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cation as a practical approach for
accelerating p–p co-crystal discovery†
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Cook, a Troy D. Manning, a Michael W. Gaultois, ab Peter A. Wood, c

Vitaliy Kurlin, d Neil Berry, a Matthew S. Dyer *ab

and Matthew J. Rosseinsky ab

The implementation of machine learning models has brought major changes in the decision-making

process for materials design. One matter of concern for the data-driven approaches is the lack of

negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced

datasets. We propose the application of the one-class classification methodology as an effective tool for

tackling these limitations on the materials design problems. This is a concept of learning based only on

a well-defined class without counter examples. An extensive study on the different one-class

classification algorithms is performed until the most appropriate workflow is identified for guiding the

discovery of emerging materials belonging to a relatively small class, that being the weakly bound

polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the

model using all the known molecular combinations that form this class of co-crystals extracted from the

Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet

unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the

highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can

be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists.

Further on, using interpretability techniques a more detailed understanding of the molecular properties

causing co-crystallization is sought after. The applicability of the current methodology is demonstrated

with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and

pyrene-9,10-dicyanoanthracene (2).
Introduction

Machine learning approaches are increasingly incorporated
into design workows to explore and better understand the
materials space.1–3 The ultimate goal is to identify more reliable
methodologies and to develop smarter ways to accelerate the
discovery of new materials with novel properties. Following the
rapidly growing data availability, data driven approaches have
taken hold as a tool for detecting patterns in known datasets
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and performing straightforward predictions. The quality of
a machine learning model is highly dependent on the quality
and the trends of the available data. Thus, the existence of
reliable and complete databases is crucial for the development
of predictive frameworks. However, machine learning models
still suffer many limitations in terms of dening the appro-
priate representations of the target materials and/or achieving
reliable predictions based solely on known instances or other-
wise biased datasets. One-class classiers are specically
designed to address this “positive examples only” problem that
characterises many databases available in materials science
(e.g., ICSD,4 CSD5). In the present work, we introduce one class
classication as a promising methodology to tackle these
drawbacks, using weakly-bound p–p organic co-crystals as
a case study. Themain goal is the identication of potential new
candidates for co-crystallization among a wide range of poly-
cyclic aromatic hydrocarbons (PAHs) and their subsequent
synthesis and structural characterisation. Further an under-
standing about the connection between co-crystallization and
chemical/structural properties of the molecules can be gained.
As this is the rst time one-class classication approaches are
© 2021 The Author(s). Published by the Royal Society of Chemistry
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implemented in materials design, the existing algorithms are
comprehensively investigated and critically discussed. The idea
of applying one-class classication in materials science involves
the accurate denition of the materials' class of interest, e.g.,
the known PAHs co-crystals, such that any predictions can be
made of novel co-crystals that might belong to the same class.
As the interpretability of the machine learning models boosts
their trustworthiness, we also investigated the contribution of
the selected features on the nal decisions for the co-crystal
formation. Importantly, the applicability of the presented
procedure is demonstrated by the identication of two novel co-
formers and by the experimental realization of co-crystals 1 and
2, pyrene-6H-benzo[c]chromen-6-one and pyrene-9,10-
dicyanoanthracene, respectively.

A co-crystal is a crystalline single-phase material composed
of two or more different molecular compounds in a specic
stoichiometry.6–8 These compounds are neither solvates/
hydrates nor simple salts and are connected via one or more
non-covalent interactions, such as hydrogen bonding, p–p

stacking, halogen bonds and charge transfer (C-T) interactions.9

Co-crystal design has undoubtedly receivedmost attention from
the pharmaceutical industry. These compounds may offer the
advantage of preserving the pharmacological properties of the
Active Pharmaceutical Ingredient (API) whilst improving the
physicochemical properties of the potential drug. Conse-
quently, this attention stimulated the development of various
theoretical and experimental studies for designing pharma-
ceutical co-crystals by selecting effective co-formers which are
suitable with the API.10 Hydrogen bond propensity (HBP), pKa

rule, Fabian's method for molecular complementarity and
Hansen solubility parameters are some of the most effective
design approaches.10 The selection of the appropriate method is
based mainly on the nature of the molecules and the way these
molecules are interconnected.6,11

Co-crystals are gaining emerging interest in other cutting-
edge research elds, ranging from photonic, to optical and
electronic materials.12–15 It is well-known that most organic
molecular crystals are insulators as there is no electronic
interaction between the molecules.16 However, molecules with
electron rich p-orbitals overcome this barrier, thus enabling
electron mobility in cases where there is a favourable overlap of
p-orbitals in adjacent molecules.17 p–p stacking is a common
motif for obtaining electronic communication between the
molecules and has been proven as an important characteristic
of organic electronics (e.g., in conjugated polymers).18,19 A
special category of molecules which self-assemble via p–p

interactions are the PAHs, which can be regarded as two-
dimensional graphite segments.20 Hence, PAHs are considered
promising candidates for electronic materials and have been
extensively used for designing co-crystals with desirable elec-
tron mobilities.12,21,22 Most of the research on electronic co-
crystals is focused on the charge-transfer complexes between
a good electron donor and a poor electron acceptor.21,23,24 This
work suggests a promising pathway to expand the investigation
on PAH-based co-crystals where the p–p interactions are the
dominant structure-dening forces.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Although p–p interactions are desirable for designing elec-
tronic functional co-crystals, they are relatively weak compared
to stronger interactions such as hydrogen or halogen bonding.
In a recent computational work, Taylor et al. emphasized the
difficulty in evaluating the thermodynamic stability of weakly-
bound co-crystals without any additional group that can form
charge transfer systems.25 The lack of strong energetic driving
forces for co-crystallization makes the formation less favour-
able, thus these co-crystals are rare. In addition, the weak
interactions give rise to shallow energy landscapes associated
with multiple congurations of similar energy, hindering the
structure prediction. The synthesis of weakly-bound co-crystal
materials still remains a challenging task, albeit interaction
between aromatic hydrocarbon systems have been suggested as
a viable synthetic way on rst principle calculations.26 To over-
come the challenging limitations of predicting the p–p co-
crystallization process, we will use data-driven approaches.

The selection of the most appropriate machine learning
approach is strongly dependent on the nature of the problem to
be solved and the quality of the available data. The Cambridge
Structural Database (CSD),5 which collects and curates publicly-
available crystal structure data worldwide, including existing co-
crystals, has been used as the information source for the current
study. Each year multiple tens of thousands of new crystal
structures are added to the database (53 199 new entries were
added in 2019), increasing the demand for developing efficient
and effective ways to extract non-trivial, valid and useful infor-
mation to design new materials. The extracted dataset is
composed of all the reported PAH co-crystals, with p–p stacking
as the main interaction. Aer a careful investigation of the
aforementioned dataset some observations are made. First of
all, this category of co-crystals is a relatively small proportion,
i.e., 12% of the complete set of co-crystals in the CSD, as
a consequence it becomes more challenging to extract clear
patterns that dominate these combinations. Secondly, there is
a sparsity of negative experimental co-crystallization observa-
tions due to the lack of publications explicitly reporting the
failure of molecular combinations to co-crystallize. Thus,
a publication bias is created imposing an imbalance towards
the target class due to the non-existence of negative data.
Finally, there is an internal constitutional bias as most of the
data are on a subset of heavily studied systems, rather than
uniformly distributed over all possible systems, chemistries and
structural families. Herein, we introduce a general approach to
tackle the biased datasets. Our approach, as demonstrated in
Fig. 1, is based on one class classication, a well-knownmethod
that has been applied to many research themes, such as novelty/
outlier detection, concept learning or single class classica-
tion.27 However, it has not yet been employed in materials
design problems. Contrary to other data-driven methods used
for co-crystal design,11,28 one class classication does not
require the generation of a large number of negative examples
from unsuccessful experiments,11 and is able to involve the
available molecular descriptors to derive chemical under-
standing of the predictions.28

As one class classication is imbalance tolerant, no specic
distribution of the target class, PAH co-crystals, has to be
Chem. Sci., 2021, 12, 1702–1719 | 1703
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Fig. 1 Schematic representation of the one class classification method for ranking possible hydrocarbon molecular pairs according to their
probability to form co-crystals. Starting from a representative set of eight molecules that contain the molecular and electronic structure
characteristics that reflect the likelihood of forming polyaromatic hydrocarbon (PAH) co-crystals, two different datasets were constructed. The
labelled dataset involves all the existing PAH co-crystals in CSD, whereas the unlabelled dataset contains all the possible molecular combinations
of PAHs from ZINC15 database. Amolecular pair is represented as a concatenation of themolecular descriptors and is used as the input to various
one class algorithms. Each of the implemented algorithms fits a different decision function to the labelled data and then scores the unlabelled
combinations. The outcome of the models is a score (from 0 to 1) indicating the probability of two molecules forming a stable co-crystal. The
known combinations as well as that part of the unlabelled data predicted as inliers have higher scores close to 1, where the points that could be
regarded as anomalies (dark blue crosses) have scores below a selected threshold value. In the end, a ranked pool of combinations is produced,
significantly reducing the initial dataset of interest. The best performing method is used for predicting the co-former combinations to be tested
experimentally. The aforementioned workflow led to the discovery of two novel co-crystals 1 and 2.
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assumed and thus one of the major problems in materials
science regarding the lack of negative examples is tackled. The
objective of one-class classication approaches is to accurately
describe the ‘normality’, namely the distribution of the known
dataset. It is assumed that the majority of the training dataset
consists of ‘normal’ data.29 Thus, the one class classication
algorithms learn to accurately describe the positive/known data.
Deviations from this description are seen as anomalies and thus
belong to a different class. The known data class is well char-
acterized, and these instances are used as the training set. In
this way the classiers are focused on the deviations from the
known distribution rather than focusing on the discrimination
task between the classes. In this context, as labelled data we
refer to all the positive combinations extracted from the CSD
database (1722 molecular combinations, Fig. 1), whereas the
unlabelled data are the pairs generated from the ZINC15 data-
base (21 736 possible molecular combinations, Fig. 1). Each
1704 | Chem. Sci., 2021, 12, 1702–1719
molecular pair is represented as a concatenation of molecular
descriptors covering a wide range of properties. The presented
predicted pairs refer to the molecules we have chosen based on
their molecular similarity to the representative set of starting
molecules (see Methods, Extracting the labelled dataset),
however the list can be easily extended by including new
molecular pairs in the training (labelled) dataset. The imple-
mented algorithms for one-class classication (anomaly detec-
tion) are separated into eight traditional and one neural
network and are discussed in ESI† (Section 2).
Methods
Extracting the labelled dataset

The labelled dataset of existing co-crystals in the CSD database
was extracted using the CSD Python API (Application Program-
ming Interface), version 2.0 (December 2018). As a starting point,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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eight molecules with extended polyaromatic systems are used as
a representative set for searching the CSD and generating the co-
crystal space of interest (>1700 molecular combinations). The
selection of these representative eight initial molecules is per-
formed on the basis of promising electronic properties (e.g.,
known organic semiconductors) and distinct geometry (i.e., the
set is diverse in shape and symmetry). The names of the initial
molecules as well as their 6 letter CSD Refcode were: coronene
(CORONE), picene (ZZZYOC04), pentacene (PENCEN), tripheny-
lene (TRIPHE), phenanthrene (PHENAN), uoranthene
(FLUANT), corannulene (CORANN01), dinaphthol-anthracene
(DNAPAN). The similarity search function of the CSD Python
API is applied to those molecules, using the standard CSD
ngerprint similarity search with a Tanimoto similarity threshold
of >0.35 (ref. 30) and accepting only neutral organic molecules
with known SMILES identiers. The 1722 entries in the resulting
list are crystal structures that include either one of these mole-
cules or molecules that are structurally similar to them (based on
CSDmolecular ngerprint similarity). The search aims to identify
all the co-crystals that have as co-formers PAHs whilst the main
interaction between them is p–p stacking. Each co-crystal in CSD
can be represented as a combination of simplied molecular-
input line-entry (SMILES)31 separated with a full stop e.g.,
‘c1cc2ccc3cccc4ccc(c1)c2c34.N#CC(C#N)]C1C]CC(C]C1)]
C(C#N)C#N’ representing pyrene-TCNQ. Using this form, we can
count the number of different molecules in the asymmetric unit
and take into consideration the molecular stoichiometry of the
co-formers. Combinations including common non-aromatic
solvents are excluded. However, aromatic solvents are accepted
e.g., benzene, as the interactions in this case are only p–p

stacking and these combinations might hold important infor-
mation about the predictions this work is interested in. Finally,
the molecular combinations are ltered using Pipeline Pilot
(version 2017)32 by applying a SMARTS33 lter that removes
molecules with acidic hydrogens, making sure that the main
interaction among the co-crystals is p–p stacking. The whole
process is schematically described in the ESI (Fig. S1†).

Designing the unlabelled dataset

The dataset with the promising combinations of molecules is
constructed using the ZINC15 database,34 which includes all the
purchasable organic molecules. The molecules were taken from
a version downloaded in August 2018. The same initial mole-
cules used for the CSD search were used and the database was
searched based on molecular Extended Connectivity Finger-
prints (ECFP4) with a Tanimoto similarity threshold of >0.35.35

Aer ltering out the molecules with acidic hydrogens using
Pipeline Pilot, the ZINC database reveals 209 molecules with
calculated Dragon descriptors that match the selected similarity
criteria with the initial molecules. All the possible combinations
of these 209molecules are taken into consideration, resulting in
a dataset with 21 736 unique pairs.

Dataset bias

Bias in natural science datasets,36 as well in CSD,28 has been
reported before. Bias is a very general term and found in many
© 2021 The Author(s). Published by the Royal Society of Chemistry
categories. The studied dataset shows compositional bias due to
the recurrence of some molecular components in the observed
co-crystals. A different type of bias can be found considering the
different molecular ratios, as the majority of the co-crystals of
interest have 1 : 1 stoichiometry. In order to design co-crystals
whose formation is driven by p–p stacking, the training set
used was biased towards molecular combinations that are
connected with that type of interaction. In some respect, we
need this bias to build a target specic approach for detecting
weakly interacting molecular pairs. However, our dataset is
unbalanced as there are some popular co-crystal co-formers that
tend to appear many times in p–p stacking pairs, e.g., benzene,
toluene, pyrene, which leads to these molecules being over-
represented in the highest scored pairs. One objective of this
study is thus to identify new co-crystal forming molecules that
do not correspond to a previous database entry.
Feature generation and engineering

In this context, features are dened as themolecular descriptors
that uniquely represent each molecule. The chemical space of
interest can be dened by the appropriate set of numerical
descriptors that capture the characteristics and/or properties of
the molecules. With n linearly independent descriptors, an n-
dimensional space is dened. A careful selection of the appro-
priate descriptors is critical for the rational design and imple-
mentation of any machine learning method.37 Each molecule is
represented as an n-dimensional vector with n being the
number of the available descriptors calculated with Dragon
soware,38 version 6.0/2012. Traditional one-class classication
approaches require extensive feature engineering as it is desir-
able to reduce the dimensions of the problem before the anal-
ysis. The dimensionality reduction is performed following the
standard good practices for removing descriptors that are
highly correlated to each other or describe similar properties.39

Features that are correlated more than 0.92 as well as those that
have variance lower than 0.4 were removed from each co-
former's dataset. The feature selection process was performed
according to the molecular complementarity approach.40 All the
pairwise correlations between the molecular pairs were calcu-
lated, aer removing co-crystals containing benzene-like
solvents to avoid possible bias on the feature importance. The
pairwise correlations were calculated with both Pearson and
Spearman methods40 and the p-values were used to verify that
the correlations are statistically signicant. We regard as
important and unbiased features those with both Pearson's and
Spearman's correlations above 0.4 and p-values below 10�3.
Finally, each single molecule is represented by a 24-dimen-
sional space of the highly pairwise-correlated descriptors (Table
S2†). Thus, the molecular pairs are the concatenation of the
individual vectors of each single molecule. All the labelled
molecules were standardized to [0,1] using the scaling methods
provided from sci-kit learn, such that all the numerical features
will belong to the same range. The scaler is tted to the known
molecules that form co-crystals. Then the trained scaler is
implemented to transform eachmolecule in themolecular pairs
in both the labelled and the unlabelled datasets, such that there
Chem. Sci., 2021, 12, 1702–1719 | 1705
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will be a consistency among them and the same molecules will
get the same representation independent of which pair they
belong to.

