Unsymmetrical squaraine dyes with extended conjugation for second-order nonlinear optics and TiO2 sensitization to far-red light: a computational quantum chemical study

Abstract

Conjugation elongation of squaraines is a potential approach to optimize their performance as nonlinear optical (NLO) chromophores and TiO2-photosensitizers in dye-sensitized solar cells (DSCs). This study investigates the impact of integrating π-conjugated heteroaromatic spacers on the optoelectronic properties of four modeled unsymmetrical squaraine derivatives. Density functional theory (DFT) and time-dependent TD-DFT computations revealed the dual functionality of all four π-extended squaraine dyes, with the capability to sensitize TiO2 for far-red light harvesting and amplify second-order NLO response at the molecular-level. Dye SQ-N incorporating an ethyl-dithienopyrrole π-spacer emerged as the optimal photosensitizer for TiO2-based DSCs, exhibiting a hyperchromic S1 transition and a light harvesting efficiency (LHE) of 98% at 697 nm (λmax), the most thermodynamically driven electron injection (ΔGinj), robust adsorption (Eads) onto the TiO2 nanocluster, enhanced orbital coupling (ΔEoi) and hybridization between virtual molecular π* orbitals of SQ-N and 3d-orbitals of Ti atoms, in addition to superior charge transfer at the SQ-N–TiO2 interface, under deep red-to-NIR photoexcitation. Conversely, the P-acetyl dithienophosphole oxide π-linker in SQ-P led to a sixfold enhancement in off-resonant hyperpolarizability (β0) compared to the π-spacer-free parent dye, in addition to manifesting the maximal dynamic electro-optic Pockels (EOP) β1064 and β1460, second-harmonic generation (SHG) β1064 and hyper-Rayleigh scattering β1064. Analytical DFT-predicted SHG activity of the modeled dyes showed simultaneous potential for NIR-to-green and telecom E-band (1460 nm) to red light conversion. β scans demonstrated dual EOP and optical rectification functionality, while dyes SQ-N and SQ-Th further displayed significant sum/difference frequency generation (SFG/DFG) output at ω1 ± ω2. Polarization-resolved SHG analysis revealed a hybrid dipolar–octupolar NLO symmetry across all the dyes, with maximal harmonic intensity at Ψ = ±90°—a signature of synergistic dipole alignment and 3D charge delocalization.

Graphical abstract: Unsymmetrical squaraine dyes with extended conjugation for second-order nonlinear optics and TiO2 sensitization to far-red light: a computational quantum chemical study

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2025
Accepted
22 Jul 2025
First published
07 Aug 2025

Mol. Syst. Des. Eng., 2025, Advance Article

Unsymmetrical squaraine dyes with extended conjugation for second-order nonlinear optics and TiO2 sensitization to far-red light: a computational quantum chemical study

E. Nabil and M. Zakaria, Mol. Syst. Des. Eng., 2025, Advance Article , DOI: 10.1039/D5ME00071H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements