-
OMeTAD, p-DTPF4-EBEH not only exhibits superior film-forming property and hole mobility but also
offers increased modulus and improved waterproofing. Incorporating p-DTPF4-EBEH as the hole
transport material in PSCs results in an average power conversion efficiency of 25.8%, surpassing the

Received 26th June 2024
Accepted 6th August 2024

Open Access Article. Published on 28 Difuu-sandaa 2024. Downloaded on 2025/10/16 5:58:43 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

DOI: 10.1039/d4sc04244a

rsc.li/chemical-science

1 Introduction

Solution-processed metal halide perovskite films present
promising opportunities for electronic device applications.
These polycrystalline films, boasting tunable bandgaps, high
absorption coefficients, and prolonged lifetimes of photo-
generated charge carriers, are favored as the light-absorbing
layer in photodiodes.>® Presently, single-junction perovskite
solar cells (PSCs) have achieved a certified power conversion
efficiency (PCE) record of up to 26.1%.* The efficiency and
stability of PSCs hinge not only on the quality of the perovskite
films but also on the excellence of the charge transport
materials.>®

In n-i-p type PSCs, low-cost colloidal oxides such as tita-
nium dioxide and tin dioxide are commonly employed in elec-
tron transport layers, while the molecular semiconductor spiro-
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24.3% achieved with spiro-OMeTAD.
enhanced thermal storage stability at 85 °C, along with operational robustness.

Importantly, devices utilizing p-DTPF4-EBEH demonstrate

OMEeTAD is a prevalent choice as the hole transport material
(refer to the chemical structure in Fig. 1A).>*7 Spiro-OMeTAD's
relatively shallow highest occupied molecular orbital (HOMO)
energy level enables facile air doping with the aid of imide salts,
augmenting its conductivity." Nevertheless, composite films
derived from spiro-OMeTAD are susceptible to significant
morphological degradation under prolonged exposure to high
temperatures, attributable to spiro-OMeTAD's low glass transi-
tion temperature (T,), culminating in diminished PCE.*'"**

It is paramount to underscore that in PSCs employing elec-
tron transport layers with relatively high conduction bands like
titanium dioxide or tin dioxide, the selection of a hole transport
layer with a sufficiently shallow HOMO energy level is impera-
tive for efficient long-range charge separation. The ideal organic
semiconductor for n-i-p type PSCs should exhibit rapid hole
conduction, good film-forming ability, maintain intact
morphology under prolonged heating, and effectively suppress
species diffusivities. In contrast to molecular semiconductors,
polymeric semiconductors feature elongated main chains and
potential for interchain intertwining, advantageous for charge
transport. Moreover, polymer films exhibit unique viscoelastic
properties, affording enhanced resistance to stretch and
impact. Although numerous semiconducting polymers have
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Fig. 1 (A) Chemical structures of the conjugated polymers examined in this investigation alongside the standard molecular semiconductor
employed in PSCs. (B) Correlation between the HOMO energy levels acquired through ultraviolet photoelectron spectroscopy measurements
(EH™) and those computed via the density functional theory method (ER™T). The solid gray line signifies the outcome of linear fitting. (C)
Conformations and HOMO contour plots of the conjugated polymers computed employing periodic boundary conditions-density functional
theory method. To enhance computational efficiency, the n-hexyl group was replaced by ethyl, with hydrogen atoms omitted for clarity. (D)
Schematic energy diagram outlining components of PSCs, encompassing the electron transport layer (SnO5,), light-absorbing layer (FAPbIs), hole
conductors, and electrical contacts (ITO and Au). The HOMO (valence band) and LUMO (conduction band) energy levels are noted below and
above the color bars, respectively. (E) Relationship between the rate constant (k) and the driving force (AG) pertinent to hole extraction. The
discrepancy between the FAPbI3 valence band and the HOMO energy level of organic semiconductor is represented by AG. The solid gray line

represents the fitting outcome based on Marcus electron transfer theory.

been scrutinized as hole transport materials in n-i-p type PSCs,
high-performance candidates remain relatively scarce.***
Polycyclic heteroaromatics exhibit distinctive w-conjugated
skeletons, showcasing remarkable performance in various
optoelectronic devices.””** Particularly noteworthy are those
with a reduced C/H ratio, pivotal for high-mobility organic field-
effect transistors due to enhanced intermolecular charge
transfer integrals and reduced reorganization energies.>*>" As
early as 1881, Graebe et al. synthesized oxa[5]helicene by heat-
ing naphthol with lead oxide.** Presently, oxa[5]helicene can be
readily prepared from inexpensive 1,1-binaphthol through
a simple, quantitative dehydration reaction.*® In 2013, Naka-
hara et al. pioneered the application of oxa[5]helicene in
organic single-crystal field-effect transistors, exhibiting hole
mobilities of up to 1.0 em® V™' s7.3* In 2019, Xu et al. deriv-
atized oxa[5]helicene with two electron-rich dimethox-
ydiphenylamines, yielding a molecular semiconductor for n-i-p
type PSCs with a PCE of 21.0%.*® Subsequently, Wei et al.
developed a molecular semiconductor based on pyrrole-bridged
bis(oxa[5]helicene), suitable for fabricating 21.3%-efficiency
PSCs with good thermal stability at 60 °C.*® Recently, He et al.
synthesized a semiconducting polymer, p-O5H-E-POZ-E,
comprising alternating oxa[5]helicene, 3,4-ethyl-

enedioxythiophene, phenoxazine, and 3,4-

15264 | Chem. Sci, 2024, 15, 15263-15273

ethylenedioxythiophene units, and employed it in PSCs,
achieving an average PCE of 24.9% alongside excellent
stability.*”

