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gator series: towards a framework
for establishing the impacts of pharmaceuticals in
wastewater irrigation systems on agro-ecosystems
and human health

Laura J. Carter, *a Benny Chefetz, b Ziad Abdeencd and Alistair B. A. Boxalle

Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural

water demands of a growing number of countries suffering from water scarcity. However, reclaimed

wastewater contains pollutants which are introduced to the agro-environment during the irrigation

process. While water reuse guidelines do consider selected classes of pollutants, they do not account for

the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these

may pose. Here we use source–pathway–receptor analysis (S–P–R) to develop a holistic framework for

evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on

human and ecosystem health and evaluate the data availability for the framework components. The

developed framework comprised of 34 processes and compartments but a good level of knowledge was

available for only five of these suggesting that currently it is not possible to fully establish the impacts of

pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand

the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level

exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition,

research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking

as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five

areas prioritised in terms of future research are needed before we are able to fully quantify the

agricultural and human health risks associated with reclaimed wastewater use.
Environmental signicance

Reclaimed wastewater irrigation presents a route by which pharmaceuticals can enter, and become, omnipresent in agricultural systems. Due to the biological
potency of pharmaceuticals, uptake into receptors such as plants, livestock, and wildlife presents a risk to agricultural and human health. A holistic risk
framework that considers the sources of pharmaceuticals and the pathways by which these chemicals can impact receptors has been proposed. Source–pathway–
receptor analysis revealed that it is currently impossible to fully understand the risks of pharmaceuticals in agricultural systems due to a number of signicant
knowledge gaps. By identifying and prioritising these knowledge gaps, we envisage these ndings will inform future regulatory and policy developments around
the management of pharmaceutical contamination of reclaimed wastewater.
Introduction and background

Water management is an issue of global concern; a recent
World Bank report concluded that water scarcity, exacerbated
by climate change, could cost some regions up to 6% of their
t, University of Leeds, Leeds, LS2 9JT, UK.
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GDP, spur migration and spark conict.1 To meet the growing
demand for water, treated wastewater (reclaimed wastewater) is
sometimes reclaimed and used to irrigate agricultural land, golf
courses and various other landscapes. Use of reclaimed waste-
water is an especially attractive option in countries suffering
from water shortages that have a typically warmer and dryer
climate such as in the Middle East and Southern Europe.2–5 In
Israel, for example, more than 85% of the produced reclaimed
wastewater is currently used for irrigation. This accounts for
over 50% of the total irrigation volume.6,7 Comparatively, use of
reclaimed wastewater for agricultural irrigation in California
only amounts for about 4% of the irrigation volume, but this
has been increasing steadily. Due to anticipated water
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shortages, the state has developed a policy calling for a three-
fold increase in the total reuse of reclaimed wastewater by
2030.8

Despite recent advances in technologies to treat wastewater,
some pollutants of emerging concern such as pharmaceuticals
and personal care products are not removed by wastewater
treatment.9,10 These chemicals are frequently detected in both
raw inuent and treated effluents of wastewater treatment
plants at concentrations ranging from ng L�1 to mg L�1.11,12

Concentrations of pharmaceuticals in wastewater vary across
the globe. For example, the concentrations of a vast majority of
antibiotics in effluents are generally higher in most Asian
countries than those reported in European and North Amer-
ica10,13–15 with high concentrations explained by: high
consumption and the fact that these compounds are readily
available in these regions; and poor wastewater treatment
technologies in some regions. In addition, different treatment
technologies remove different chemicals to different extents
thereby resulting in a range of concentrations in effluents.
Concentrations of acetaminophen, for example, have been
observed to range between below method detection limits to
62 000 ng L�1 across wastewater treatment plants sampled in
North America and Asia.12

An increasing number of studies have documented the
presence of a wide range pharmaceuticals destined for land
application.16–18 With the anticipated future increases in
reclaimed wastewater reuse expected on a global scale (e.g. FAO
report “Coping with water scarcity: an action framework for
agriculture and food security”),19 the introduction of pharma-
ceuticals to agro-environments is also expected to increase. At
the EU level it has been acknowledged that we need to develop
minimum requirements to manage the human and environ-
mental risks from reclaimed wastewater to irrigate crops
(COM(2018)337).20 Classication of reclaimed wastewater
destined for agricultural irrigation has therefore been proposed
and this is based on monitoring for the presence of pathogens
and physico-chemical constituents that may pose a risk to
human and environmental health, and to environmental
matrices (e.g. E. coli, biological oxygen demand, turbidity, and
suspended solids).21 The proposed quality requirements for the
EU are similar to the WHO Guidelines for the Safe Use of
Wastewater, Excreta and Greywater22 and the Australian
Guidelines for Water Recycling (Phase 1)23 when wastewater is
used to irrigate of urban, recreational and open space, and
agriculture and horticulture.

While, in some regions, the human health risks of phar-
maceuticals are accounted for when wastewater is used for
drinking water purposes (e.g. Australian Guidelines for Water
Reuse: Augmentation of Drinking Water Supplies),24 there are
currently no quality standards with regards to concentrations of
pharmaceuticals in reclaimed wastewater used for irrigation.
Given the current demand, and potential for future widespread
use of reclaimed wastewater, it is essential we are able to
adequately assess this risk. In order to contribute to the safe
reuse of reclaimed wastewater in agriculture, policies and
guidelines may need to be updated, and mitigation measures
put in place to minimise environmental and human health
606 | Environ. Sci.: Processes Impacts, 2019, 21, 605–622
impacts. There is therefore a need to develop new frameworks
for determining the impacts of pharmaceuticals present in
wastewater irrigation systems on agro-ecosystem and human
health. In this paper, we therefore present a Source–Pathway–
Receptor (S–P–R) analysis to establish a framework to describe
how pharmaceuticals originating from reclaimed wastewater
could impact on human health and the health of agricultural
systems. We then assess the availability of knowledge, data,
models and methods required to populate different compo-
nents of the S–P–R diagram.
Source–pathway–receptor analysis

The S–P–R diagram, consisting of 34 compartments (A–K),
represents the different pathways in which agro-ecosystems are
exposed to pharmaceuticals receiving wastewater irrigation
(Fig. 1). The primary source of pharmaceuticals is reclaimed
wastewater used as a source of irrigation (A; Fig. 1) according to
agricultural water management systems (B; Fig. 1). This results
in the contamination of a number of environmental compart-
ments identied as the soil, surface water and groundwater (C,
D and F; Fig. 1). A range of receptors can then be exposed to
pharmaceuticals in these compartments through a variety of
direct and indirect pathways. The main receptors identied
include terrestrial wildlife, people, livestock, terrestrial plants,
soil fauna and aquatic species (F–K; Fig. 1), with a number of
receptors themselves identied as potential routes (secondary
sources) of exposure for pharmaceutical contamination via food
web transfer to higher vertebrates in the food chain (e.g. sh as
a source of food for birds). Whilst this analysis considers the use
of reclaimed wastewater as the route for pharmaceuticals to
enter agroecosystems, the use of organic soil amendments
(sludges and/or livestock manures) are also signicant path-
ways by which pharmaceuticals can enter, and become omni-
present, in soils.25,26 A number of associated risks and
knowledge gaps highlighted in this analysis are therefore also
relevant to these additional pathways (Table 1).
Knowledge and data availability

Sources (A–B). Reclaimed wastewater has been used as
a source of agricultural irrigation in Asia, the Mediterranean
and other arid and semi-arid regions for centuries (A; Fig. 1 and
2). Where there are policies in place to ensure food security and
sustainable water management, the use of reclaimed waste-
water comes under the broad umbrella of Agricultural Water
Management Systems (B; Fig. 1). For example, Israel has one of
the largest water recycling initiatives, where the use of
reclaimed wastewater, comes under the Long Term National
Water Sector Master Plan (LTN-MP).7 Direct use of reclaimed
wastewater varies on a country-by-country basis. For example, it
was estimated that reclaimed wastewater in China accounted
for 1.26 � 109 m3 of agricultural irrigation water in 2013, which
was approximately 10 times greater than reclaimed wastewater
use in the United Arab Emirates at 0.14 � 109 m3.27

In an attempt to augment growing water demands, untreated
wastewater is also used as a source of irrigation where
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Source–pathway–receptor diagram to define how pharmaceuticals originating from reclaimed wastewater (source) can impact on
human health and the health of agricultural systems via soil, surface water and ground water exposure (pathways). Receptors include wildlife,
people, livestock, plants, soil fauna and aquatic species. *Wildlife and plants are terrestrial species for this analysis.
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wastewater infrastructure is lacking or where wastewater has
undergone little to no treatment. For example in Mexico
approximately 2 60 000 ha are irrigated with wastewater, most
of which is untreated.2 There is an urgent need to identify where
raw or partially treated wastewater is being used in agriculture
to enable the risks to be properly assessed given that estimates
indicate that at least 20 million hectares in 50 countries are
irrigated with raw or partially wastewater.28,29

Through global monitoring campaigns we have a good
understanding of the typical concentrations of pharmaceuticals
in wastewater treatment plant (WWTP) effluent for some
regions.30–32 According to a recent report by aus van der Beek,33

pharmaceuticals identied in treated wastewater comprise 28%
of all global monitoring data with concentrations of a single
pharmaceutical being reported up to 43 900 mg L�1. However, of
the approximately 1500 pharmaceuticals estimated to be
currently in use,34 monitoring studies have only identied �550
active pharmaceutical ingredients in wastewater effluent
(according to data reported on UBA Database: Pharmaceuticals
in the Environment) (Table 2).33,35 In addition, monitoring
studies have primarily centred on the quantication of phar-
maceutical parent compounds with little effort made to identify
the presence of metabolites and other transformation prod-
ucts.36,37 To add further complexity, for some geographic
regions there is also limited or non-existent monitoring data on
concentrations of pharmaceuticals in wastewater.33 If we do not
have a clear picture of the quantities and types of pharmaceu-
ticals and their transformation products in reclaimed waste-
water this poses a major challenge when trying to assess the
global risks associated with wastewater reuse in agriculture.

Predictive modelling approaches, such as the multimedia
box model SimpleTreat, offer a means of generating data on
concentrations of pharmaceuticals in wastewater effluent by
This journal is © The Royal Society of Chemistry 2019
estimating chemical fate in activated sludge WWTPs.38 A recent
evaluation found that, in general, SimpleTreat 4.0 was able to
predict concentrations of pharmaceuticals in effluents to within
a factor of 10 of measured concentrations.39 However, predictive
approaches such as this typically require a large amounts of
input data, for example information on pharmaceutical usage,
sorption to sludge, and degree of chemical biodegradability.
The availability of this data, which currently exists for a limited
number of compounds, constrains model use in the rst
instance. On-going research to develop Quantitative Structure
Property Relationships (QSPRs) to describe pharmaceutical
sludge sorption and biodegradability40,41 and high-throughput
approaches to identify transformation products42 will enable
us to better model wastewater effluent concentrations in the
future. In addition, models such as SimpleTreat are para-
metrised under the assumption that the WWTP is functioning
correctly, and in some regions (e.g. Palestine), this is probably
not the case, which will alter concentrations of pharmaceuticals
in wastewater and thus the exposure to the agro-environment.
We need to therefore understand the performance of different
treatment technologies in different regions and further develop
models to account for these differences.

In order to regulate peak demands as well as uctuations in
effluent ow, reclaimed wastewater is oen stored in a reservoir
and the inuence of storage on chemical fate for a range of
pharmaceuticals is largely unknown.43,44 However, published
models that account for dissipation in water could be utilised to
explore this further in combination with improved QSPRs for
persistence in the water column and a greater understanding of
reclaimed wastewater storage e.g. depth of reservoir, residence
time in reservoir. In addition, research is needed to explore the
chemical fate processes of pharmaceuticals during pipe ow to
agricultural elds and during the drip irrigation process itself
Environ. Sci.: Processes Impacts, 2019, 21, 605–622 | 607
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Table 1 Summary of existing knowledge and knowledge gaps pertaining to reclaimed wastewater irrigation practices (sources and pathways are
denoted in bold, receptors are underlined and processes connecting the S–P–R components are italicised). Where existing knowledge is in place
– example references are supplied to support this. Our knowledge pertaining to each compartment or process classified according to whether
we have a ‘High’, ‘Moderate or ‘Low’ understanding of the issue

Number Description Existing knowledge Knowledge gaps Classication

A Reclaimed wastewater – Concentrations reported for many
compounds33,35

– Models oen limited by availability of
input data (e.g. usage data, WWTP
removal data)

High

– Good models to predict effluent
concentrations38

– Future scenarios (e.g. impact of climate
change)
– Presence of metabolites not well
characterised

B Agriculture water
management systems

– Data available on what the systems are
and where they are for select countries7

– Limited information of chemical fate
processes during piping (e.g. anaerobic
conditions, biolm processes,
chlorination, reservoir storage, effects of
temperature)

Moderate

1 Irrigation – Good data on irrigation practices for
select countries (location, volumes,
frequency)121

– Fate processes in drip irrigation
systems

High

C Soil – Experimental protocols exist to
measure fate processes122

– Predictive models are poor if input data
is missing

Moderate

– Measured data on fate (e.g. sorption,
persistence) for many compounds51,52

– Bioavailability (pore water
concentrations)

– Models exist to predict soil
concentrations and chemical fate
processes123

– Monitoring data lacking for most
compounds
– Effect of reclaimed wastewater
irrigation and hydroclimatic variables on
soil fate processes
– Measured data on biotic and/or
transformation in soil for many
compounds

2 Leaching to groundwater – Limited experimental data for a few
compounds63

– No data for a majority of compounds Moderate

– Models are available124,125 – Potential transformation processes
during leaching

E Groundwater compartment – Aquifer maps exist126,127 – Limited information on chemical
processes in the groundwater (including
biotic and/or transformation)

Moderate
– Some monitoring data63,66,128

3 Runoff to surface waters – Good hydrological understanding for
many countries129

– Extreme events hard to predict (model
scenarios not currently available)

High

– Experimental monitoring ongoing61,130 – Data on only a few compounds
– Models are available131,132

D Surface water – Monitoring data for many
compounds33,35

– Monitoring efforts focussed on Europe
and N. America

Moderate

– Data on in-stream processes are
available for many compounds133,134

– Exposure models not available for
specic scenarios (e.g. limited wastewater
treatment)
– Measured data on biotic and/or
transformation in soil for many
compounds

4 and 5 Abstraction of contaminated
surface and groundwater

– Data on volumes, locations, frequency
where practices exist135

NA High

6 Surface water to
groundwater

NA – Very limited understanding Low

7 Use of reclaimed
wastewater for aquaculture

– Known to be practiced in some areas136 – Limited knowledge on aquaculture
practices (e.g. where, volumes of water
used)

Low

8 Uptake into microbes NA – Very limited understanding Low
J Effects on microbes – Knowledge of some effects on C and N

transformation137,138
– No information on mechanisms Low

– Limited molecular data139 – No data on many compounds and key
endpoints

– Studies are on-going – Effects of mixtures
– Development and preservation of
antimicrobial resistance

608 | Environ. Sci.: Processes Impacts, 2019, 21, 605–622 This journal is © The Royal Society of Chemistry 2019
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Table 1 (Contd. )

Number Description Existing knowledge Knowledge gaps Classication

9 Uptake into aquatic species – Limited data for some species115,117 – Models and measured data for
invertebrates are lacking

Low

– Some models are available (and
account for ionisation)140–142

– Lots of compounds have no data

– Experimental protocols exist143

K Effect on aquatic species – Some data available for acute and
chronic effects (mostly sh) with a focus
on effects of hormones on the
reproductive system in sh144,145

– Lots of compounds have no data Moderate

– Some models are available146,148 – Inuence of food chain transfer of
chemicals
– Effects of mixtures
– Antimicrobial resistance

10 Uptake from soil into
terrestrial plants

– Data available for some compounds in
some plants and soils73–75

– Models not designed for
pharmaceuticals

Low

– Models exist for uptake of organic
compounds into plants149–151

– Data lacking for most compounds at
environmentally relevant concentrations
(mg kg�1)
– Limited number of plants studied
– Transformation products/in-plant
metabolism
– Limited data on distribution in plant
– Multi-generational exposures

11 Foliar plant uptake – Data exists for a few compounds72 – Models not available for
pharmaceuticals

Low

– Processes not understood
I Effects on terrestrial plants – Limited data on effects90,95 – Limited data on most compounds at

environmentally relevant concentrations
Low

– Effects of transformation products
– Mechanisms not understood
– Long term effects on plant productivity
(sub-lethal effects)
– Multi-generational exposures

12 Consumption of drinking
water

– Data on water consumption per capita
and by livestock152,153

NA High

G Human – Calculated permissible uptake (e.g. ADI,
AOELs, TTC)70,73

– Long term, low level exposure Moderate

– Plasma therapeutic concentrations154 – Mixtures
–Health effects and side effects data (PK/
PD)155

– Sensitive sub-populations

– Metabolism data/drug–drug
interactions157

– Metabolism at low concentrations

– Mammalian toxicity data34,146

– Occupational exposure157

13 Soil to terrestrial wildlife – Limited information for some
pharmaceuticals69,158

– No data for most compounds Low

– Simple models available (via
earthworm)109,159

– Diets and routes of exposure poorly
understood
– Bioaccessibility

F Effects on terrestrial
wildlife

– Some data available for earthworms160 – No data for most compounds Low
– Mammalian industry data available
(rodents)34,146

– Sub-therapeutic doses and effects

– Bird toxicity data exists if it is
a veterinary drug161

– Long-term exposure and distribution in
wildlife
– Effects of mixtures and transformation
products

14 Microbe plant interactions – Importance of microbes for plant
systems162

NA Moderate

– Information on soil microbiome100,163

15 Plant consumption by
livestock

– General dietary information – Dietary information for different
species

Low

– Some concentration data in forage
crops164

– Effects of crop processing
– Bioaccessibility

This journal is © The Royal Society of Chemistry 2019 Environ. Sci.: Processes Impacts, 2019, 21, 605–622 | 609
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Table 1 (Contd. )

Number Description Existing knowledge Knowledge gaps Classication

H Effects on livestock – Some data exists if they are veterinary
pharmaceuticals

– Sub-therapeutic doses Low

– Mammalian toxicity data available
(rodents)34,146

– Long-term exposure
– Mixtures and transformation products
– Data lacking for most compounds

16 Livestock to human – Dietary information165 – Cooking/processing/storage effects Moderate
– Dietary information for sub-
populations is limited
– Bioaccessibility

17 Plant consumption by
humans

– General dietary information161,166 – Dietary information for sub-
populations

Moderate

– Some concentration data103 – Effects of cooking
– Bioaccessibility
– Trade of food (source)
– Concentrations in edible part unknown
for many crops

18 Plant consumption by
terrestrial wildlife

– Some data for birds and
mammals167,168

– Very little known for many species Low
– Bioaccessibility

19 Microbes provide an
ecosystem service to humans

– Importance known169 – AMR transfer Moderate

20 Consumption of sh by
humans

– Limited monitoring data on levels in
sh consumed by humans170,171

– Dietary information for range of
population (proportion of diet)

Low

– Could be high risk for small parts of the
population

21 Consumption of sh by
terrestrial wildlife

– Feeding patterns of wildlife167,168 – Bioaccessibility and uptake Low
– Some models are available109 – Species differences

22 and
23

Consumption of surface
water by wildlife and
livestock

– Feeding patterns of wildlife and
livestock167,168

– Not quantied for pharmaceuticals Moderate

– Good ecological data172

24 Consumption of wildlife by
humans

– General dietary information for
humans161,166

– Not quantied for pharmaceuticals Low
– Bioaccessibility
– Could be high risk for small parts of the
population
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(Fig. 1; pathway 1). Recent research has established that bio-
lms can form around and within the drip irrigation devices,45

which have the potential to inuence pharmaceutical retarda-
tion and/or degradation however very little is known about
these processes.

Compartments (C–E). Reclaimed wastewater irrigation can
result in the contamination of a number of environmental
compartments including soils, surface water and groundwater
(Table 2, Fig. 1). Continuous application of reclaimed wastewater
to land has resulted in pharmaceuticals building up to detectable
concentrations in soils (up to ca. 15 mg kg�1) (Fig. 1; pathway
1).46–48 Despite analytical challenges associated with quantifying
pharmaceuticals in complex environmental samples49 (e.g.
matrix interference, validated extraction methodologies) we have
a good understanding of the fate of many pharmaceuticals in
soils. A combination of experimental studies and modelling
approaches have explored processes such as the sorption,
leaching and degradation of pharmaceuticals.50–52 However,
these efforts have typically focussed on the direct application of
pharmaceuticals to soil and neglected to account for the pres-
ence of the reclaimed wastewater. The degradation of a limited
number of pharmaceuticals in reclaimed wastewater-irrigated
soils have so far been investigated.17,48,53 Treated effluents have
610 | Environ. Sci.: Processes Impacts, 2019, 21, 605–622
been shown to increase the mobility of weakly acidic pharma-
ceuticals16 with microbial activity, dissolved matter, nutrients
and particulatematter in reclaimedwastewater observed to affect
the half-life of pharmaceuticals.54 However, further analysis is
needed to explore the discrepancy between laboratory studies
and results from eld experiments when evaluating the fate of
the pharmaceuticals in soils. Pharmaceuticals, such as sulfa-
methoxazole, are increasingly observed to persist in the eld47 for
much longer than expected based on half-lives generated from
laboratory experiments would predict.51,55

Pollutants themselves can also alter soil microbial commu-
nities (as discussed under ‘Receptor’ section below) which have
the potential to affect chemical degradability.52 This highlights
the need to consider the composition of reclaimed wastewater
and the alteration of the “reactivity” of soil microbial communi-
ties when evaluating the fate of pharmaceuticals aer land
application as these factors can have indirect effects on the fate of
pollutants. In addition, long term reclaimed wastewater irriga-
tion can lead to an alteration of soil properties (e.g. pH, heavy
metals and nutrient content) which can in turn affect the fate of
soil pollutants and this is something we know very little about.

Research has already highlighted the signicant role soil
properties play in the sorption and degradation of
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Direct use of municipal wastewater for agricultural irrigation purposes (data collated from AQUASTAT publications).27
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pharmaceuticals, and in particular ionisable pharmaceuticals
(e.g. organic carbon content, cation exchange capacity, mineral
content).51,52With soil properties known to vary on a global scale
(e.g. soil pH observed to range between 3.0 and 10.6 (ref. 56)), it
is therefore imperative that future work to develop models to
simulate fate processes in soils builds on recent research efforts
such as the work of Droge and Goss57,58 and Franco et al.,41 to
account for the signicant role soil properties play in the fate of
pharmaceuticals. In addition, fate modelling of pharmaceuti-
cals should consider soil, hydrological and climatic factors that
will alter in the future in response to a changing climate.

In addition to detecting pharmaceuticals in soils, monitoring
campaigns have quantied the presence of pharmaceuticals in
Table 2 Occurrence of pharmaceuticals in the natural environment, aqua

Therapeutic
class

Rec.
waste-
water (A) Soil (C)

Surface
water (D)

Ground-
water (E)

Wildlife
(F)

Analgesic 3 3 3 3 —
Antibiotic 3 3 3 3 —

Antidepressant 3 3 3 3 —
Antidiabetic 3 3 3 —
Antiepileptic 3 3 3 3 —

Antihypertensive 3 3 3 3 —
Anti-inammatory 3 3 3 3 3

Antineoplastic 3 — 3 3 —

Antipsychotic 3 — 3 3 —
Antiviral 3 — 3 3 —
Fibrates 3 3 3 3 —
Example
references

12, 32
and 173

47 and 48 33 and 35 62 and 174 113

a Accumulation in livestock may also occur through veterinary use.

This journal is © The Royal Society of Chemistry 2019
surface waters across the globe, however it is assumed this
largely originates from the direct release of WWTP effluent.59,60 A
small number of studies have demonstrated the mobilisation of
pharmaceuticals following biosolids application to land25,61

however much less is known about the contribution of surface
run-off to the contamination of water bodies aer treated
wastewater irrigation (pathway 3).18 Pharmaceuticals can also
migrate from soils and contaminate groundwater supplies via
leaching aer reclaimed wastewater irrigation, with reported
concentrations in groundwater typically being in the range of
low ng L�1 (Fig. 1; pathway 2).53,62,63 However our understanding
of the potential for the migration of pharmaceuticals to
groundwater is primarily limited to a small number of soil
tic species, plants, wildlife, livestock and people from published studies

People
(G)

Livestock
(H)a

Plants
(I)

Soil
fauna
(J)

Aquatic
species
(K)

Examples of
monitored drugs

— — 3 — 3 Acetaminophen
— — 3 — 3 Ciprooxacin,

clarithromycin
— — 3 — 3 Fluoxetine
— — 3 — 3 Metformin
3 — 3 — 3 Carbamazepine,

lamotrigine
— — 3 — 3 Atenolol, metoprolol
— — 3 — 3 Naproxen, diclofenac
— — — — 3 Carboplatin,

5-uorouracil
— — 3 — 3 Diazepam, oxazepam
— — — — — Nevirapine, zidovudine
— — 3 — 3 Gembrozil, bezabrate
103 N/A 6, 70, 75

and 104
N/A 115–117 —

Environ. Sci.: Processes Impacts, 2019, 21, 605–622 | 611
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column leaching experiments.64 For example, monitoring from
the Penn State Living Filter suggests a clear indication of
wastewater contribution to groundwater although concentra-
tions were typically one to two orders of magnitude lower in
comparison toWWTP effluent.63 This would suggest that soil has
a limited capacity to act as a biogeochemical lter before the
wastewater recharges underlying aquifers. More research is
needed to understand the spatial–temporal factors inuencing
groundwater contamination including an evaluation of the
potential pathway for pharmaceuticals to migrate to surface
water from contaminated groundwater. Models have been
developed to capture the transport of plant protection chemicals
through the soil prole leaching into groundwater (e.g. FOCUS
PEARL), but these models were not specically parameterised
for pharmaceuticals. Given the chemical similarity between
plant protection products and pharmaceuticals (e.g. molecular
weight, pKa within ionisable range) it is expected that these
models will provide a good estimation as to the fate and trans-
port of pharmaceuticals in soil. Thesemodelsmay however need
to be rened to account for the effect of the reclaimed waste-
water matrix on pharmaceutical transport. Studies on veterinary
pharmaceuticals in soils have shown that these models under
predict exposure, possibly due to colloid-facilitated transport of
the pharmaceuticals.65

As well as reclaimed wastewater, surface and ground waters
can also be used as a source of irrigation water thereby trans-
ferring these contaminants back into the soil environment.
Abstraction of contaminated ground and surface water for
irrigation is generally well characterised where such practices
exist (Fig. 1; pathway 4 and 5), however our understanding of
the transfer of pharmaceuticals from surface water to ground
water via inltration is limited to a select number of chemicals
(Fig. 1; pathway 6).66 Heberer et al., demonstrated that whilst
bank ltration can decrease the concentration of certain phar-
maceuticals (dilution and/or removal) pharmaceutically active
substances are still present in sampled ground waters at bank
ltration sites.67 Similarly, the use of reclaimed wastewater to
support aquaculture is known to be practiced68 although we
have limited understanding of the specic locations and
volumes of water used which presents a challenge with regards
to quantifying the presence of pharmaceuticals in these systems
(Fig. 1; pathway 7).

