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Low-frequency dynamics in ionic liquids: Comparison of
experiments and the random barrier model†

Yangyang Wang∗a

By examining the fine features of dielectric spectra of ionic liquids, we show that the derivative of real
permittivity progressively broadens at low frequencies when the glass transition is approached from
above. This phenomenon, ubiquitous and yet difficult to ascertain in the widely used conductivity
or modulus representations, is not captured by the popular analytical ac universality equations based
on the random barrier model. Numerical simulations with the random barrier model reveal that the
observed low-frequency broadening is associated with the contributions from high activation energy
pathways, suggesting a direct connection between relaxation time distribution and barrier distribu-
tion. While the overall prediction of the random barrier model about ac conduction is insensitive to
the distribution of activation energy in the extreme disorder limit, the fine features of the derivative
spectra contain further information about the energy landscape. These results demonstrate the use-
fulness of derivative analysis of the dielectric spectra of ionic liquids and glasses at low frequencies,
where materials exhibit individual characteristics despite apparent ac universality. The use of numer-
ical solutions of the random barrier model improves the description of the dielectric spectra of the
ionic materials studied herein, in some cases, eliminating the needs of introducing ad hoc relaxation
processes at low frequencies. Lastly, a new analytical equation is proposed to take into account
the low-frequency spectrum broadening phenomenon, while preserving the universal ac conductivity
behavior predicted by the random barrier model.

1 Introduction
This study concerns the interpretation of low-frequency dynamics
in liquids and glasses with high concentrations of ionic species,
such as molten salts, room-temperature ionic liquids, and poly-
merized ionic liquids, whose dielectric spectra are often char-
acterized by the so-called ac universality.1–6 While the exact
meaning of “universality” may be still philosophically debatable,
the emerging common features of conductivity spectra of ionic
liquids and disordered solids have prompted extensive experi-
mental, theoretical, and computational investigations over the
past several decades. Among these efforts, the random barrier
model (RBM)6–15 and its analytical approximations have turned
out to be a particularly useful and illuminating theoretical ap-
proach.16–20 For example, the following RBM-based formula has
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been successfully applied to many ionic materials:

ln σ̃
∗ =

(
iω̃
σ̃∗

)(
1+2.66

iω̃
σ̃∗

)−1/3
. (1)

Here both the angular frequency ω and complex conductivity σ∗

are expressed in reduced units, with σ∗ = σ ′+ iσ ′′ scaled by the
dc conductivity σ0, σ̃∗ ≡ σ∗/σ0, and ω by a characteristic relax-
ation time τ, ω̃ ≡ ωτ. In addition, recent studies suggest that the
random barrier model might be applicable to the mean-squared
displacements and linear viscoelastic properties of glass-forming
liquids.21,22

The current investigation is directly motivated by the observa-
tion that the RBM appears to consistently miss some fine features
of dielectric spectra of many ionic liquids at low frequencies.23

Fig. 1 presents an example of the dielectric spectrum of 1-butyl-
3-methylimidazolium acetate [BMIm][OAc] at 233 K. Evidently,
the use of Eq. (1) alone is inadequate and a full description of the
complex permittivity requires the consideration of an additional
low-frequency relaxation process. Recent studies have shown
that mesoscopic structures can manifest themselves in the dielec-
tric spectra of ionic liquids at low frequencies.24,25 Interestingly,
as shall be demonstrated below, the aforementioned discrepancy
between experiments and RBM-based ac universality equations
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persists in many materials without mesoscopic aggregates. Since
Eq. (1) is distilled from theoretical and computational studies of
the random barrier model, one may naturally wonder if the ob-
served deviation points to some missing theoretical ingredients in
the RBM as well as our current understanding of the conduction
mechanism in ionic liquids in general.26

Fig. 1 Example of fitting of the dielectric spectrum of a representa-
tive ionic liquid 1-butyl-3-methylimidazolium acetate [BMIm][OAc] with
the Eq. 1. The complex conductivity σ∗ predicted by Eq. 1 is con-
verted to complex permittivity ε∗ through the relation σ∗ = iωε0ε∗. In
order to describe the spectrum in the entire frequency range, a power-law
term is added to account for the effect of electrode polarization (EP) on
the real part of permittivity at low frequencies: ε ′EP = A(2π f )−n. And
a Cole-Cole (CC) process is also needed for intermediate frequencies:
ε∗CC = ∆ε/ [1+(i2π f τ)α ]. Blue circles: experimental data. Lines: fittings.
The real, imaginary, and derivative ε ′′der(ω)≡−(π/2)dε ′/d lnω spectra are
shown in panels (a), (b), and (c), respectively. The horizontal dotted line
in panel (a) indicates the contribution from the “infinite-frequency” per-
mittivity ε∞. The black dashed line represents the fitting result without
the contribution from the Cole-Cole process. The experimental temper-
ature is 223K.

The present study draws upon the derivative analysis tech-
nique,27–32 which is an effective method for revealing fine spec-
tral features of ionic materials at low frequencies. After lay-
ing down the essential technical details in Section 2, we exam-

ine both the “polarization component” of imaginary permittivity
ε ′′pol and derivative spectrum ε ′′der of several analytical approxi-

mations to the RBM6,15 in Section 3.1, and compare the the-
oretical predictions with experimental data in Section 3.2. We
show that the effective-medium approximation leads to Debye-
like low-frequency behavior, with ε ′′der ∝ ω2. By contrast, the hop-
ping model with the diffusion cluster approximation produces a
completely different low-frequency response: for small fractal di-
mension D f , ε ′′der ∝ ωγ , where the exponent γ < 0. Our derivative
analysis of the experimental data reveals a lack of universality
for the low-frequency ionic dynamics, where the underlying re-
laxation (retardation) time distribution is much broader than a
Debye process, and the degree of spectrum broadening increases
with decrease of temperature. These experimental features are
not captured by the analytical equations considered herein.

To resolve the apparent discrepancy between theory and ex-
periment, we turn to numerical simulations of the random bar-
rier model in Sections 3.3 and 3.4. We show that the RBM is
in fact capable of producing low-frequency spectrum broadening
when the high activation energy pathways above the bond perco-
lation threshold are properly considered. While these links make
no significant contribution to conduction, they clearly manifest
themselves in the real permittivity and its derivative. Using the
energy cutoff as an additional adjustable parameter, the dielectric
spectra of many samples can be satisfactorily described by the
RBM without introducing any ad hoc relaxation processes at low
frequencies.

More generally, this work demonstrates that derivative analy-
sis is a useful approach for identifying individual characteristics
of ionic liquids and glasses, when their ac conductivity spectra
“look more or less the same.”6 Experimentally, the low-frequency
derivative spectra are material and temperature dependent. On
the other hand, within the framework of the random barrier
model, it is shown that the shape of the low-frequency derivative
spectra is sensitive to the details of the activation energy distri-
bution. Despite the apparent ac universality, the low-frequency
dynamics of ionic materials exhibit “individuality” and deserve
further investigations in the future.

2 Materials and Methods

2.1 Broadband Dielectric Spectroscopy

Two ionic liquids, 1-ethyl-3-methylimidazolium ethyl sul-
fate [EMIm][EtSO4] and 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [BMIm][NTf2], were ob-
tained from Sigma Aldrich. Ionic liquids with amphiphilic
structures can exhibit mesomorphic behavior even as a single
phase, and additional dielectric relaxation processes can arise
at low frequencies.24,25,33 By contrast, the imidazolium ionic
liquids in this study have relatively short alkyl groups and such
complications were thus avoided. Additionally, the behavior of
a model ionic glass former, CKN ([Ca(NO3)2]0.4[KNO3]0.6), was
also investigated. Potassium nitrate (KNO3) and calcium nitrate
tetrahydrate [Ca(NO3)2 ·4H2O] were purchased from Sigma
Aldrich. The two salts were mixed with the aid of a small amount
of deionized water (Millipore 18MΩ · cm) and subsequently dried
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under flowing nitrogen gas in a chemical hood. The mixture
was further dried at 130◦C in a vacuum oven overnight. Finally,
the salt was heated up to 180◦C on a hot plate, poured into
the dielectric liquid sample cell, and sealed in the molten state.
The sample cell was immediately placed on a cold surface to
quench the CKN into the glassy state (Tg ≈ 335 K). The dc
conductivities of our CKN sample at various temperatures above
Tg are consistent with the literature data.34,35

Broadband dielectric spectroscopy measurements of
[EMIm][EtSO4], [BMIm][NTf2], and CKN were carried out
with a Novocontrol Concept 40 system in the frequency range
0.1–107 Hz. To minimize the interference of electrode polariza-
tion (EP)36,37 on the low-frequency spectrum, a parallel-plate
capacitor with a large gap of 2.5 mm was used. To suppress
crystallization, all the samples were first supercooled with a fast
quenching rate and the temperature was then gradually raised for
the dielectric spectroscopy measurements, with an equilibrium
time of 15 minutes at each experimental temperature.