Traditional one class classication

Eight different algorithms were selected from the PyOD and
sklearn library representing the wide range of the one-class
classication (anomaly detection) categories as described
above: Gaussian Mixture Models (GMM), Local Outlier Factor
(LOF), k-nearest neighbors (kNN), Isolation Forest (Iforest), One
Class SVM (OCSVM), Histogram Based Outlier Score (HBOS),
Cluster-based Local Outlier Factor (CBLOF) and Feature
Bagging (with LOF as the basis algorithm) (ESI Section 2 and
Table S3†).41 Each algorithm has its internal scoring function,
depending on the cost function it tries to minimize. For
achieving better predictive performance and ensuring the
robustness of our method the models were combined in an
ensemble way. For consistency with the GMM model from the
scikit-learn library,42 the scores from the PyOD library were
multiplied by �1 to have higher scores for the inliers and lower
for the outliers. Each model was initially trained and optimized
separately to provide an anomaly score to the input data. Then
the scores of the pretrained models were normalised between
[0,1] and averaged, following the methodology from the combo
library43 so that the outputs become comparable.

Hyperparameter tuning

As the performance of the algorithms is highly dependent on
the choice of the hyperparameters, i.e., algorithm variables, the
optimization step is crucial for achieving the highest possible
accuracy. The tuned hyperparameters of each method are pre-
sented in ESI (Table S3†). For the machine learning models, the
optimization step is about searching for the hyperparameters
with the lowest validation loss. Bayesian optimization was used
via the Hyperopt library.44 The main idea behind Hyperopt is to
get more points from the regions with high probability of
yielding good results and less points from elsewhere. Hyperopt
library was implemented for each of the eight algorithms from
the PyOD & scikitlearn library,41,42 to nd the best set of
parameters tomaximize the average accuracy of the k-fold cross-
validation.

Deep learning approach

Using the traditional one class classication algorithms as
baselines, the application of a deep learning method was
investigated for extending the dataset to the whole n-dimen-
sional space (n ¼ 3714, i.e., 1857 descriptors for each molecule
in the pair). In that way the predictions are not only based on
a few pairwise correlated descriptors. That is very important as
the co-crystal design problem is complex and thus higher-order
interacting features might have a key role in the co-crystal
formation. The main advantage of using a neural network in
this context is that the extensive feature engineering part can be
omitted, as the network can learn relevant features automati-
cally. The most broadly used deep learning approaches for one
class classication rely mainly on Autoencoders. An
1706 | Chem. Sci., 2021, 12, 1702–1719
Autoencoder is a neural network that learns a representation of
the input data by trying to accurately reconstruct the input with
minimum error. It is considered to be an effective measure for
separating inlier and outlier points.45 Autoencoders are used for
learning the representation of the labelled data and then the
unlabelled data are reconstructed using the same weights from
the target class. The decision of whether a new datapoint is an
inlier or an outlier is made based on the reconstruction error.
High reconstruction error indicates that a sample is most
probably an outlier, whereas when we have low reconstruction
error the samples most probably belong to the same distribu-
tion as the labelled data. Autoencoders have the objective of
minimizing the reconstruction error, but do not target one class
classication directly. For designing a more compact method-
ology, the adapted approach incorporates both an Autoencoder
for representational learning which is jointly trained with
a Feed Forward Network targeting one-class classication.

Deep one class architecture

The Deep Support Vector Data Description (DeepSVDD) archi-
tecture used in this paper is adapted from the work of Ruff
et al.29,46 The aim of DeepSVDD is to nd a data-enclosing
hypersphere of minimum size, such that the normal data-
points will be mapped near the center of the hypersphere
whereas anomalous data are mapped further away. The objec-
tive of DeepSVDD is to jointly learn the network parameters
together with minimizing the volume of the hypersphere. The
deep learning protocol followed by DeepSVDD is a two-step
process. The rst step, i.e., the pretraining step, is composed
by a Convolutional Autoencoder for effectively capturing the
representation of the data. During the pretraining, the center of
the hypersphere is calculated and is xed as the mean of the
network representations of the known data.29 During the second
step, the latent dimension of the Encoder is connected to a Feed
Forward Neural Network with the specic task of minimizing
the loss function (distance from the center of the hypersphere).
The same pretraining and training steps as in the DeepSVDD
method were used for our problem settings, whereas the Con-
volutional Autoencoder was substituted with the SetTrans-
former Autoencoder adapted from Lee et al.47 The implemented
set-input architecture uses a self-attention mechanism that
allows the encoding of higher-order interactions and is able to
directly perceive the order invariance among the pairs. All the
known data (molecular pairs) are considered to belong to the
hypersphere and they are scored based on their distance from
the center, thus the lower the score the closer to the center and
the more of an inlier is the data point. Likewise, the unlabelled
data are assigned scores based on their distance from the pre-
dened center. All the scores are multiplied by �1 and
normalized from 0 to 1 so that they are comparable to the other
models and give scores close to 1 for the inliers, whereas the
points scored close to 0 are the anomalies.

Model evaluation

The evaluation of the classication performance for one-class
classiers differs from multi-class classication as only the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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probability density of the positive class is known. That means
that the model can only be optimized and validated by mini-
mizing the number of positive class instances that are not
accepted by the one-class classier (false negatives).27 Opposed
to the binary classiers, where the decision of the class is made
based on a set threshold, usually 0.5 (if a point scores below 0.5
it belongs to the rst class else to the second), in one class
classication the threshold is dened only from the known
class. That is set using a parameter (here referred as contami-
nation), which denes the amount of noise we expect to have in
our known class. Herein, we accept that parameter as 0.05,
meaning that 95% of the known data are inliers and only a very
small part of them that deviated from the rest can be regarded
as outliers. The evaluation of the models was performed using
ve-fold cross validation on the labelled dataset. The labelled
dataset is split into ve parts (folds) where 4/5 are used for the
training and the remaining part is used for the validation. The
process is repeated ve times, each time selecting a different
fold and the evaluation is performed using accuracy metrics
from version 0.22 of the scikit-learn package. The nal accuracy
is calculated by taking the mean of the ve accuracy scores of
the validation set.

Model interpretability

To better understand the features that are important for the
neural network categorization of the molecular pairs in one class,
we used SHAP (SHapley Additive exPlanations).48 This interpret-
ability method is based on the calculation of the game theoreti-
cally optimal Shapley values, which are indicative of the
contribution of each feature to the nal prediction. One of the
advantages of using SHAP is that it offers both local interpret-
ability, by looking at how the features in each individual combi-
nation will affect the decision, as well as global interpretations, by
aggregating the local values. We are thus able to know which
features in a specicmolecular pair affect the decisionsmore and
extract general views on the features that inuence and dominate
the overall design of that type of material.

Co-former ratio predictions

For the prediction of ratios between co-formers, the binary
classication approach was implemented. The scikit-learn 0.22
version of the XGBoost classier was trained on the known co-
crystal molecular ratios. We are interested in detecting if a co-
former combination will be found in 1 : 1 or higher ratio. The
1 : 1 molecular ratio was assigned to label ‘0’, whereas the
higher ratios were labelled as ‘1’. As the majority of CSD co-
crystals were found in 1 : 1 ratio we have an imbalanced data-
set. To overcome this bias, SMOTE algorithm from the IBM
package imbalanced-learn was used to generate articial data-
points that could belong to the underrepresented class such
that the two classes will become balanced.49 The optimum set of
parameters were selected with the Hyperopt algorithm.

Pareto optimization

Pareto optimization simultaneously identies the optimal
values in a set of parameters and was used to select and
© 2021 The Author(s). Published by the Royal Society of Chemistry
prioritise the co-formers to be experimentally tested. In our case
the parameters that were optimised are the score from the
model and the similarity to 7,7,8,8-tetracyanoquinodimethane
(TCNQ). This two-parameter optimization was implemented to
drive the decision making for the experimental screening.
Euclidean distance and 2D visualization

The similarity between the experimentally synthesized co-crystals
and the rest of the labelled dataset is measured using the
Euclidean distance of the high-dimensional descriptor vectors. As
such, the closest feature-wise known structures to the synthesised
co-crystals were detected. Furthermore, the labelled dataset was
projected in two dimensions using the Uniform Manifold
Approximation and Projection (UMAP) algorithm.50 UMAP is
a dimensionality reduction technique based on Topological Data
Analysis and is aiming to preserve both local and global topo-
logical structure of the data. The UMAP parameters were selected
in a way such that the maximum of the distance is preserved
when moving from the higher to lower dimensions. The distance
preservation wasmeasured by calculating the Pearson correlation
coefficient of the distance matrix using the whole dimensionality
and the distance matrix aer the dimensionality reduction. The
most effective settings were as follows (n_neighbours ¼ 80,
min_dist ¼ 0.1, Euclidean distance metric) resulting in Pearson
correlation coefficient of 0.748.
Experimental section
Materials and chemicals

9,10-Dicyanoanthracene (CAS RN:1217-45-4, >98.0%) was
purchased from TCI UK Ltd.; Pyrene (CAS RN: 129-00-0, >97%)
was purchased from TCI UK Ltd.; 6H-benzo[c]chromen-6-one
(CAS RN: 2005-10-9, 96%) was purchased from Fluorochem
Ltd. All chemicals were used directly without further purica-
tion. No safety hazards were encountered during the described
Experimental procedures.
Co-crystal growth

Preparation of co-crystal pyrene-6H-benzo[c]chromen-6-one
(1). Pyrene (20 mg, 0.1 mmol) and 6H-benzo[c]chromen-6-one
(20 mg, 0.1 mmol) were dissolved in dichloromethane (6 mL)
and heated at �45 �C for 16 hours under continuous stirring.
Aer heating for 16 hours the resulting mixture was ltered
(using Whatman lter paper). The ltered solution was allowed
to stand at room temperature for slow evaporation in open air
(partially covered). Colourless plate-like crystals of the co-crystal
pyrene-6H-benzo[c]chromen-6-one (1) appeared aer 3–4 days.

Preparation of co-crystal pyrene-9,10-dicyanoanthracene (2).
Co-crystal 2 was synthesized following an analogous procedure
as described for 1 using pyrene (20 mg, 0.1 mmol) and 9,10-
dicyanoanthracene (23 mg, 0.1 mmol). Orange column-like
crystals of the co-crystal pyrene-9,10-dicyanoanthracene (2)
appeared aer 1–2 days.
Chem. Sci., 2021, 12, 1702–1719 | 1707
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Characterization methods

Diffraction data for co-crystal 1 and 2 were collected using
a Rigaku AFC12K goniometer employing graphite mono-
chromated Mo Ka (l ¼ 0.71073 Å) radiation generated from
a Rigaku 007HF molybdenum rotating anode microfocus X-ray
target source and using a Saturn 724+ CCD detector. All data
reduction and processing was performed using the CrysAlisPro
soware package and empirical absorption corrections using
spherical harmonics were implemented in the SCALE3
ABSPACK scaling algorithm.51 The structures were solved using
either direct52 or dual-space53 methods and rened by full
matrix least-squared on F2 with SHELXL2015.54

Results

The one class classication framework as expressed by the
various implemented algorithms is discussed below. The two
different workows followed involve (i) the application of
traditional algorithms designed for one class classication aer
extensive feature engineering to reduce the dimensionality of
the problem and (ii) the design of a deep learning methodology
for handling the specic co-crystals dataset, considering them
as pairs of data, and avoiding feature engineering by solving the
problem in higher dimensions. As traditional algorithms we are
referring to the provided algorithms from PyOD/scikit-learn
libraries and as Deep One Class to the deep learning model
that was built by combining an Attention-based Encoder and
DeepSVDD network. In both workows a two-step process is
employed. First the algorithms were trained and optimized on
the known data and then they were used for scoring both the
labelled and unlabelled molecular combinations. High scores
are an indication for inliers, whereas the lower the score the
higher the probability for a point to be an outlier.
Fig. 2 Score distributions of the labelled (orange) and unlabelled (light blu
algorithm employs a different scoring function to assign scores to themo
combinations (training set) whereas only a certain part of the unlabelled
inliers. As the number of unlabelled data is significantly higher than the nu
[0,1] (for visualization purposes). The output scores of all the models are
the two different datasets can be observed for both the Ensemble and De
scores and thus enabling a better separation.

1708 | Chem. Sci., 2021, 12, 1702–1719
The score distribution of both the labelled and unlabelled
data for all the implemented algorithms is presented in Fig. 2. It
can be observed that the labelled and unlabelled data form two
overlapping classes. The unlabelled data consist of both posi-
tive and negative examples in an unknown proportion. Conse-
quently, a certain part of the unlabelled data is expected to
belong to the known class i.e., are inliers. Moreover, in the
labelled data there is a small proportion of examples that
signicantly differs from the rest of the data and is regarded as
noise of the normal class, i.e., outlier examples. The impact of
the class noise is mitigated using one class classication, as
a percentage of the labelled data are regarded as outliers during
the hyperparameter optimization process (see Methods). In
general, for both the traditional and deep one class classica-
tion workows, (i) the labelled data show higher scores with all
the methods, (ii) each method has a different way of scoring the
samples and deciding for whether a point is a normality or
anomaly and (iii) only a certain part of the unlabelled data
receives high scores. Differences arise between the algorithms
because each is based on different denitions on what an
oulier/inlier means, i.e., an outlier is a point far from other
points (kNN), an easily splittable point (Isolation forest), not
part of a large cluster (Cluster-based outlier detection) or a point
far away from the center of a hypersphere (DeepSVDD). More-
over, the traditional approaches differ from the deep approach
in terms of the dimensionality of the features and the way the
molecular pairs are perceived by the models. To this end, the
two workows are investigated separately.

Traditional one class classication

The main characteristic of the traditional algorithms is the need
for dimensionality reduction. For that reason, the important
features were manually extracted based on molecular
e) data using all the discussed one-class classification algorithms. Each
lecular combinations, giving in all the cases higher scores to the labelled
combinations (test set) receives high scores and can be regarded as

mber of known data, the y axis (showing the frequency) is normalized to
also normalized to [0,1]. A clearer and more definite separation among
ep One Class methods, with Deep One Class covering a bigger range of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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complementarity (highly pairwise correlated descriptors among
the two molecules). The resulting 24 descriptors include the
number of bonds (nBT), the number of heteroatoms (nHet),
electrotopological characteristics (MAXDN, MAXDP, DELS), i.e.,
combination of electronic features and topological environment
for given atoms, the topology and polarizability of the molecules
(e.g., SpMax4_Bh(m), SM1_Dz(e)). A detailed list with the selected
descriptors and their correlations can be found in the ESI (Table
S2†). As each molecule is represented by a vector belonging to
these 24 descriptors, the molecular pair is the concatenation of
two vectors. Importantly, for extensively covering the co-crystal
space, the two individual vectors were concatenated in both
directions in the training set as the input should be invariant to
the position of the molecule in the vector (Fig. S11†). For
instance, in the representation of the pyrene-TCNQ pairs (co-
crystal: PYRCBZ02), the score should be the same whether the
input is given as pyrene-TCNQ or TCNQ-pyrene.

A short description about how each of the traditional one
class classication algorithms regards an outlying point as well
as the selected hyperparameters can be found in the ESI (Table
S3†). As a showcase, the way two different algorithms differen-
tiate inliers from outliers is presented in Fig. 3, where the co-
crystal dataset was projected in the two dimensional space
using Principal Component Analysis (PCA).55 The bidirection-
ality of the training set is also observed by the symmetry of the
projected data.

For achieving more reliable and robust predictions, the eight
traditional one class classication algorithms were combined in
Fig. 3 Two examples of traditional one class classification algorithms,
namely Local Outlier Factor (LOF) and Cluster Based Local Outlier
Factor (CBLOF), visualizing the way the boundaries around the co-
crystal space are drawn. The labelled co-crystals dataset was projected
to two dimensions using Principal Component Analysis (PCA). PCAwas
applied after the calculation of the scores in all dimensions. 50 random
points of the unlabelled dataset were selected for visualizing their
position in the two-dimensional space. Points marked as green
crosses are identified as inliers, whereas blue crosses are the outliers. It
is observed that each algorithm is implementing a different scoring
function and thus the decision boundaries that separate inliers from
outliers differ.