Receptors (F–K). Contamination of soil, surface and ground
water presents a risk to receptors which feed on, or inhabit,
these compartments. The main receptors considered in this
analysis include humans, terrestrial wildlife, livestock, terres-
trial plants, aquatic species and the soil microbial community
(Fig. 1). The biological potency of pharmaceuticals means that
the occurrence of these chemicals in agro-ecosystems has the
potential to induce toxic effects in these non-target organisms.69

To meet the growing demand for water and to ensure sustain-
able use of reclaimed wastewater irrigation it is imperative to
understand the pathways by which these receptors are exposed
(Fig. 1, Table 1), the propensity for accumulation as well as the
levels at which effects are observed. Research efforts to answer
these questions are summarised below.
612 | Environ. Sci.: Processes Impacts, 2019, 21, 605–622
Terrestrial plants. A range of different crops have been shown
to accumulate pharmaceuticals from soil (Fig. 1; pathway 10),
including root vegetables (e.g. carrots, radish), fruits (e.g.
tomatoes, cucumber), leaves (e.g. lettuce, ryegrass) and grains
(e.g. wheat).70–72 However realistic exposure studies, for example
eld trials using environmentally relevant irrigation regimes are
limited in number.72–75 Uptake into a range of plant components
has been studied, however we know very little about uptake into
crops native to arid and semi-arid countries where reclaimed
wastewater irrigation is widely practiced such as the Middle
East where olive and g trees are frequently irrigated with
reclaimed wastewater. We also have a limited understanding of
the uptake of pharmaceuticals into plants via foliar application
of wastewater (Fig. 1; pathway 11) with previous research
primarily focusing on quantifying uptake from soil. However,
overhead irrigation should not be neglected as this has recently
been shown to substantially increase pharmaceutical residues
in lettuce leaves compared to surface irrigation of soils for
a select number of pharmaceuticals.76

Similarly to the quantication of pharmaceuticals in soils
there are several challenges associated with the extraction and
detection of pharmaceuticals in plant samples including the
identication of metabolites.77 Microbial driven processes can
result in the formation of transformation products in soil,78 as
well as their presence resulting from the direct application of
wastewater containing metabolites formed in the patient or
transformation products formed in the treatment process.48

Publications are also beginning to document in-plant
metabolism/transformation of pharmaceuticals, particularly for
the antiepileptic compound, carbamazepine.6,79–82Data generated
to date show that metabolites can be present in plants at levels
similar to or greater than the parent compound.83 It is important
to understand the transformation of a wider range of pharma-
ceuticals in soil-plant systems because the structure and polarity
of metabolites can be drastically different from their parent
compounds, and therefore it is expected that their fate, uptake
and toxicity will be different.77

Models exist to predict transport and whole plant allocation of
organic chemicals, including uptake from soil and following foliar
application.84–87 However, oen these models, which are either
simple correlations with compound properties or more complex
compartmental models, do oen not account for the complexity
of the factors and processes determining pharmaceutical uptake,
including chemical speciation, in-plant metabolism and differ-
ences in plant physiology. Given the widespread use of reclaimed
wastewater, containing a range of pharmaceuticals to irrigate
a globally diverse set of crops, it is impossible to gather experi-
mental data for all these scenarios. It is therefore essential that
new models, that cover a range of plant traits and exposure
scenarios, are developed to predict the uptake of pharmaceuticals
into plants, so we can adequately assess the risks arising from this
accumulation. The development of models for individual
compound classes and for separate plant species may therefore
represent a promising approach for future model development.88

Due to the biological potency of pharmaceuticals and their
metabolites, accumulation of these chemicals in plants
This journal is © The Royal Society of Chemistry 2019
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presents a risk to the health of the plant directly as well as to the
organisms that feed on the plant material, including humans
and terrestrial wildlife. For example, exposure of plants to
antibiotics has been shown to affect plant biomass.89–91 In
addition to visible whole-plant morphological symptoms,
pharmaceuticals have also been shown to have the potential to
affect in-plant homeostasis, such as changes in phytohor-
mones, cellular metabolism, nutrient uptake and signaling
without phenotypic change.92–95 These changes at the subcel-
lular scale and molecular level may be considered as the
underlying mechanisms for the long-term visual phytotoxic
responses, e.g., plant biomass effects. It is unsurprising that
pharmaceutical induced effects have been observed given that
these chemicals are designed to interact with specic molecular
targets in humans and these targets have orthologs that are
conserved in other species e.g. 20–25% the drug targets in
humans had predicted orthologs in plants.96 Specically,
common receptors have been identied in plants for a number
of antibiotics affecting plant physiological responses (e.g.
chloroplast replication).97 We need to understand the mecha-
nisms driving these effect responses, whether they are a direct
interaction between the chemical and a receptor or an indirect
effect of the chemical affecting soil microbial homeostasis
which is in turn affecting plant health (pathway 14; see below
for more detail on soil microbial communities).

Soil fauna. As well as the potential to affect plants, prolonged
effluent irrigation has been observed to effect the soil microbial
community (Fig. 1; pathway 8).98,99 Research has primarily
focussed on the effects of antibiotics, with publications doc-
umenting an inhibition of microbial activity,100 and signicant
dose-related effects on the soil microbial community func-
tion.101 More research is needed to understand the effects of
a wider suite of pharmaceuticals as well as the effects of
mixtures on soil microbial communities and the recovery of soil
microbial function in response to pharmaceutical dissipation in
soil. It is also known that soil microbes provide an ecosystem
service to humans however we know very little about the
development, preservation and transfer of antimicrobial resis-
tance via this route (Fig. 1; pathway 19).102

People. Accumulation of pharmaceuticals in edible crops
presents a risk to humans that feed on reclaimed wastewater
produce (Fig. 1; pathway 17). Paltiel et al.103 were the rst to
detect pharmaceutical residues in the urine of individuals
consuming crops irrigated with reclaimed wastewater. Whilst
this study clearly shows that humans can metabolise phar-
maceuticals in plant material, the human health risk from
ingesting this contaminated produce is largely debated. A
number of studies have concluded that the risk to humans is
negligible, with concentrations in edible plant tissue typically
below permissible thresholds (e.g. acceptable daily intake
(ADI)).70,104,105 However, for certain pharmaceuticals, accumu-
lation in edible plant organs has the potential to reach
calculated toxicity thresholds.73,106 Ingestion of even low doses
of pharmaceuticals may be a signicant issue for sensitive
populations (e.g. elderly, children, pregnant women), indi-
viduals with allergies to particular medication, as well as
increase the potential for contraindications between
This journal is © The Royal Society of Chemistry 2019
prescribed treatments and chemicals consumed in crops.
With regards to antibiotics in particular, Williams-Nguyen
et al.102 highlighted that globally there is a lack of data on
human exposure to antimicrobial resistance in agro-
environments which may result in a wider health issue. Ulti-
mately, we know very little about the human health risks of
consuming wastewater irrigated produce over the long-term.
However, pharmaceuticals are arguably one of the most data
rich groups of chemicals in terms of mammalian toxicology.
There is a wealth of data on pharmaceutical therapeutic effects
and occupational exposure limits and we need to exploit this,
together with chemical read-across, to derive chemical specic
ADIs, to better understand the human health risks of ingesting
crops contaminated with pharmaceuticals. In addition to the
consumption of contaminated crops, people are at risk of
ingesting meat, sh, wildlife and drinking water contaminated
with contaminants of emerging concern (Fig. 1; pathways 12,
16 and 24), however human exposure from multiple contam-
inated sources such as this is rarely considered in risk
assessment paradigms. Future research to evaluate the risks of
ingesting pharmaceutical contaminated produce can utilise
previously published approaches to assess the risks of dietary
exposure (e.g. for pesticides) and incorporate dietary infor-
mation and food sourcing information to generate an accurate
assessment of pharmaceutical exposure.

Terrestrial wildlife. Wildlife species considered in this
scenario includes soil invertebrates, birds and small mammals.
Studies have so far identied that earthworms can accumulate
pharmaceutical residues from soils, however research into
other soil invertebrates is lacking.107,108 Accumulation of phar-
maceuticals into species at the base of the food chain, such as
earthworms, presents a potential risk to top predators, which
feed on these organisms (Fig. 1; pathway 13). Our traditional
approach to assessing food web transfer of chemical contami-
nants consists of simplistic exposure scenarios109 where expo-
sure originates from a single contaminated prey source.
However, top predators such as birds are exposed to pharma-
ceuticals from multiple sources including ingestion of
contaminated crops (Fig. 1; pathway 18), sh (Fig. 1; pathway
21) and surface water (Fig. 1; pathway 22) and risk assessment
needs to account for these more complex exposure scenarios.
We also need to further our understanding of the bio-
accessibility of pharmaceuticals in wildlife; perhaps building on
recent work that developed an in vitro gastrointestinal tract
model to compare the bioaccessibility of the antidepressant
uoxetine from invertebrate prey for birds and mammals
using.110

Research regarding potential effects in non-target terrestrial
wildlife remains scarce,111,112 with minimal data on long term
exposure and distribution in higher vertebrates as well as the
effects of pharmaceutical mixtures and transformation prod-
ucts.69 Given that the decline of the Asian vulture population
has been attributable to exposure of a commonly prescribed
non-steroidal anti-inammatory, diclofenac,113 and the current
lack of exposure and effects data in this area, research efforts
are needed to evaluate pharmaceutical contaminants in
terrestrial wildlife systems. Specically, we need to advance our
Environ. Sci.: Processes Impacts, 2019, 21, 605–622 | 613
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understanding of biomagnication and the effects of pharma-
ceuticals in food webs.

Livestock. Livestock can be exposed to pharmaceuticals by
ingesting reclaimed wastewater irrigated crops as part of their
diet (Fig. 1; pathway 15) as well as using contaminated surface
water as a source of drinking water (Fig. 1; pathway 23). Even
though these pathways have been identied, we have a limited
understanding of the bio-accessibility of pharmaceuticals (and
their metabolites) in livestock and potential effects of long-term
exposure to these chemicals. We have an opportunity to utilise
existing modelling approaches developed for assessing live-
stock exposure to persistent organic pollutants.114 Use of these
models in combination with mammalian toxicology data could
enable progress to be made in understanding impacts of live-
stock exposure to pharmaceuticals.

Aquatic species. As the focus of this work is on terrestrial
systems a number of key concepts are summarised briey below
and the authors refer the reader to previously published reviews
that comprehensively explore the accumulation of pharmaceu-
ticals in aquatic systems.115–117 Aquatic species can accumulate
chemicals present in surface water via aqueous uptake of water-
borne chemicals (bioconcentration), and dietary uptake by
ingestion of contaminated food particles (biomagnication)
(Fig. 1; pathway 9). Whilst experimental protocols exist to
evaluate the bioconcentration of chemicals, data only exists for
a select number of pharmaceuticals and in a limited number of
species, primarily sh.118 Predictive approaches have been
proposed to estimate bioconcentration factors (BCFs), however,
with a focus on the accumulation of non-ionised pharmaceu-
ticals by sh more work is needed to predict accumulation of
contaminants of emerging concern by aquatic invertebrates and
to account of the effects of ionisation on chemical uptake.119

Research has also demonstrated that for a number of pharma-
ceuticals, uptake by aquatic organisms can induce chronic and
acute effects, however little is known about the effects of
mixtures which would be considered more realistic in terms of
a typical environmental exposure.120 To account for recent
monitoring outputs, which have demonstrated the spatial and
temporal variation of pharmaceuticals in surface waters (see
earlier discussion), an evaluation of the effect of pharmaceuti-
cals on aquatic organisms at varying scales, is needed. This
adds signicant complexity and uncertainty to environmental
Fig. 3 Possible time lines and strategy for prioritised research areas, to
pharmaceuticals in agro-ecosystems.

