Ring opening hydrogenolysis of 5-hydroxymethyl furfural over supported bimetallic catalysts

Abstract

The selective conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to 1,6-hexanediol (1,6-HDO) is a promising pathway for sustainable production of chemicals from renewable feedstock. Here, we report the catalytic performance of various supported platinum catalysts, including monometallic Pt nanoparticles on different supports (CeO2, MgO, hydrotalcite, and hydroxyapatite) and bimetallic (PtPd, PtCo, PtRu, and PtRe) nanoparticles supported on hydroxyapatite for this reaction under batch reaction conditions. Among the monometallic catalysts, Pt supported on hydroxyapatite (Pt/HAP) demonstrated the highest selectivity (30%) for 1,6-HDO at 85% HMF conversion. This superior performance is attributed to the amphoteric properties of the hydroxyapatite support. Notably, the incorporation of Ru as a second metal in the Pt nanoparticles significantly improved catalytic efficiency. The bimetallic PtRu/HAP catalyst achieved an impressive selectivity of 62% for 1,6-HDO at 85% conversion. Characterization by X-ray Photoelectron Spectroscopy (XPS) and Electron Microscopy revealed that the addition of Ru to Pt nanoparticles resulted in smaller bimetallic nanoparticle sizes compared to monometallic Pt nanoparticles, contributing to the enhanced 1,6-HDO selectivity observed for the bimetallic system. The effects of reaction temperature and pressure on 1,6-hexanediol selectivity were also studied. Additionally, the acidity and basicity of the hydroxyapatite supported catalyst were analysed using the surface Ca/P ratio as well the CO2 and NH3 TPD data. The results show that the PtRu/HAP catalyst has optimal acidic site density and least basic sites compared to the monometallic catalysts. This unique combination of acidic and basic surface properties, together with the synergistic effects of the finely dispersed smaller bimetallic PtRu nanoparticles, makes this material one of the most active catalysts for the selective hydrogenolysis of HMF to 1,6-HDO.

Graphical abstract: Ring opening hydrogenolysis of 5-hydroxymethyl furfural over supported bimetallic catalysts

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Oct 2025
Accepted
29 Oct 2025
First published
17 Nov 2025
This article is Open Access
Creative Commons BY license

Catal. Sci. Technol., 2026, Advance Article

Ring opening hydrogenolysis of 5-hydroxymethyl furfural over supported bimetallic catalysts

H. Alsharif, M. Conway, M. Chernova, D. J. Morgan, J. R. Martínez, S. H. Taylor and M. Sankar, Catal. Sci. Technol., 2026, Advance Article , DOI: 10.1039/D5CY01286D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements