Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The structure–mechanical property relationship of a synthetic pentapeptide crystal containing coded and non-coded amino acids was presented. Pentapeptide 1 has two α-aminoisobutyric acid (Aib) residues at 2 and 4 positions and formed an orthorhombic crystal, with the space group P212121, which is sensitive to external stress and brittle in nature. From FE-SEM the crystal appears as a thick bundle of several fibers. The structural analysis of a crystal of pentapeptide 1 obtained in methanol–water confirmed the existence of an unusual secondary structure, a miniature (P)310/α-helix. The pentapeptide 1 molecules self-assemble by intermolecular N–H⋯O hydrogen bonds and form a supramolecular helical bundle structure which further assembles to form a supramolecular sheet-like structure along the crystallographic a and c directions. The intermolecular interaction energies (kJ mol−1) for pentapeptide 1 were calculated using the B3LYP/6-31G(d,p) dispersion corrected DFT model. Although the interaction energy is small, there is no sign of slippage due to the interdigitation of the Leu i-propyl, Boc t-butyl, and Phe side chains. As a result, the crystal is brittle in nature. Moreover, the quantitative nanoindentation technique reveals the moderate E and H values for the major face of this crystal, which is consistent with the presence of adequate van der Waals interactions and several hydrogen bonding interactions in the structure.

Graphical abstract: Structure–mechanical property relationship of a pentapeptide crystal

Page: ^ Top