2.2 Derivative Analysis

The electrical properties of materials can be represented and ana-
lyzed in different interrelated quantities such as complex permit-
tivity, conductivity, and electrical modulus. For example, com-
plex conductivity σ∗(ω) and permittivity ε∗(ω) are related by
the equation, σ∗(ω) = σ ′+ iσ ′′ = iωε0ε∗(ω) = ωε0(ε

′′+ iε ′). Al-
though different electrical material functions are, in theory, equiv-
alent to each other, the subtlety of using different representations
has long been recognized, discussed, and debated in the litera-
ture.4,17,38–43 For ionic materials, the low-frequency spectrum of
real conductivity σ ′(ω) is typically dominated by dc conduction,
and so is the imaginary permittivity ε ′′(ω) = σ ′(ω)/ε0ω, masking
any other potentially interesting dynamic processes.

There are at least two strategies for examining low-frequency
dynamics in ionic materials.27–29 One can inspect the “polar-
ization component” of dielectric loss by subtracting the dc con-
tribution from the total real conductivity: ε ′′pol(ω) ≡ [σ ′(ω)−
σ0]/ε0ω.28,29,44,45 On the other hand, one can analyze the deriva-
tive permittivity spectrum ε ′′der(ω) ≡ −(π/2)dε ′/d lnω, by utiliz-
ing the information offered by the imaginary conductivity: ε ′ =

σ ′′(ω)/ε0ω.28–31,46 Here we follow the notation in Ref.30 and in-
clude a prefactor π/2 in the definition of ε ′′der, although this is not
essential.29 It should be noted that while analyzing ε ′′pol is gener-
ally feasible in theoretical studies, subtraction of dc conductivity
for experimental data is not always straightforward. By contrast,
the derivative analysis is well defined, offering a convenient route
to better resolve “buried” relaxation processes in ionic materials.

To further illustrate the theoretical basis for derivative analy-
sis, it is helpful to consider the phenomenological framework for
dielectric relaxation,17,47,48 where the real and imaginary parts
of complex permittivity (ε∗ ≡ ε ′− iε ′′) can be expressed as:

ε
′(ω) = ε∞ +

∫
∞

0
L(τ)

1
1+(ωτ)2 dτ, (2)

ε
′′(ω) =

σ0

ε0ω
+

∫
∞

0
L(τ)

ωτ

1+(ωτ)2 dτ, (3)

with L(τ) being the dielectric retardation (relaxation) time dis-
tribution. The second terms on the RHS of Eqs. (2) and
(3), ε ′(ω) − ε∞ =

∫
∞

0 L(τ) 1
1+(ωτ)2 dτ and ε ′′(ω) − σ0/(ε0ω) =

ε ′′pol =
∫

∞

0 L(τ) ωτ

1+(ωτ)2 dτ, conform with the Kramers-Kronig Re-

lations:17,48,49

− 1
π

P
∫

∞

−∞

ε ′(ω)− ε∞

ω −ω0
dω = ε

′′(ω0)−
σ0

ε0ω0
, (4)

1
π

P
∫

∞

−∞

ε ′′(ω)−σ0/(ε0ω)

ω −ω0
dω = ε

′(ω0)− ε∞. (5)

Eqs. (2)-(5) indicate that the two quantities, ε ′(ω)− ε∞ and
ε ′′(ω)−σ0/(ε0ω), not only are related, but also contain the same
amount of information. Additionally, similar to the dielectric loss
spectrum ε ′′(ω)−σ0/(ε0ω), the derivative spectrum ε ′′der typically
takes the form of a series of superimposed peaks, because

ε
′′
der ∝ − dε ′

d lnω
=

∫
∞

0
L(τ)

2(ωτ)2

[1+(ωτ)2]2
dτ. (6)

This property makes the derivative spectrum more informative
than the real permittivity spectrum itself. Therefore, when a
direct analysis of the polarization component of dielectric loss
[ε ′′pol(ω) ≡ ε ′′(ω)−σ0/(ε0ω)] is plagued by the uncertainties as-
sociated with subtraction error, derivative analysis of the real per-
mittivity provides a robust and unambiguous approach for study-
ing the dynamics of ionic materials besides dc conduction.