© 2021 The Author(s). Published by the Royal Society of Chemistry
an ensemble way by averaging their output. Thus, the nal
scores of both the labelled and unlabelled data were calculated
by the ensemble. The distribution of the ensemble scores, aer
being normalized to [0,1], are shown in Fig. 2. It is observed that
the ensemble separates better the labelled from the unlabelled
data in comparison to the individual traditional algorithms.
That is an indication that the ensemble is a better classier as
the balance point above which the amount of labelled data is
maximum and the number of unlabelled data is minimum is
easier found.56 Numerically, that means that the scores around
0.7 can be regarded as good and promising scores for identi-
fying novel molecular pairs and that the 5434 out of the 21 736
possible combinations are the top scored combinations. The
performance of each algorithm was calculated by the True
Positive Rate (TPR), dened as the average of correctly predicted
inliers resulting from ve-fold cross validation. As illustrated in
Fig. 4, all the algorithms achieve a high accuracy on the True
Positive Rate and perform quite well on unseen data. However,
the Gaussian Mixture Model (GMM) and the Histogram-based
Model (HBOS) are less robust as indicated by the higher varia-
tion in the total accuracy (Fig. 4 and S12†). The effect that the
addition of data in the training set has on the accuracy is also
investigated aer calculating the learning curves of each algo-
rithm. For the correct sampling of the bidirectional dataset in
the different training set sizes, it should be ensured that
equivalent pairs exist in each subset.
Deep one class approach

Despite the fact that the aforementioned one class classication
models show high accuracy (%) as indicated by the True Positive
Rate (Fig. 4), they require substantial feature engineering. By
decreasing the dimensionality, the complexity of the model is
lowered. However, substantial information might get lost and
some key descriptors might be removed. These limitations led
to the development of deep learning approaches for automati-
cally learning relevant features with the specic purpose of one-
class classication.29,57 As such, a deep learning model was
employed for processing the co-crystals dataset.

The whole feature dimensionality is the input to the deep
learning model concatenated in a way such that the order
invariance is preserved (see SetTransformer in the ESI† Section
3). The way the SetTransformer extracts the features is key for
capturing the complexity of the problem. SetTransformer
‘looks’ in all the features across a single molecule as well as in
all the features of the pairing molecule. In that way the latent
dimension holds information for the relation between the
descriptors for each molecular pair. A detailed description of
the way SetTransformer captures the relations among the
descriptors is shown graphically in the ESI (Fig. S9†). It can be
observed that the deep learning model outperforms the tradi-
tional methods as the accuracy (%) is higher and the standard
deviation is minimum. Moreover, there is a clearer separation
of the labelled from the unlabelled data and thus a balance
point between them was more easily found (Fig. 2, DeepSVDD).
The two workows are also compared scores-wise (Fig. 5). It can
be seen that there is a good agreement (correlation) in high
Chem. Sci., 2021, 12, 1702–1719 | 1709
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Fig. 4 Learning curves of all the implemented algorithms showing the performance of themodels while the size of the training set increases. The
highlighted grey area represents the standard deviation of each model. The validation metric used is the True Positive Rate (TPR), i.e., number of
correctly predicted inliers/total size of the training set in each fold of the k-fold (k ¼ 5) cross validation. It is observed that the Deep learning
model (DeepSVDD) outperforms the traditional algorithms as it has higher accuracy and low standard deviation.
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scores, whereas in the lower scores area there is not a clear
correlation as the ensemble method gives a narrower range of
scores and higher scores for low-scoring examples in the Deep
case.

In every classication problem, a threshold should be spec-
ied above which the datapoints that belong to the normal class
can be found. We set that threshold at 0.7 and thus all the
molecular pairs with scores higher than 0.7 are regarded as
reliable inliers with a high probability to exist. That threshold
was selected based on the good agreement between both
workows for scores above 0.7. Moreover, it is a good balance
Fig. 5 Correlation between the scores of the Ensemble and DeepOne
Class methods. Both workflows show a good correlation in the general
distribution of scores, with Deep One Class covering a wider range of
scores and enabling in that way a better separation between inliers and
outliers. A significant correlation exists for the high score pairs,
showing that both methods could be reliable in the high-score region.

1710 | Chem. Sci., 2021, 12, 1702–1719
point as the majority of the labelled data receive scores above
that threshold whereas only the top quartile of the unlabelled
data can be found in that area. In cases where a better separa-
bility is achieved,58 the amount of misclassied data (FP: False
Positives) is minimized signicantly, thus the selection of the
threshold (on 0.7) could be regarded a reasonable decision
boundary.
Predicted molecular pairs

Aer testing and evaluating the possible algorithms for one
class classication, the better performing method was
employed for the nal decision on the ranking. Taking into
consideration not only the better accuracy of the deep approach,
but also that there was no need for extensive feature engi-
neering, the better separation of the labelled and unlabelled
data and the clearer decision boundary, the nal ranking is
based on the deep learning method.

As our training dataset consists of many co-crystals with one
aromatic solvent (i.e., benzene or toluene) and one highly
branched molecule (i.e., molecules with nonlinear backbone), it
is expected that the top scored pairs will follow the same trend.
As shown in Fig. S14† the two top scored predictions are those
between toluene and two of the most highly branched mole-
cules of the ZINC15 list. As the purpose of the model is to learn
the underlying patterns on the labelled dataset and then detect
molecular pairs with similar patterns in the unlabelled dataset,
that scoring is quite reasonable. If we want to remove the
solvents and look at other high-score subsets, we can perform
a search under different constraints, such as for nding the
higher scored combinations (i) aer removing the one ring
molecules, (ii) aer removing both the one-ring molecules and
molecules with heteroatoms and (iii) when looking at the good
combinations containing one of the eight starting PAHs.
Detailed tables containing high-ranking pairs of possible
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Molecular pairs formed by the most popular co-formers as
predicted using deep learning approach. Pyrene was identified as the
most popular co-former as the majority of the possible pyrene co-
crystals were assigned with high scores. The arrows indicate the
direction of higher score (vertical arrow) and higher popularity (hori-
zontal arrow).
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categories of interest with their scores can be found in ESI
(Tables S5–S11†). The popularity (frequency) of the co-formers
forming high-scored pairs is also measured by counting the
number of times each co-former appears in the pairs of the top
quartile. The most frequent co-formers in their higher scored
pairs are presented in Fig. 6. As shown the co-formers that
appear more frequently in the predicted dataset are pyrene,
benzophenanthrene, perylene and acenaphthylene.

Model interpretability

The reliability of any machine learning model is enhanced
when the model's decisions are related to physical properties.
Following the traditional one class classication workow, the
features associated with the nal predictions are already known
aer the extensive feature engineering process. On the other
hand, an understanding about the features that played a key
role in the deep learning approach is a more challenging task,
as the complexity of the model is higher. Using the Shapley
Analysis, the feature weights are expressed as Shapley values. A
detailed description of the Shapley workow can be found in
the ESI.† To this end, features that play a key role in the scoring
for the deep learning approach are retrieved and analysed. The
aim of this process is to identify molecular properties or char-
acteristics that might provide a chemical understanding to the
model's decisions and assist the experimental screening
process. As for many of the Dragon descriptors it is hard to
extract a physical meaning, the correlations among the most
© 2021 The Author(s). Published by the Royal Society of Chemistry
signicant descriptors with those that are more general and
understandable are calculated.

According to Shapley analysis, the most important features
that the inliers have in common and dominate the decisions are
related to the descriptors B06[C–C], ATS6i, B08[C–C],
ChiA_Dz(p), Eig06_AEA(dm) and SpMin5_Bh(s). Whereas, B06
[C–C] and B08[C–C] can be easily related to the molecular
length, as they describe the topological distance between two
carbon atoms, i.e., the presence of connected carbon atoms at
specic positions on a molecular graph, the other descriptors
are not directly related to a molecular property, for that reason,
their physical meaning is extracted aer calculating the corre-
lations between them and the other Dragon descriptors, that are
higher than 75% (Table S13†). Interestingly, they are highly
correlated with more general and easily accessible molecular
properties. These chemically meaningful descriptors refer to (i)
electronic properties, such as the sum of rst ionization
potentials (Si), sum of atomic Sanderson electronegativities (Se),
sum of atomic polarizabilities (Sp) (ii) molecular size, such as
McGowan volume (Vx), sum of atomic van der Waals volumes
(Sv), (iii) molecular shape, regarding the molecular branching
(Ram, eta_B), (iv) polarity (Pol, SAtot) and (v) molecular weight
(MW). The correlations and a more detailed description of these
descriptors are summarized in ESI (Table S13†). Interestingly,
these descriptors are also relevant to the majority of the
extracted descriptors aer the feature engineering process
(Table S2 and S13†).