In this investigation, we devised an oxa[5]helicene-
embedded polycyclic heteroaromatic, 4,11-dihydrothieno
[2/,3':4,5]phenaleno[2,1-b]thieno[2/,3":4,5]phenaleno|1,2-d]
furan (DTPF, highlighted in cyan in Fig. 1A). Intriguingly, DTPF,
when adorned with four hexylphenyl substituents at two sp>
carbon atoms, abbreviated as DTPF4, demonstrates a consider-
able solubility of 679 mg mL ™" in chloroform. The homopol-
ymer derived from DTPF4 (p-DTPF4, Fig. 1A) exhibits notably
superior hole mobility compared to p-O5H-E-POZ-E at a given
hole density, emphasizing the importance of high-level poly-
cyclic heteroaromatic monomers in conjugated polymer
synthesis. However, density functional theory calculations with
periodic boundary conditions reveal that the HOMO energy
level of p-DTPF4 is —4.67 eV, 180 meV deeper than that of spiro-
OMeTAD (—4.49 eV).

Considering the theoretical HOMO energy level of 5,5'-(2,5-
bis(hexyloxy)-1,4-phenylene)bis(3,4-ethylenedioxythiophene)
(EBEH) as —4.80 eV, shallower than DTPF4 (—5.05 eV), we
alternatively copolymerized DTPF4 with EBEH, yielding the
copolymer p-DTPF4-EBEH (Fig. 1A), with a theoretical HOMO
energy level of —4.33 eV. To systematically elucidate the struc-

ture-property relationship, we also synthesized the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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homopolymer p-EBEH (as depicted in Fig. 1A), with a notably
high theoretical HOMO energy level of —3.89 eV. Employing p-
DTPF4-EBEH as the primary constituent of the hole transport
layer, we fabricated PSCs with an average PCE reaching 25.8%,
significantly outperforming those prepared with p-DTPF4
(17.8%), p-EBEH (10.5%), and spiro-OMeTAD (24.3%).
Notably, PSCs based on p-DTPF4-EBEH also demonstrated
excellent thermal storage stability at 85 °C and operational
stability at 45 °C. Degradation analysis of the devices under-
scored the pivotal role of the hole transport layer—ensuring
uniform morphology, high elastic modulus, excellent water-
proofing, and slow species diffusivities.

2 Results and discussion
2.1 Monomer and polymer synthesis

For details on the synthesis and structural characterization of
monomers and conjugated polymers, please refer to the
Experimental Section in ESI.T As delineated in Scheme S1 of
ESL 7 the synthesis of the monomer DTPF4 commenced from
the readily accessible and cost-effective 5,9-dibromodinaphtho
[2,1-b:1',2-d]furan. Sequential steps, including Miyaura bor-
ylation, Suzuki-Miyaura cross-coupling, carbonyl addition, and
intramolecular Friedel-Crafts cyclization, were employed,
resulting in DTPF4 in four steps with an overall yield of 50%.
The monomer EBEH was synthesized following established
procedures.*® DTPF4 and EBEH were dibrominated using N-
bromosuccinimide respectively, yielding monomers DTPF4-2Br
and EBEH-2Br.

As illustrated in Scheme S2 of ESI,{ palladium-catalyzed
direct arylation®**° was employed to synthesize homopolymers
p-DTPF4 and p-EBEH, as well as the alternating copolymer p-
DTPF4-EBEH, typically by polycondensation of a thiophene
derivative with a dibrominated compound. High-temperature
gel permeation chromatography analysis using polystyrene as
a standard revealed that p-DTPF4 had a number-average
molecular weight (M,) of 11 kDa, with a polydispersity index
(PDI) of 1.59; p-DTPF4-EBEH showed an M, of 12 kDa, with
a PDI of 2.50; p-EBEH exhibited an M,, of 4.2 kDa, with a PDI of
2.06. It is noteworthy that, in this study, we employed a catalyst
system with moderate activity to prevent carbon-carbon
coupling side reactions at the beta position of thienyl.** The
lower M,, of p-EBEH may be attributed to its limited solubility in
the reaction solvent or the likelihood of intermediates under-
going debromination.” Attempts were made to synthesize p-
EBEH via ferric chloride-based oxidative polymerization;>
however, the resulting polymer exhibited extremely low solu-
bility (rendering it unsuitable for PSC fabrication), likely due to
its high molecular weight and strong intermolecular m-m
interactions.

2.2 Polymer glass transition

Differential scanning calorimetry (DSC) analyses revealed the T,
values of spiro-OMeTAD, p-DTPF4, p-DTPF4-EBEH, and p-EBEH
as 122 °C, 199 °C, 164 °C, and 62 °C, respectively (Fig. S2, ESIT).
We observed that the planar and rigid conjugated core led to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a weaker main chain relaxation signal in p-DTPF4.** Interest-
ingly, the T, value of the alternating copolymer p-DTPF4-EBEH
falls within the range observed for the homopolymers p-DTPF4
and p-EBEH, providing valuable insights for tailoring copoly-
mers with suitable T, values.

Additionally, molecular dynamics simulations were con-
ducted to determine the specific volume values of the amor-
phous solid across various temperatures (Fig. S3A-D, ESIY).
Linear fittings were applied to the specific volume data in both
low-temperature and high-temperature regions, with the inter-
section of the fitted lines providing the theoretical T, value. It is
noteworthy that the T, values obtained from molecular
dynamics simulations were higher due to the rapid cooling rate
during the simulation.** Furthermore, the molecular weight of
all three polymers was presumed to be around 10 kDa in the
simulations. Nevertheless, a strong correlation was observed
between the T, values obtained from DSC measurements and
those from molecular dynamics simulations (Fig. S3E, ESIT).