614 | Environ. Sci.: Processes Impacts, 2019, 21, 605–622
risk assessment of surface waters as well as other environ-
mental compartments known to be reservoirs of pharmaceuti-
cals (e.g. soil).
Priorities for parameterising the S–P–R
framework

As clearly identied, there are numerous major knowledge gaps
pertaining to the risks of pharmaceuticals in agricultural
systems receiving reclaimed wastewater. Based on our current
understanding we are therefore not at a stage where we can fully
evaluate the risks of pharmaceuticals in wastewater reuse
systems. Table 1 summarises briey our current understanding
and key knowledge gaps related to the sources, pathways and
receptors of pharmaceuticals in agro-ecosystems. A synthesis of
available data in combination with expert knowledge has
enabled the components of the S–P–R diagram to be classied
according to ‘Poor’, ‘Moderate’ or ‘High’ with regards to the
level of understanding we have in each of these areas.

Of the 34 individual components of the S–P–R diagram we
only have high level of understanding of 5 of these (Table 1). We
have a greater understanding of the sources of pharmaceuticals
in reclaimed wastewater and irrigation practices whereas we
only have a low moderate understanding of the processes by
which pharmaceuticals move between sources and are taken up
by receptors. As the fate and behaviour of most pharmaceuticals
entering our agriculture systems remains poorly characterized,
our conception and understanding of the risks posed to
receptors is equally constrained.

Future research efforts should therefore seek to address ve
main areas over the next 15–20 years (Fig. 3):
Analytical method development

– Develop methods for a broader suite of pharmaceuticals (and
metabolites) using techniques such as high resolution mass
spectrometry to enable detection in a variety of complex
matrices (e.g. plant tissue) at environmentally relevant
concentrations.

– Use non-target screening approaches to explore the
formation of biologically active metabolites (and conjugates) to
complement targeted analysis based on identied
better understand the fate, uptake and effects of wastewater derived

This journal is © The Royal Society of Chemistry 2019
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transformation pathways of pharmaceuticals known to be
persistent in agro-ecosystems.

Environmental exposure

– Develop experimental datasets on the fate and reactivity of
pharmaceuticals (and active metabolites and transformation
products) in the environment following long-term and intensive
irrigation with reclaimed wastewater.

– Account for the varying performance of different WWTP
technologies in different regions and to provide a greater
understanding on the use of raw or partially treated wastewater
(including water used in aquaculture) for irrigation where
sewage connectivity is limited or non-existent.

– Understand how future environmental change (e.g.
increased temperature, drought) and agricultural developments
(e.g. increased global food demand) will alter the environmental
exposure of pharmaceuticals.

Uptake scenarios

– Generation of experimental data sets to evaluate the uptake of
pharmaceuticals, including metabolites and transformation
products identied in reclaimed wastewater of formed in soils
and plants, with particular focus on previously underexplored
receptors such as wildlife and the potential for multigenera-
tional exposure (e.g. via accumulation in seeds).

– Investigate the uptake of pharmaceuticals by receptors
aer low-level chronic exposure and as well in response to
mixture exposures.

– Determine the formation of pharmaceutical trans-
formation products in receptors and identify metabolism
pathways to help assist with predictive model development (see
below).

– Identify key factors which alter the uptake, accumulation
and bioaccessibility of pharmaceuticals in receptors accounting
for species traits and exposure medium properties.

Uptake model development

– Parameterise and validate a holistic uptake model that
accounts for the fate of chemicals in soil, interconnectivity
between receptor uptake, bioaccessibility and metabolite
formation for a wide suite of pharmaceuticals.

– Account for geographical and species variations in diets,
food sourcing and exposure concentrations of pharmaceuticals.

Effects analysis

– Evaluate a wider suite of biological and physiological
endpoints to elucidate the impact of biologically active phar-
maceutical residues (including metabolites and mixtures) on
soil and plant health (including soil fauna) with a view to
understand implications for agricultural productivity.

– Investigate the suitability of analogous approaches to those
adopted for predicting the effects of pharmaceuticals in the
aquatic environment (e.g. chemical read-across).

– Develop thresholds to evaluate the human health risks
from consuming produce containing pharmaceutical residues,
This journal is © The Royal Society of Chemistry 2019
considering chemical mixtures (i.e. likelihood of contraindica-
tions) and populations deemed most at risk (e.g. elderly,
children).

Conclusions

The gap between water supply and water needs is growing; thus
an integrated water resources management approach is required
that utilises new sources of water for agricultural use such as
reclaimed wastewater. However, we should ensure that this is
done in a safe and sustainable manner and therefore the asso-
ciated risks associated with such practices must be evaluated.

Use of reclaimed wastewater irrigation results in the
contamination of a number of environmental compartments,
each of which can act as reservoirs of pharmaceuticals. These
chemicals have the potential to accumulate in a variety of
receptors including terrestrial wildlife, livestock, terrestrial
plants, aquatic species, soil microbial community and humans,
posing a range of potential health and environmental chal-
lenges. This risk may be greatest in low to middle income
countries where wastewater treatment technologies are limited
or oen non-existent leading to an increased use of semi treated
or non-treated wastewater.

A number of broad knowledge gaps were identied, most
notably that more research is needed to consider the effect of
metabolites on the various pathways and receptors highlighted
in Fig. 1. In addition, research pertaining to the effect and fate
of pharmaceutical mixtures are lacking as well as data on bio
accessibility of pharmaceuticals aer ingestion by humans,
wildlife and livestock. Ultimately, use of reclaimed wastewater
will require a trade-off between the economic benets and
ability to meet growing populations' food demands and the
environmental and human health risks associated with using
reclaimed wastewater as an irrigation source. More research is
needed to fully understand these risks to ensure agricultural
sustainability to guide future water reuse policies.
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