The relationship among some of the important interpretable
descriptors in the molecular pairs is illustrated in Fig. 7 and
S22–S26† for both the labelled and the unlabelled datasets. It
should be noted that the distribution trend of the labelled and
unlabelled dataset can change according to the studied
descriptor. In Fig. 7a, the dominating trends on the labelled
dataset can be observed with darker orange color indicating the
densest area with more molecular combinations. Two main
areas are extracted from the labelled dataset. The rst area
includes molecular pairs where both molecules have low values
of the same property, e.g., in the Polarity plot the area 0 < Pol <
60, where both molecules could have similar values. The second
area includes molecular pairs with higher difference on their
property values, i.e., when one molecule has a low value of one
descriptor then the pairing molecule has a higher value for the
same descriptor, complementing the rst molecule. This
observation is also veried by the UMAP visualization of the
dataset (Fig. 7c, see also Euclidean distance and 2D visualiza-
tion section in Methods), where the two discrete areas are
captured. In the UMAP plot the smaller cluster to the bottom
le represents the area in which molecules with similar values
are found, the two synthesized co-crystals 1 and 2 (vide infra) are
located in this area. This observation does not apply for all the
available descriptors (see Fig. S35†). These observations are also
compared with a previous study by Fabian that focused on the
CSD co-crystal dataset.40 Fabian's statistical analysis of the data
at that time concluded that the majority of co-crystals in CSD
(CSD, version 5.29, November 2007) are formed by molecules of
similar size and polarity.40
Chem. Sci., 2021, 12, 1702–1719 | 1711
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Fig. 7 (a) Scatterplots showing the distribution of representative descriptors among the molecular pairs on the labelled dataset, extracted from
CSD. The plotted descriptors are those identified as themost general and highly correlated to the descriptors extracted using the Shapley analysis
(see Model interpretability and Section 7 in the ESI†). (b) The distribution of the same descriptors for the unlabelled data is shown. Blue circles
represent the whole unlabelled dataset extracted from ZINC15 (21 736 points) and yellow-orange represent the top quartile of the unlabelled
data having scores above 0.7 and are regarded as inliers. It can be clearly seen that the predicted inliers follow the distribution of the labelled
dataset, especially in the densest area. This is an indication that the deep learningmodel can effectively learn the trends of the labelled data and is
able to score the unlabelled data based on the significant patterns of the labelled data (training set). The white square and white circle denote the
two experimentally synthesized co-crystals (see Experimental section in Methods and in silico prediction and experimental realization section in
Results). Both synthesized co-crystals lie into the densest area regarding the polarity and electronic descriptors. (c) UMAP 2D illustration of the
labelled dataset containing the extracted from CSD co-crystals and the projection of 1 and 2 to the known co-crystal space. The datapoints are
colored according to the absolute difference of the descriptors identified as important. It can be observed that the whole dataset consists of two
main areas: one area in which themolecular pairs havemolecules with similar properties, i.e., shape, polarity and electronegativity, in which 1 and
2 belong and a second area involves molecular pairs with significant difference in these properties.
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Our analysis shows amore complex scenario. Size, shape and
polarity, identied as important factors of co-crystallization,
have similar property values only in the low value region, in
agreement with Fabian's conclusions. However, in the high
value regions the trend drastically changes; molecules having
high size, shape and polarity values tend to pair with molecules
having low values of these parameters. It should be noted that
Fabian had also observed and chosen not to focus on the
smaller subset where the co-formers are dissimilar due to their
lack of relevance for his domain of focus, i.e. pharmaceutical co-
crystals and predominantly hydrogen-bonding ones. Our study
needed to consider the dissimilar pairs as in PAHs co-crystals
feature dissimilarity is common. Interestingly, our machine-
learning modelling approaches were capable of taking into
1712 | Chem. Sci., 2021, 12, 1702–1719
account a more complex relationship between descriptors, so it
wasn't necessary to simplify the analysis to just one subset of
the co-crystal dataset in terms of descriptor space. As shown in
Fig. 7, the distribution of property values in the high scoring
pairs (inliers) in the unlabelled dataset (Fig. 7b) are predicted to
follow the same patterns at the labelled dataset (Fig. 7a) indi-
cating that the deep learning model effectively learnt the trends
of the labelled dataset and was able to score the unlabelled
dataset based on those trends.

The dominating features as expressed with global Shapley
values can give a general picture of the dataset. However, it
should be noted that a better understanding for specic groups
of pairs that might be of interest can be attained when focusing
on them explicitly. The advantage of using Shapley values is that
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Barcharts illustrating the molecular stoichiometry on the re-
ported (left, labelled dataset) and on the predicted (right, inliers)
compounds of the co-crystal dataset. It can be observed that the
dominating ratio is 1 : 1, resulting in a highly imbalanced dataset
towards molecular ratios.
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local explanations are given to each individual molecular pair or
to a subset of interest among the molecular pairs. As a case
study, the pyrene-cocrystal family is investigated, aiming to
extract some general patterns about the important molecular
characteristics that drive a good match for co-crystal formation
with pyrene (Fig. S21†). The dominating features in the known
co-crystals with pyrene are presented in Fig. S21.† It was found
that the existence of heteroatoms such as oxygen and/or
nitrogen groups on various topological distances, as indicated
by the B03[C–O], B02[C–O], B02[C–N] and B05[C–N] descriptors
or the existence of halogen atoms as indicated by the X%
descriptor (Fig. S21†) play a key role in the assignment of high
scores in these combinations. Furthermore, the aromaticity as
represented by the ARR descriptor was a factor that contributed
to high scores.

The key ndings from the model interpretation and feature
analysis can be summarized below:

(i) Shape, Size and Polarity were detected as important
factors for co-crystallization, which is in accordance with
previous understanding about the co-crystals of CSD. However,
Fabian's observations are relevant only for low values of these
properties. We observe that there are no cases in the labelled
data and in the inlier part of the unlabelled dataset where both
molecules have very high values of polarity and/or volume. This
could be an indication for factors prohibiting co-crystallization.
In cases, where high polarity or volume values are assigned to
one molecule the pairing molecule usually has a low value of
that property.

(ii) PAH co-crystals seem to deviate from empirically estab-
lished rules and trends observed for organic co-crystals in
general. Thus, a deeper understanding of their properties can
only be gained when they are studied separately. As PAHs lack
hydrogen bonding, other types of interactions appear as stabi-
lizing factors for co-crystallization. For instance, in the pyrene-
based co-crystals the existence of O and/or N groups has been
identied as a key parameter as the majority of molecules that
form co-crystals with pyrene contain these groups. The exis-
tence of these groups can drive the formation of C–H/N,
C–H/O and C–H/X (X ¼ halogen groups) which will probably
stabilize the co-crystal formation.

(iii) There is not a ‘magic’ descriptor or set of some
descriptors that can directly predict co-crystallization. The
synergy among many descriptors will led to a successful
combination. The more parameters, and the more the rela-
tionships among them, that are taken into consideration, the
more reliable the predictions we can attain. This is the reason
the implementation of the appropriate ML tools could save
signicant amount of time and guide the synthetic work, as this
is the only way where the relationship among a large number of
properties is simultaneously considered.

(iv) The selection of pairs for co-crystallization screening is
a challenging task. However, when there is a certain category of
interest, we can extract the important features that dominate
the known co-crystals and then select for experimental
screening molecules that both have high score (as the score is
based on the interaction among all the known descriptors) and
some of the properties that are extracted as important. It should
© 2021 The Author(s). Published by the Royal Society of Chemistry
be noted that a pair of molecules might have a good score and
good values of a property of interest but not give a successful
result as a property that is not considered from the model is
affecting the experiment, e.g., the solubility of the molecules in
several solvents is not considered in the ML model at the
moment.