2.3 Energy levels and hole extraction

Fig. S4A in ESIT depicts the cyclic voltammograms of the three
conjugated polymers. Analyses revealed HOMO energy levels of
—5.34 eV for p-DTPF4, —5.17 eV for p-DTPF4-EBEH, and
—4.94 eV for p-EBEH. Additionally, HOMO energy levels were
determined via ultraviolet photoelectron spectroscopy after
depositing the conjugated polymers onto ITO substrates coated
with PEDOT:PSS, yielding values of —5.22 eV for p-DTPF4,
—4.96 eV for p-DTPF4-EBEH, and —4.65 eV for p-EBEH
(Fig. S5, ESIt). While discrepancies exist in the absolute
values of the HOMO energy levels obtained from ultraviolet
photoelectron spectroscopy and cyclic voltammogram for each
conjugated polymer, these experimental values align well with
the theoretically calculated HOMO energy levels (Fig. 1B and
S4B, ESIt).

Fig. 1C illustrates the HOMO contour plots of the conjugated
polymers. In p-DTPF4, the HOMO predominantly distributes
over the thiophene ring and the dibenzofuran fragment, with
minimal presence on the terminal benzene ring of oxa[5]heli-
cene and virtually none on the hexylphenyl moiety. In p-EBEH,
the HOMO primarily distributes across the thiophene ring,
benzene ring, and oxygen atoms, with limited presence on the
1,2-ethylene and hexyl groups. Contrasting with homopolymers,
the alternating copolymer p-DTPF4-EBEH displays HOMO
distribution over the thiophene ring, the benzene ring directly
linked to 3,4-ethylenedioxythiophene, oxygen atoms, and the
dibenzofuran fragment, with reduced presence on the terminal
benzene ring of oxa[5]helicene and virtually none on the 1,2-
ethylene, hexyl, and hexylphenyl groups.

Subsequently, the UV-vis absorption spectra of these organic
semiconductor films were recorded, and the optical bandgaps
were determined via Tauc plots (Fig. S6, ESIT). These data were
integrated with the HOMO energy levels acquired from ultra-
violet photoelectron spectroscopy to generate the lowest unoc-
cupied molecular orbital (LUMO) energy levels. The energy level
diagram for PSCs is depicted in Fig. 1D. Thermodynamic
analysis underscored that, similar to spiro-OMeTAD, these

Chem. Sci., 2024, 15, 15263-15273 | 15265
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conjugated polymers effectively impeded the injection of elec-
trons from the photoexcited FAPbI; perovskite to the gold
electrode, but ensured the driving force of hole extraction.

The hole extraction capacity of these organic semi-
conductors was assessed via time-resolved photoluminescence
decay measurements (Fig. S7, ESIT). Detailed information on
sample preparation and measurements can be found in the
Experimental Section of ESL.{ Upon excitation with picosecond
pulsed laser, the amplitude-weighted average lifetime of pho-
toluminescence at 810 nm for the FAPbI; thin film coated with
polystyrene was determined to be 5.4 ps (Table S1, ESI}).
Substituting polystyrene with organic semiconductors led to
a substantial reduction in photoluminescence lifetime, by over
two orders of magnitude. Subsequent calculation of hole
extraction rate constants (Table S1, ESIT) revealed a relationship
between the rate constant and the driving force for hole
extraction, which can be described by the Marcus electron
transfer theory (Fig. 1E). Further computations suggested that
these organic semiconductors all achieve hole extraction yields
approaching 100% (Table S1, ESIT).

2.4 Hole density, conductivity, and mobility

In intrinsic organic semiconductors, a limited number of
charge carriers are generated through thermally activated
disproportionation mechanisms. For materials with optical
bandgaps exceeding 1.5 eV, the charge carrier density produced
by this mechanism at room temperature is below 10* cm™>.
Metal-insulator-semiconductor (MIS) devices
structed, and their impedance spectra were recorded to deter-
mine the capacitances of organic semiconductors at varying
bias potentials. The hole density (p) in pristine organic semi-
conductor film was determined using the Mott-Schottky rela-
tionship. For details, see the Experimental Section in ESI.t The
results indicated that the p values for spiro-OMeTAD was 1.3 X
10" cm ", for p-DTPF4 was 5.3 x 10'° cm ™ ?, for p-DTPF4-EBEH
was 3.0 x 10" cm?, and for p-EBEH was 2.8 x 10'® cm .
Notably, these p values notably surpass those generated by
thermally activated disproportionation. Intriguingly, organic
semiconductors with high HOMO energy levels appear to have
inadvertently experienced doping by oxygen from the atmo-
sphere, even without deliberate introduction of additional
dopants. At this stage, oxygen is converted to superoxide anions,
establishing electrostatic equilibrium with the cationic free
radicals generated through the oxidation of the organic semi-
conductor. Analysis reveals a strong linear correlation between
the logarithm of p and the HOMO energy level obtained from
ultraviolet photoelectron spectroscopy (Fig. 2A). This observa-
tion implies that the equilibrium constant for air doping in
organic semiconductors relies on the Gibbs free energy of the
reaction. Consequently, the shallower the HOMO energy level of
the organic semiconductor, the higher the Gibbs free energy of
the chemical reaction with oxygen in the air, leading to a greater
equilibrium constant and, consequently, a higher p value
produced.

To enhance the p generated by air doping, we blended
a small quantity of 4-tert-butylpyridinium

were con-
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bis(trifluoromethanesulfonyl)imide (TBPHTFSI) with organic
semiconductor.* As depicted in Fig. 2B, the quadratic integral
intensity ([[(dI/dB)) of the electron paramagnetic resonance
signal (Fig. S8, ESIT) exhibited a linear increase with the rise in
TBPHTFSI's weight percentage. By comparing the magnitude of
[/(dr/dB) with and without TBPHTFSI, we estimated the p
values in the organic semiconductor composite films. As illus-
trated in Fig. S9 of ESL{ the p values in the organic semi-
conductor composite films increased linearly with the
increasing weight percentage of TBPHTFSI, confirming that
TBPHTFSI facilitates air oxidation doping in these organic
semiconductors, with a reaction order close to 1. At a TBPHTFSI
weight percentage of 15%, the p values in the composite films
based on spiro-OMeTAD, p-DTPF4, p-DTPF4-EBEH, and p-
EBEH were determined to be 1.0 x 10" em™, 4.6 x 10
em?, 2.8 x 10" em ™, and 2.6 x 10" cm®, respectively
(Fig. 2C). Furthermore, a correlation was observed between the
HOMO energy level of the organic semiconductor and the p
value, suggesting that higher HOMO energy levels correspond
to higher p values.

Next, we evaluated the direct-current conductivities (o) of
both pristine and TBPHTFSI-containing organic semiconductor
films using interdigital gold electrodes, unveiling a power-law
augmentation of ¢ as the weight percentage of TBPHTFSI
increased (Fig. 2D). Pristine organic semiconductor films dis-
played o values of 0.12 pS cm ™~ for spiro-OMeTAD, 0.17 pS cm ™
for p-DTPF4, 1.7 uS cm ™' for p-DTPF4-EBEH, and 0.16 uS cm ™"
for p-EBEH. Conversely, in organic semiconductor composite
films containing 15% weight percentage of TBPHTFSI, ¢ values
were substantially elevated: 28 uS cm™" for spiro-OMeTAD, 396
uS em ™! for p-DTPF4, 1727 uS ecm™ " for p-DTPF4-EBEH, and 175
uS ecm ! for p-EBEH. Additionally, we conducted temperature-
dependent conductivity measurements (Fig. S10, ESIY).
Utilizing the Arrhenius equation for analysis enabled us to
determine the activation energy for hole conduction. As illus-
trated in Fig. 2E, the activation energy displayed a single-
exponential decay with increasing p.

Based on p and o, the hole mobility (u,,) can be determined
using the formula u, = o/gp, with g representing the elementary
charge. As depicted in Fig. 2F, u, shows a positive correlation
with p. Organic semiconductors are characterized by energy
disorder and may contain trace impurities.*> When the p is low,
more holes tend to be trapped by deep-level traps, hindering
their thermal activation and participation in transport, result-
ing in reduced u,. Conversely, as the p increases, more holes
occupy shallow traps, increasing the chances of thermal acti-
vation, thereby promoting faster transport and higher u,. At
a given p value, the u, ranking among these four organic
semiconductors is as follows: p-DTPF4 > p-DTPF4-EBEH > spiro-
OMeTAD > p-EBEH. Notably, the p-EBEH film exhibits the
highest crystallinity as revealed by the grazing incidence X-ray
diffraction measurements (Fig. 2G and H). However, due to
the low molecular weight and thus the short single-chain
length, the connectivity between crystalline regions is poor,
thereby impeding hole transport (Fig. 2I). This highlights the
critical role of molecular weight in the hole transport of
conjugated polymers.***

© 2024 The Author(s). Published by the Royal Society of Chemistry
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photoelectron spectroscopy measurements (E-")

20071

(A) Semi-logarithmic plot depicting the relationship between hole density (p) and the energy levels of HOMO, acquired through ultraviolet
. The solid gray line represents a linear fit. (B) Semi-logarithmic plots illustrating the quadratic

integral of the electron paramagnetic resonance signal ([ [(d//dB)) as a function of TBPHTFS| weight percentage. Linear fits in conventional
coordinates are denoted by solid lines. (C) Semi-logarithmic plots displaying the variation of hole density (p) with respect to TBPHTFSI weight
percentage. Linear fits in conventional coordinates are delineated by solid lines. (D) Plots depicting the conductivity (o) as a function of TBPHTFSI
weight percentage. Solid lines represent power-law fits. (E) Plot of activation energy (E,) versus hole density (p). Solid lines depict mono-
exponential decay fits. (F) Logarithmic plots illustrating the dependence of hole mobility (1) on hole density (p). Solid lines serve as visual guide
lines. (G and H) Out-of-plane and in-plane grazing-incidence X-ray diffraction patterns of conjugated polymer thin films on monocrystalline
silicon substrates. (I) Schematic representation elucidating the microstructure of p-EBEH thin film, where crystalline regions are discontinuous.