It should be emphasized that the current study is confined to
melts and glasses with high concentrations of ionic species. The
dielectric spectrum of such systems is dominated by the micro-
scopic motions of ions in both the ac and dc regions. By contrast,
for electrolyte solutions32 or dipolar liquids with a small amount
of ionic impurities,31 while the derivative analysis still applies,
the obtained spectrum ε ′′der generally has little to do with “ionic
dynamics.”

2.3 Computational Methods

To put our analysis in perspective, in addition to Eq. (1), we
have examined other forms of RBM-based ac universality equa-
tions that that were extensively studied and reviewed by Dyre
and coworkers.6 The purpose of this exercise is to understand
what features some of the existing analytical formulas are able to
predict for the derivative spectra. Nevertheless, our investigation
is not meant to be exhaustive, and we include here four more
equations. The first equation is the so-called effective-medium
approximation (EMA) formula [Eq. (7)], which can be derived
from the random barrier model by assuming an effective spatial
homogeneity:6,50

σ̃
∗ ln σ̃

∗ = iω̃. (7)

The second equation is the percolation path approximation (PPA)
formula [Eq. (8)] for the RBM in the opposite limit, which as-
sumes that the conducting paths in a percolated network is strictly
one dimensional:13,51

√
σ̃∗ ln

(
1+

√
iω̃σ̃∗

)
=
√

iω̃. (8)
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Additionally, one can consider conduction paths with fractal di-
mensions (D f ) that lie in between these two extremes with the
diffusion cluster approximation (DCA) formula [Eq. (9)]:6,13

ln σ̃
∗ =

(
iω̃
σ̃∗

)D f /2
. (9)

Lastly, for completeness, we include another popular ac univer-
sality equation due to Dyre:16,50,52

σ̃
∗ =

iω̃
ln(1+ iω̃)

, (10)

which can be derived by a percolation path approximation to a
macroscopic model6,50 or a continuous time random walk ap-
proximation to a simple hopping model.52 As pointed out earlier
by Dyre, the prediction of Eq. (10) is only slightly different from
that of Eq. (7).

In this study, Eqs. (1), (7), (8), and (9) are numerically solved
on the proper branch cuts with the nonlinear equations solver in
MATLAB. To avoid optimization with complex quantities, these
equations are first cast into real forms by expressing the complex
conductivity in Euler’s form: σ̃∗(ω̃) = α(ω̃)eiβ (ω̃). We note that
Eq. (1) can be regarded as a “hybrid” model of EMA [Eq. (7)] and
DCA [Eq. (9)], and is “synthesized” to provide the best descrip-
tion of the numerical simulations of the random barrier model.15

To gain further insight into the potential limitations of the exist-
ing analytical ac universality equations, we have also performed
numerical investigations with the random barrier model.6–15

Our solution technique follows that of Schrøder,14,53 which
exploits the graph theory representation54,55 of master equa-
tions to solve the current autocorrelation function. Five dif-
ferent distributions p(Ẽ) of activation energy are examined, all
expressed in reduced units (Ẽ ≡ E/E0), including: (1) uni-
form distribution, p(Ẽ) = 1, 0 < Ẽ < 1; (2) exponential distri-
bution, p(Ẽ) = 2e−2Ẽ , 0 < Ẽ < ∞; (3) beta(2,2) distribution,
p(Ẽ) = (1 − Ẽ)Ẽ/B(2,2), 0 < Ẽ < 1; (4) beta(3,3) distribution,
p(Ẽ) = (1− Ẽ)2Ẽ2/B(3,3), 0 < Ẽ < 1; (5) beta(0.5,0.5) distribu-
tion: p(Ẽ) = (1− Ẽ)−0.5Ẽ−0.5/B(0.5,0.5), 0 < Ẽ < 1. All the calcu-
lations are carried out on a 64×64×64 simple cubic lattice with
periodic boundary conditions, at dimensionless inverse tempera-
ture β ≡ E0/(kBT ) = 160. For each calculation, the reported result
is based on at least ten independent samples.