Molecular ratios prediction

An important parameter that should be taken into consider-
ation in co-crystals design is the stoichiometry of the co-
formers. The molecular ratio is going to affect the crystal
packing and thus contribute to possible materials properties.
To this end, the labelled co-crystals dataset was further tested
for molecular ratio prediction. The molecular ratio of all the
combinations was extracted during the labelled dataset
construction (see Methods). The dominating ratio in the dataset
is 1 : 1 as shown in Fig. 8, resulting in a highly biased dataset
towards the molecular ratios. The problem setting was adjusted
for performing binary classication and investigated whether
the molecular ratio is going to be 1 : 1 or higher. We assigned
label ‘0’ to all the molecular pairs having 1 : 1 ratio and ‘1’
otherwise. The problem was solved using SMOTE technique for
balancing the two classes of the dataset such that they have
equivalent amount of data having 1 : 1 ratios and data having
ratios different to 1 : 1.

The labelled dataset was split into a training and a test set
with the latent representation being the input to a binary clas-
sier. The model showed strong predictive power, with accuracy
on both the training and test sets of about 94% and no over-
tting on the training data (Fig. S19†). The same model was
then implemented for predicting the molecular ratios in the
inlier pairs. The high accuracy of the ratio prediction on the
unlabelled dataset were further veried by the experimental
results. The ratio of compound 1 was predicted to be different
from 1 : 1 and indeed the ratio of the synthesized co-crystal was
found 1 : 2. Furthermore, the ratio of compound 2 was
Chem. Sci., 2021, 12, 1702–1719 | 1713
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predicted to be 1 : 1 and likewise it was found to be 1 : 1
experimentally.
In silico prediction and experimental realization

To narrow down the selection of potential co-formers from
those identied using the single class classier model, we chose
pyrene as a xed component because both the existing data (i.e.,
CSD database) and the model output reveal its popularity and
versatility as a co-former, i.e., pyrene can co-crystalize with
a diverse range of molecules forming high score pairs. The total
207 possible pyrene-containing co-crystals identied by the
single class classier model (Fig. 9) were narrowed down to
a subset of 29 pairs where the second co-former has zero
examples of known co-crystals with any other molecule (blue
points in Fig. 9). Pareto optimization (see Methods and ESI† in
Section 8) was used to identify the most suitable candidate co-
formers for experimental investigation by simultaneously opti-
mizing (i) the highest predicted score of the pyrene co-crystals
and (ii) the highest Tanimoto similarity with the well-known
acceptor molecule 7,7,8,8-tetracyanoquinodimethane (TCNQ),
which is extensively studied for its interesting electronic prop-
erties both in the crystalline form and as a co-crystal.21,26,59–65

From the Pareto front (Fig. 9 green line) 1–4 are identied as the
optimal candidates and 5 is the highest scoring co-former off
the Pareto front.

Out of the Pareto optimal candidates, pyrene-6H-benzo[c]
chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2)
(Fig. 9) have been successfully isolated as co-crystals (see
Experimental section for the synthetic details and Fig. 10 and
Fig. 9 Scatterplot illustrating the selection criteria for the experi-
mental screening process. Pareto optimization was implemented
having as the main task the optimization of two objectives, (i) the score
of the deep learning model and (ii) the Tanimoto similarity to TCNQ.
Each point represents a molecule that could be used as the second
co-former in pyrene co-crystals. Red empty circles stand for mole-
cules that are already known to form co-crystals in the CSD, whereas
molecules represented with filled blue circles have zero reported co-
crystals. The molecules selected and experimentally tested are high-
lighted in green circles. 1–4 are on the pareto front and 5 is the highest
scoring co-former off the Pareto front. 6 is an outlier.

1714 | Chem. Sci., 2021, 12, 1702–1719
11) with 1 and 2 being the rst examples of co-crystals con-
taining 6H-benzo[c]chromen-6-one and 9,10-dicyanoanthracene
as co-formers.

The next Pareto optimal candidates for experimental inves-
tigation were pyrene-1,2,3,4,-tetrahydrophenanthrene-4-one (3),
pyrene-1-vinyl-naphthalene (4) and pyrene-9-phenylanthracene
(5) (Fig. 9). However, 3, 4 and 5 did not lead to any new co-
crystals with pyrene when following an analogous synthetic
procedure to that of 1 and 2. While 3, 4 and 5 could be seen as
potential negative results, and could be fed back in to the model
to improve its predictive power, it should be specied that more
rigorous screening of the crystallization conditions is required.
The current machine learning model does not take into
consideration all possible chemical factors that might affect the
reaction outcome (e.g., solubility of the co-formers). For
instance, working with 5 we noticed that the physical form of 1-
vinyl-naphthalene is liquid at room temperature and shows low
miscibility with pyrene under the conditions tested. Following
a different synthetic approach and using 1-vinyl-naphthalene
and/or pyrene in excess might be a successful way towards the
predicted co-crystal.

We considered it important to also test combinations that
were predicted as outliers where the co-formers have numerous
reported co-crystals. The pair pyrene-triphenylene (6, outlier
score 0.0, Fig. 9) satises these criteria, since pyrene has 130
examples of known co-crystals and triphenylene has 20 reported
examples in the CSD database, but the pair (pyrene-
triphenylene) is not known as a co-crystal. Following a similar
synthetic procedure using dichloromethane (a common solvent
choice for the formation of known pyrene-containing and
triphenylene-containing co-crystals) as described for 1 and 2
(see Experimental section in Methods), did not lead to any new
phases. Nonetheless, for 6 a more rigorous screening of a wider
range of experimental conditions should be tested. We recog-
nize that six examples do not provide statistically signicant
evidence to fully validate the model experimentally. However,
this initial experimental screening was performed for the
exemplication of the model and it is noteworthy that two novel
co-crystals with high scores were synthesized.

Finally, our study plays a key role in the expansion of
knowledge around co-crystallization as it points that the exis-
tence of heteroatoms (such as oxygen and/or nitrogen), the
shape of the co-formers and the extent of branching are the
most dominating structural factors that synthetic chemists
should take in consideration when working in the formation of
pyrene based co-crystals.
Description of crystal structures

The detailed crystallographic data for co-crystal 1 and 2 are
listed in Table S15 in the ESI.† Pyrene-6H-benzo[c]chromen-6-
one co-crystal (1) (CCDC ref. 2014577) shows a 1 : 2 stoichiom-
etry of pyrene to 6H-benzo[c]chromen-6-one, notably verifying
what was predicted by the one class classication approach (i.e.,
1 is predicted in a higher than 1 : 1 ratio). 1 has a complex
packing, stabilized by both p–p stacking and T-shape interac-
tions (Fig. 10 and S27–S28†), as unveiled taking advantage of
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 (a) Portion of the crystal packing of 1. Horizontal axis, c; vertical axis, a. Atom color code: carbon, grey; oxygen, red; hydrogen, light grey.
The displacement ellipsoids are drawn at 50% probability level with the hydrogen atoms showed in the ball and stick mode for clarity. The weak
C–H/p interactions between neighbouring molecules are represented as dashed light blue lines, C–H/O the interactions as dashed brown
lines and the distances between 6H-benzo[c]chromen-6-one dimers are represented as dashed green lines. (b and c) representation of the g-
type crystal packing between the pyrene (highlighted with yellow color) and 6H-benzo[c]chromen-6-one (highlighted with red color)
molecules.
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Aromatics Analyser tool embedded in Mercury.66 Its structure
can be classied as g-type, where innite stackings of the 6H-
benzo[c]chromen-6-one molecules are alternated by ribbons of
pyrene molecules in a A-BB-A motif.

Pyrene-9,10-dicyanoanthracene co-crystal (2) (CCDC ref.
2014576) crystallizes with a 1 : 1 stoichiometry conrming the
predicted ratio (i.e., in 2, the stoichiometric ratio of pyrene and
Fig. 11 (a) Portion of the crystal packing of 2 viewed in perspective along
ellipsoids are drawn at 50% probability level with the hydrogen atoms sho
nitrogen, blue; hydrogen, light grey. The weak C–H/N lateral interactio
lines, the distances between the centroids (orange spheres) of pyrene and
lines. (b and c) Representation of g-type flattened herringbone crystal p
dicyanoanthracene (highlighted with blue color) molecules.