2.5 Photovoltaic performance

The organic semiconductor was blended with TBPHTFSI at an
85:15 weight ratio and dissolved in chlorobenzene solution
containing 4-tert-butylpyridine. This solution was then spin-
coated to form a hole transport layer for constructing PSCs
with an ITO/SnO,/FAPbI;/hole transport layer/Au architecture.
Detailed fabrication procedures and measurement methods are
outlined in the Experimental Section of ESI.f Photocurrent
density-voltage (J-V) curves were recorded under simulated
AM1.5G irradiation at 100 mW cm™ 2. Statistical analysis of
photovoltaic parameters, including short-circuit current density
(Jsc), open-circuit voltage (Voc), fill factor (FF), and power
conversion efficiency (PCE), was conducted on ten cells of each
type (Fig. 3A-D), suggesting a good reproducibility. Represen-
tative J-V curves are shown in Fig. 3E, with corresponding
photovoltaic parameters listed in Table 1. The spiro-OMeTAD-
based cell exhibited a Jsc of 26.18 mA cm ™2, a V¢ of 1.165 V,
an FF of 79.6%, and a PCE of 24.3%. In contrast, the p-DTPF4-
based cell showed reduced Js¢ (25.49 mA cm ™ 2), Ve (1.120 V),

© 2024 The Author(s). Published by the Royal Society of Chemistry

FF (62.4%), and consequently, a lower PCE of 17.8%. Similarly,
the p-EBEH-based cell demonstrated even lower Jsc (23.02 mA
em™?), Voc (0.925 V), and FF (49.1%), resulting in the lowest
PCE of 10.5%. Encouragingly, the p-DTPF4-EBEH cell displayed
aJsc (26.19 mA ecm %) comparable to that of the spiro-OMeTAD-
based cell, a higher Vo (1.190 V), a higher FF (82.8%), and
ultimately achieved a superior PCE of 25.8%. Comparison of
forward and reverse scan J-V curves revealed minimal hysteresis
in the p-DTPF4-EBEH-based cell (Fig. S11, ESI}). Furthermore,
when the p-DTPF4-EBEH-based cell was switched from open
circuit to a bias voltage of 1.035 V, steady-state photocurrent
density (24.85 mA cm™ %) was rapidly attained, with a steady-
state PCE output of 25.72% (Fig. S12, ESIt), consistent with J-
V measurements.

Subsequently, we conducted external quantum efficiency
(EQE) measurements for the PSCs under various mono-
chromatic light irradiations (Fig. 3F). These EQE spectra were
then combined with the standard AM1.5G solar spectrum
(ASTM G173-03, Fig. S13A, ESIT) to estimate the short-circuit
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(A—D) Statistical analysis of photovoltaic parameters of PSCs fabricated with varying hole transport layers under simulated AM1.5G

irradiation at 100 mW cm™2: (A) short-circuit photocurrent density (Jsc); (B) open-circuit voltage (Voc); (C) fill factor (FF); (D) power conversion
efficiency (PCE). (E) Representative photocurrent density—voltage (J-V) curves. (F) External quantum efficiency (EQE) spectra.

photocurrent density of the cells under AM1.5G irradiation

§Q°, Table 1). The results reveal a strong linear correlation
between JE&* and Jsc (Fig. S13B, ESIf). Specifically, PSCs
employing spiro-OMeTAD and p-DTPF4-EBEH exhibited similar
EQE spectra, with maximal EQE values reaching 96%; accord-
ingly, their JEQ® values were nearly identical, at 25.93 mA cm >
and 25.94 mA cm 2, respectively. Conversely, as the incident
monochromatic light wavelength gradually shifted from
420 nm to 800 nm, the EQE of the p-DTPF4-based cell displayed
a gradual decline, accompanied by a corresponding decrease in
EQE to 25.24 mA cm 2. Furthermore, the EQE reduction
observed in the p-EBEH-based cell was more pronounced, with
JE&E registering the lowest value at 22.78 mA cm ™2, The decrease
in EQE in the longer wavelength region is attributed to dimin-
ished electron collection efficiency, reflecting variations in
charge recombination at the interface between the hole trans-
port layers and the perovskite layer. In other words, faster
charge recombination leads to more significant EQE decay with
wavelength redshift.

To understand the differences in V¢ and FF resulting from
distinct hole transport layers, we applied the Shockley diode
equation to fit the J-V curves,*® unveiling crucial parameters like
shunt resistance (Ryy,), series resistance (R), and reverse satu-
ration current (I), collected in Table 1. Broadly, elevated Ry, and

diminished I contribute to heightened Vp¢, while reduced R,
augmented Ry, and diminished I foster enhanced FF. Note-
worthy is the progressive decline in Ry across cells utilizing
spiro-OMeTAD, p-EBEH, p-DTPF4, and p-DTPF4-EBEH, attrib-
uted to the incremental conductivity of the hole transport layer
(refer to Fig. 2D). The FF of cells employing p-EBEH, p-DTPF4,
and p-DTPF4-EBEH exhibited a consecutive rise, primarily
owing to the escalating Ry, and dwindling I, For spiro-
OMeTAD-based cell, the second-highest Ry, and second-
smallest I; assuaged the adverse effects of the largest R,
resulting in the second-highest FF. In p-EBEH-based cell, the
lowest Ry, might correlate with its highest hole density due to
the highest HOMO energy level, leading to rapid charge
recombination at the interface between the hole transport layer
and the perovskite layer; the highest I could stem from the
incomplete morphology of the hole transport layer. The
confluence of these factors led to the lowest V¢, FF, and Jgc.
Despite possessing the deepest HOMO energy level and lowest
hole density, p-DTPF4 failed to manifest the highest Vi,
attributed to its lower Ry, and larger I, indicative of rapid
charge recombination at the hole transport layer/perovskite
layer interface, possibly due to incomplete morphology of the
hole transport layer.