© 2021 The Author(s). Published by the Royal Society of Chemistry
9,10-dicyanoanthracene was predicted to be 1 : 1). 2 can be
classied as a g-type structure with each innite stack consist-
ing of alternating pyrene and 9,10-dicyanoanthracene mole-
cules (Fig. 11 and S29–S32†). Weak C–H/N lateral interactions
between (i) molecules of pyrene and 9,10-dicyanoanthracene
and (ii) molecules of 9,10-dicyanoanthracene, stabilize the
stacks (Fig. 11a and S29†).
the [010] direction. Horizontal axis, c; vertical axis, a. The displacement
wn in the ball and stick mode for clarity. Atom color code: carbon, grey;
ns between neighbouring molecules are represented as dashed green
9,10-dicyanoanthracenemolecules are represented as dashed orange
acking between the pyrene (highlighted with yellow color) and 9,10-
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Structural comparison with crystal structures in CSD

Aer the successful synthesis of 1 and 2, a comparison with the
already known co-crystals was performed. 1 and 2 are the rst
examples of co-crystals containing 6H-benzo[c]chromen-6-one
and 9,10-dicyanoanthracene as co-formers. For this reason,
the crystal structures of 1 and 2 were initially compared to the
pyrene-based co-crystals found in the CCDC database, speci-
cally to the 130 reported entries (the list of pyrene co-crystal and
their structural details can be found in Table S16 and Fig. S33 of
ESI†). Themajority of the pyrene co-crystals, together with 1 and
2, belong to the same cluster in the UMAP 2D visualization of
the labelled dataset (Fig. S34 and S35 of ESI†), namely the one
characterized by similar properties of shape, polarity and elec-
tronegativity as found in the model interpretation (see Fig. 7).
Interestingly, both 1 and 2 adopt the g-type motif, a complex
arrangement where both stacking and T-shape interactions
coexist. This occurrence is in contrast to what is reported for the
130 pyrene-based co-crystals (see Fig. S33 in ESI†), which
usually crystallize in herringbone or b-type packing, 58% and
34% respectively. Hence, using one class classication
approach to predict new materials allowed us not only to
identify new co-formers and to synthesize two new co-crystals,
but also to explore and to enlarge the rare subgroup (�8%) of
g-type pyrene co-crystals. Our attention then moved to the most
similar known co-crystals. To do that the Euclidean distance
(i.e., the distance between two vectors in the Euclidean space)
between the vectors of the synthesized pairs and the vectors of
the known molecular pairs in the labelled dataset was calcu-
lated. The resulting closest known pairs are presented in
Fig. S36 of ESI.† 1 is compared to the eight most similar co-
crystals in the CSD database (Table S17 and Fig. S36 in
ESI†).67–72 Contrary to 1, all eight compounds are in a 1 : 1
stoichiometry with the two co-formers and have simpler
packing motifs than 1 (Fig. 10). In particular, they are charac-
terized by A/B/A p/p stacking prompting to g-type67–71 or b-
type69,71,72 motifs (see Table S17† for the main interaction
distances). As in 1, lateral C–H/O interactions are observed in
all the studied compounds (Table S17 in the ESI†). In line with
1, the structural motifs of 2 have been compared to the most
similar co-crystals in the CSD database (Table S18 in ESI†).73–79

All eight co-crystal examples found are in a 1 : 1 stoichiometry
and show a g-type or b-type packing motif. Moreover, C–H/N
or C–H/O lateral stabilizing interactions (see Table S18 in the
ESI for the main interaction distances†) can be observed in the
compounds. We can notice that all the co-crystals identied as
the closest in Euclidean space are characterized by the same
main interactions (i.e., g-stacking and C–H/N/C–H/O lateral
interactions) of 1 and 2.
Conclusions

We have proposed a general framework for tackling some of the
limitations that application of machine learning in materials
science is currently facing. Instead of assuming the availability
of densely and uniformly sampled data, we focus our attention
on identifying the most effective way to handle imbalanced
1716 | Chem. Sci., 2021, 12, 1702–1719
datasets. Given the relative abundance of data available in
existing structural databases, the use of machine learning is
very attractive to provide effective prediction for properties
relating to the solid-state. The drawback here is that the existing
databases constructed of published literature typically only
include positive results, with scientists very rarely publishing
such clear details of experiments that did not work. This means
that, from a machine learning perspective, only one class (i.e.,
the positive outcome) is well dened by the data. Recent
research from a range of groups has attempted to tackle this
unbalanced data problem for prediction problems like co-
crystallization,11,40 solvate formation80,81 and crystallisability.82,83

In general, these groups have attempted to get around the
problem by using either sparse or somewhat unreliable negative
data from alternative sources to produce a trained model. Our
work illustrates that one class classication can overcome these
limitations and learn how to effectively describe a certain class
of interest, showing the potential to signicantly advance many
areas of chemical research.

As such, we highlight the implementation of one class clas-
sication as a methodology for dealing with the ‘only positive
data’ challenge in materials design. We report as a case study
the prediction of newmolecules which have not previously been
recognised as co-formers in the unique and limited class of
materials, the p–p interconnected co-crystals. In the attempt to
improve our understanding about one class classication,
a broad overview about the current methods and concepts is
given. The problem is initially investigated using traditional one
class classication algorithms in lower dimensions aer
extensive feature engineering. Further on, we demonstrate that
by using a Deep One Class approach, the manual feature engi-
neering could be avoided and we can not only achieve higher
accuracy, but also the incorporation of more feature interac-
tions among the co-formers. In this way, all the features that
might lead to the formation of stable co-crystals are taken into
consideration and the relationships among them are extracted.
Co-crystallization emerges as a difficult task for both compu-
tational predictions and experimental screening, particularly
for cases of limited strong directional forces that could give
a strong indication for a successful outcome. In our contribu-
tion, we show that the implementation of the appropriate data
mining strategy combined with the extraction of a reliable
dataset can leverage the synthetic attempts and lead to the
successful discovery of new materials. Moreover, an in-depth
understanding of the machine learning model with a ratio-
nale about the predictions is sought aer for advancing our
knowledge on the chemical factors that favour co-crystal
formation.

Currently, many steps towards explainability of machine
learning models have been made. Therefore, for a computa-
tional strategy to be reliable it is important to incorporate
interpretability for rationalizing the predictions. SHAP calcula-
tions were carried out for interpreting the scoring of the deep
learning model by assigning feature weights. Consequently,
a better understanding of the features that dominate the known
molecular pairs is gained and meaningful information
regarding the characteristics of the molecules that can relate to
© 2021 The Author(s). Published by the Royal Society of Chemistry
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p–p stacking is extracted. Shape, size and polarity were detected
as important factors for co-crystallization, which is in accor-
dance with previous understanding about the co-crystals of
CSD. However, our analysis reveals a more complex scenario,
where co-crystallization is feasible for molecules having similar
low values of these properties or coupling molecules with low
and high values of the same feature. Overall, it can be
concluded that the rules that dominate the co-crystal formation
are far more complex than just some general properties and
many parameters should be taken into consideration.

The computational strategy followed is able to successfully
extract the patterns that dominate the known co-crystals and
predict a range of potential combinations showing similar
trends with the labelled data. Therefore, the number of exper-
iments as well as the time frame required to obtain new
compounds can be signicantly reduced by focusing on co-
formers with high scores and possible interesting properties.
A realistic picture of the single class applicability is demon-
strated by the identication of two molecules that have not
previously been recognized as co-formers. The co-formers of 1
and 2 are characterized by similar shape/size, polarity and
electronic characteristics, conrming the ability of the model to
learn and reproduce the key-features of the labelled dataset.
Interestingly, 1 and 2 crystalize in the rare g-packing type which
represents only the 8% among pyrene co-crystals, pointing out
the power of our model in exploring, understanding and
expanding the targeted labelled dataset. Overall, using the
proposedmachine learning strategy we were able to successfully
overcome the limitations of an ‘only positive example’ problem
in the p–p interconnected co-crystals dataset with the identi-
cation and experimental realization of two co-crystals (pyrene-
6H-benzo[c]chromen-6-one (1) and pyrene-9,10-
dicyanoanthracene (2)), both containing molecules which
have not previously been reported as co-formers in the CSD.
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