Table 1 Measured photovoltaic parameters and J-V fitting parameters of representative PSCs with various hole transport layers”

Cell JolmAem™  Voo[V]  FF[%]  PCE[%] B maem™?]  Ra[kQ] R[] I[pA]
SpirO-OMeTAD 26.18 1.165 79.6 24.3 25.93 42 19 0.004
p-DTPF4 25.49 1.120 62.4 17.8 25.24 20 12 228
p-DTPF4-EBEH 26.19 1.190 82.8 25.8 25.94 76 9 0.002
p-EBEH 23.02 0.925 49.1 10.5 22.78 2.3 14 2608

“ Jsc: short-circuit current density; Voc: open-circuit voltage; FF: fill factor; PCE: power conversion efficiency;

£&%: short-circuit current density

estimated by external quantum efficiency (EQE) spectrum; Ry, shunt resistance; Rg: series resistance; I: reverse saturation current.
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Upon removal of the encapsulation materials and gold
electrodes from the PSCs, we scrutinized the morphology of the
hole transport layers using scanning electron microscopy. On
the surface of the perovskite polycrystalline thin film composed
of micrometer-sized grains (Fig. S14, ESI}), the TBPHTFSI-
containing composite material derived from spiro-OMeTAD
formed a relatively uniform film with a few pinholes (Fig. 4A
and an enlarged view in Fig. S15, ESI}). In contrast, the surface
of the p-DTPF4 composite film exhibited densely scattered
pinholes (an enlarged view in Fig. S15, ESIt), accompanied by
several penetrating circular pores measuring several hundred
nanometers in diameter (Fig. 4B). Moreover, the p-EBEH
composite film displayed a rough morphology with numerous
worm-like protrusions and minor localized fractures distrib-
uted on the surface (Fig. 4D). Remarkably, the composite film
based on p-DTPF4-EBEH appeared smooth, dense, and intact
(Fig. 4C).

Some composite films display suboptimal morphology—
could this stem from inadequate compatibility between the
organic semiconductor and TBPHTFSI due to the large polarity
difference? To investigate this possibility, we conducted control
experiments by depositing pristine organic semiconductor
films onto the surface of the perovskite polycrystalline thin film.
As depicted in Fig. 4E-G, the pristine films of spiro-OMeTAD, p-
DTPF4, and p-DTPF4-EBEH all exhibit uniformity, smoothness,
and integrity. Obviously, the compatibility of organic semi-
conductor and ionic doping promoter plays a crucial role in
controlling the morphology of hole transport layer and thus
photovoltaic performance. However, the pristine film of p-EBEH
remains notably rough (Fig. 4H). Furthermore, when deposited
on monocrystalline silicon substrates, p-EBEH demonstrates
the highest degree of crystallinity (as shown in Fig. 2G and H).

with 15wt% TBPHTFSI

without TBPHTFSI

B . c
>

View Article Online
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Typically, crystalline or semi-crystalline polymer films are less
smooth than amorphous ones.

2.6 Thermal stability at 85 °C

In light of the observed low PCEs (<20%) in PSCs utilizing p-
DTPF4 and p-EBEH, our subsequent investigation delved into
the thermal stability at 85 °C, comparing cells employing p-
DTPF4-EBEH and spiro-OMeTAD. Six cells of each type under-
went aging in an 85 °C oven (ambient relative humidity: 45-
90%; with oven humidity at 5% when ambient humidity was
61%). Periodically removed from the aging process, the cells
underwent J-V measurements under AM1.5G irradiation at
room temperature. The temporal evolution of PCE is illustrated
in Fig. 5A. After 1000 hours, the p-DTPF4-EBEH-based cell
exhibited a decrease in PCE from 25.7% to 23.9%, retaining
93% of its initial value. In contrast, the spiro-OMeTAD-based
cell retained only 63% of its initial PCE under identical condi-
tions. Statistical analysis of photovoltaic parameters for aged
cells is presented in Fig. S16, ESL.T For easy comparison, j-V
curves of representative cells before and after aging are plotted
in Fig. 5B, with corresponding photovoltaic parameters listed in
Table S2, ESI.T The decline in PCE of the p-DTPF4-EBEH-based
cell primarily stemmed from a 3.3% decrease in FF, a 2.5%
decrease in Vpg, and a 1.1% decrease in Jsc. In contrast, the
spiro-OMeTAD-based cell experienced more substantial
declines, with FF decreasing by 19%, Vo by 9%, and Jsc by 14%.
The EQE spectra of cells based on both organic semiconductors
before and after aging are depicted in Fig. 5C. Aging led to
a reduction in the EQE maximum. Specifically, the maximal
EQE value decreased from 96% to 82% for the spiro-OMeTAD-
based cell, whereas for the p-DTPF4-EBEH-based cell, the
decrease was only 1.4%. Notably, a strong linear correlation

Fig. 4 Top-view scanning electron microscopy images of the organic semiconductor—-TBPHTFSI composite layers deposited on the surface of
FAPDbI3 perovskite polycrystalline thin films and the corresponding pristine organic semiconductor layers: (A and E) spiro-OMeTAD, (B and F) p-
DTPF4, (C and G) p-DTPF4-EBEH, (D and H) p-EBEH. Image size: 5 um x 5 pm. Encapsulation materials and gold electrodes were removed

before imaging.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(A) Temporal changes in power conversion efficiency (PCE) over a 1000 hour aging period at 85 °C (ISOS-D-2). The PCE data from six cells

of each type are averaged and subjected to error analysis. (B) Representative photocurrent density—voltage (J-V) curves of unaged and aged cells

under simulated AM1.5G irradiation at 100 mW cm™2. In panels (B)—(D)

, data from unaged and 1000 hour 85 °C aged cells are represented by

solid and dashed lines, respectively. (C) External quantum efficiency (EQE) spectra before and after aging. (D) UV-vis absorption spectra before
and after aging. (E) X-ray diffraction patterns before (green) and after (blue and red) aging. The patterns from unaged cells are nearly identical and
are indicated by green solid lines. (F) Time-resolved photoluminescence decays at 810 nm before and after aging. Bi-exponential decay fits are
shown by gray solid lines; amplitude-weighted average photoluminescence lifetimes (z) are calculated using fit parameters. Excitation wave-

length: 670 nm.

between Jes© and Jsc was observed for both aged and unaged
cells (Fig. S17, ESI¥).

UV-vis absorption measurements (Fig. 5D) revealed a reduc-
tion in optical density within the 650-850 nm wavelength range,
indicating perovskite layer degradation. Remarkably, degrada-
tion of the perovskite layer in the p-DTPF4-EBEH-based cell was
notably less severe compared to the spiro-OMeTAD-based
counterpart. Additionally, X-ray diffraction analysis (Fig. 5E)
illustrated an increase in the height of the PbI, (001) diffraction
peak after aging at 85 °C. The area of this diffraction peak in the
spiro-OMeTAD-based cell expanded to 10.0 times its initial
value, 5.6 times greater than observed in the p-DTPF4-EBEH-
based cell (1.8 times). Fig. 5F demonstrated that after thermal
aging, the photoluminescence lifetime of the p-DTPF4-EBEH-
based cell extended from 17 ns to 24 ns, while that of the
spiro-OMeTAD-based cell elongated from 29 ns to 96 ns.
Notably, the photoluminescence lifetime of the SnO,-free
dummy cell with polystyrene decreased from 5425 ns to 2626 ns
after aging (Fig. S18, ESIt), suggesting that thermal aging
induces the generation of more defects in the perovskite layer
and accelerates defect-assisted non-radiative recombination.
Therefore, the prolonged photoluminescence lifetime of aged
cells may be linked to the formation of wide-bandgap species at
the perovskite layer/hole transport layer interface. Moreover,
this scenario might also be associated with the fracture of the
hole transport layer, potentially impeding hole extraction from
the photoexcited perovskite.

Following aging, the hole transport layer employing spiro-
OMeTAD displayed numerous nanopores (Fig. 6A). This
pronounced morphological degradation likely impedes hole

15270 | Chem. Sci., 2024, 15, 15263-15273

extraction and transport, and leads to the formation of micro-
contacts between the perovskite layer and the gold electrode. In
contrast, the morphology of the hole transport layer utilizing p-
DTPF4-EBEH remained nearly unchanged, preserving relatively
good integrity (Fig. 6B). Moreover, fluorescence optical
microscopy imaging revealed no discernible microstructures in
the unaged cells (Fig. S19, ESIT). However, post-thermal aging,
the perovskite layer with spiro-OMeTAD displayed many green
luminescent spots (Fig. 6C), whereas the layer with p-DTPF4-
EBEH exhibited only a few such spots (Fig. 6D). UV-vis absorp-
tion, X-ray diffraction, photoluminescence decay, scanning
electron microscopy, and fluorescence optical microscopy
measurements collectively affirm that p-DTPF4-EBEH more
effectively suppresses the thermal decomposition of the perov-
skite layer compared to spiro-OMeTAD.

To unravel the origins of the morphological evolution of the
hole transport layer, we conducted nanoindentation tests
(Fig. S20A and B, ESIf) to evaluate the Young's moduli of the
composite films, yielding values of 2.82 GPa for spiro-OMeTAD
and 7.23 GPa for p-DTPF4-EBEH, respectively (Fig. 6E). Notably,
p-DTPF4-EBEH exhibited a significantly higher Young's
modulus, indicating its enhanced resistance to deformation
within the hole transport layer. Supplementary molecular
dynamics simulations, investigating temperature-dependent
variations in the Young's modulus, supported these results
(see Fig. S20C in ESIT). Despite a reduction observed in the
Young's modulus with increasing temperature, p-DTPF4-EBEH
consistently demonstrated superior Young's moduli compared
to spiro-OMeTAD across all temperature regimes. It is essential
to emphasize the crucial role of cohesive energy density in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(A and B) Top-view scanning electron microscopy images of hole transport layers in aged PSCs: (A) spiro-OMeTAD; (B) p-DTPF4-EBEH.

Image size: 5 um x 5 um. (C and D) Fluorescence optical microscopy images of aged cells: (C) spiro-OMeTAD; (D) p-DTPF4-EBEH. Image size:
25 um x 25 um. (E) Young's moduli of organic semiconductor composite films. (F) Plots of the proportion of orange-yellow areas in polarized
microscopy images over time subsequent to the application of a water droplet. (G) Full degradation time of FAPbIs films coated with different
organic semiconductor composite films. (H) Permeabilities of water molecules in different hole transport layers as obtained from molecular

dynamics simulations.

elucidating intermolecular interactions, wherein heightened
cohesive energy density aligns with elevated Young's modulus,
as demonstrated in Fig. S20D, ESI.}

Organic-inorganic hybrid perovskites, such as FAPbI;,
display remarkable sensitivity to humidity. Here, we evaluated
the waterproofing capability of the hole transport layer through
an accelerated experiment. In a control scenario, a water droplet
applied to FAPDbI; film maintained an almost constant contact
angle of 55° within 10 seconds, while the polarized optical
microscopy window rapidly transitioned from black to orange-
yellow (see Fig. S21A in ESI}), indicating the emergence of
birefringent PbI, microcrystals. Upon spin-coating a hole
transport layer (~80 nm) based on spiro-OMeTAD onto the
FAPDI; film surface, the water contact angle increased to 78°
(Fig. S21B, ESI{), while a larger angle of 93° was observed with
a hole transport layer (~80 nm) based on p-DTPF4-EBEH
(Fig. S21C, ESIf). Importantly, these contact angles remained
stable within 20 seconds. However, polarized optical micros-
copy measurements revealed the effective mitigation of perov-
skite film degradation by the hole transport layers. Using Spyder
software, we quantified the proportion of orange-yellow regions
in polarized micrographs. Subsequent fitting of the relationship
between orange-yellow regions and time with the Bohart-
Adams model (Fig. 6F) revealed a complete degradation time of
240 seconds for the FAPDI; film with p-DTPF4-EBEH and 20
seconds for the one with spiro-OMeTAD (Fig. 6G), underscoring
the better waterproofing ability of p-DTPF4-EBEH. Furthermore,
molecular dynamics and grand canonical Monte Carlo simula-
tions were employed to determine the permeability of water
molecules in the hole transport layers, yielding values of 26
mBarrer for the p-DTPF4-EBEH-based composite film and 378
mBarrer for the spiro-OMeTAD-based composite film (Fig. 6H).

© 2024 The Author(s). Published by the Royal Society of Chemistry

The comprehensive analyses of device degradation eluci-
dated that, in comparison to the reference material spiro-
OMeTAD, p-DTPF4-EBEH displayed an increased Young's
modulus and an enhanced waterproofing capability. This
augmentation plays a pivotal role in maintaining the integrity of
the hole transport layer under 85 °C thermal stress and effec-
tively retards the degradation of the perovskite layer under heat
and humidity conditions.

2.7 Operational stability

Utilizing perturb and observe method, we scrutinized the
operational stability of PSCs within a nitrogen environment at
45 °C, subjected to simulated AM1.5G irradiation. The temporal
evolution of crucial parameters, encompassing photocurrent
density (Jmpp), photovoltage (Vypp), and power conversion effi-
ciency (Pywpp) at the maximum power point (MPP), are shown in
Fig. 7A-C. Within a mere 112 hour span, the Pypp of spiro-
OMeTAD-based cell underwent a notable deterioration of
27%, chiefly attributed to a 11% reduction in Jypp and a 19%
decline in Vypp. In contrast, across an extended period of 500
hours, the Pypp of p-DTPF4-EBEH-based cell displayed only
a marginal decrease, diminishing from 25.0% to 23.8%. This
result underscored a good retention rate of 95%, primarily
stemming from a 2.6% decrease in Jypp and a 2.3% decline in
Vmpp-

Throughout the MPP tracking process, J-V curves were
intermittently measured and fitted using the Shockley diode
equation. Fig. 7D and E depict the temporal evolution of the Ry
and Ry, of the cells. As the cell operated, R, exhibited a gradual
increase, while Ry, showed a decrease. The decline in Ry,
suggests an acceleration in charge recombination, likely asso-
ciated with an increase in defects within the perovskite layer.

Chem. Sci., 2024, 15, 15263-15273 | 15271
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(A) photocurrent density (Jupp); (B) photovoltage (Vumpp); (C) power conversion efficiency (Pupp). (D and E) Evolution of series resistance (R

(A—C) Photovoltaic parameters obtained from maximum power point (MPP) tracking under simulated AM1.5G irradiation at 100 mW cm™

2
) and

shunt resistance (Rsn) over time during MPP tracking. (F) Diffusivities of ions within the hole transport layer at 45 °C.

The increase in Rg could be attributed to the rise in defects and
scattering centers within the perovskite layer. Importantly,
compared to the spiro-OMeTAD-based cell, the p-DTPF4-EBEH-
based cell demonstrated a significantly reduced magnitude of
variation in both Ry, and R,.

Subsequently, employing molecular dynamics simulations,
we delved into the ion diffusivities within the hole transport
layer, encompassing 4-tert-butylpyridinium cation (TBPH'),
bis(trifluoromethanesulfonyl)imide  anion  (TFSI"), for-
mamidinium cation (FA"), and iodide anion (I7). At 45 °C, the
diffusivities of each ion within the p-DTPF4-EBEH-based hole
transport layer were notably lower compared to those within the
spiro-OMeTAD-based counterpart (Fig. 7F). The magnitudes of
diffusivities may correlate with the cohesive energy density
within the hole transport layer. It is evident that the judicious
selection of an appropriate hole transport layer to mitigate ion
migration under the electric field is pivotal for enhancing the
operational stability of PSCs.

3 Conclusions

In summary, we have synthesized a high-solubility hetero-
aromatic, DTPF4, characterized by a helical structure
comprising nine fused rings and four hexylphenyl moieties.
Leveraging palladium-catalyzed direct arylation polymerization,
we have crafted the homopolymer p-DTPF4 with remarkable
hole mobility. Through a strategic integration of the more
electron-rich EBEH in an alternating copolymerization with
DTPF4, we have engineered p-DTPF4-EBEH, which not only
demonstrates appropriate HOMO energy level but also exhibits
enhanced conductivity. Notably, compared to the conventional
material spiro-OMeTAD, the hole transport layer founded on p-
DTPF4-EBEH displays a plethora of superior attributes,
including a more uniform film morphology, elevated Young's

15272 | Chem. Sci., 2024, 15, 15263-15273

modulus, heightened waterproofing capability, and reduced
diffusivities of external species. Harnessing the potential of p-
DTPF4-EBEH, perovskite solar cells have achieved an impres-
sive average efficiency of 25.8% alongside commendable
stability. This exploration elucidating the intricate interplay
among chemical structure, physical properties, and photovol-
taic performance of conjugated polymers has furnished
instrumental insights for the prospective design of hole-
transporting materials, thereby fostering the continuous
advancement of perovskite solar cell technologies.
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