3 Results and Discussion

3.1 Analysis of AC Universality Equations

We start with analysis of the analytical ac universality equations
[Eqs. (1), (7), (8), (9), and (10)]. Fig. 2(a) shows that for
both the EMA equation [Eq. (7)] and the PPA equation for the
macroscopic model [Eq. (10)], the polarization component of
imaginary permittivity, ε̃ ′′pol, exhibits a Debye-like dispersion at
low frequencies, with ε̃ ′′pol ∝ ω̃. The “hybrid” model [Eq. (1)] be-
haves in the same manner in the low-frequency regime, because
by design it is a crossover from DCA at high frequencies to EMA
at low frequencies. By contrast, the hopping model with PPA [Eq.
(8)] and DCA [Eq. (9)] approximations display markedly differ-
ent behavior: at low frequencies, where ε̃ ′′pol ∝ ω̃m, with m < 0.
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Fig. 2 Permittivities predicted by various RBM-based ac universal-
ity equations: (a) “polarization component” of imaginary permittivity
ε̃ ′′pol ≡ [σ̃ ′(ω̃)−1]/ω̃ and (b) derivative spectrum ε̃ ′′der. The corresponding
equations are described in the main text. D f = 4/3 is used for the calcu-
lations with the DCA equation [Eq. (9)].

In passing, we note that the widely used Jonscher’s model,48,56

σ ′(ω) = σ0[1+( ω

ω0
)n], with n < 1, predicts a similar low-frequency

dispersion: ε̃ ′′pol ∝ ω̃n−1.48

Because of the close relation between the real ε ′ and imaginary
ε ′′pol permittivities [Eqs. (2)–(6)], the derivative spectra ε̃ ′′der in
Fig. 2(b) are qualitatively similar, but not identical to ε̃ ′′pol. The
derivative permittivities predicted by the EMA equation [Eq. (7)],
macroscopic model with PPA [Eq. (10)], and hybrid model [Eq.
(1)] exhibit the same low-frequency power-law behavior as the
Debye model, with ε̃ ′′der ∝ ω̃2. On the other hand, the derivative
spectra of the hopping model with PPA [Eq. (8)] and DCA [Eq.
(9)] approximations do not converge to zero at low frequencies:
ε̃ ′′der ∝ ω̃k, with k < 0.

The above analysis demonstrates that the low-frequency dy-
namics of ionic systems can be conveniently analyzed in proper
forms of complex permittivity (ε ′′pol or ε ′′der), where the spectra
take the form of superimposed peaks [Eqs. (3) and (6)]. On
the other hand, such information cannot be directly obtained
from real conductivity. In the literature, complex electrical mod-
ulus (M∗ = 1/ε∗) is another popular quantity for representing
the properties of ionic materials.39,57–60 In particular, the tran-
sition from ac to dc conduction often appears as a peak in the
imaginary electrical modulus, M′′ = ε ′′/[(ε ′)2 +(ε ′′)2], providing
a simple method to determine the phenomenological “conductiv-
ity relaxation time.” However, M′′ suffers similar drawbacks as
σ ′ at low frequencies, because of the dominant contribution of
dc conduction. Additionally, M′′ is also affected by the behavior
of ε ′. We also see that the predictions of the analytical ac uni-
versality equations [Eqs. (1), (7), (8), (9), and (10)] about the

4 | 1–11Journal Name, [year], [vol.],

Page 4 of 11Physical Chemistry Chemical Physics



low-frequency dynamics fall into two categories: the EMA [Eq.
(7)], macroscopic PPA [Eq. (10)], and hybrid [Eq. (1)] equa-
tions predict Debye-like dispersion at low frequencies, whereas
the hopping model PPA [Eq. (8)], DCA [Eq. (9)], and Jonscher’s
equations lead to non-vanishing dielectric loss for the polarization
component (ε ′′pol). A question now arises: which type of predic-
tion is observed in experiments? Furthermore, is the behavior of
slow dynamics universal? The following section thus zeroes in
on the permittivity spectra of several representative ionic mate-
rials, using the experimental data collected in our lab as well as
those in the literature. Because of the uncertainty associated with
subtraction of dc conductivity in computing the polarization com-
ponent of permittivity ε ′′pol, we focus our analysis on the derivative
spectra ε ′′der.

3.2 Comparison with Experiments

Figure 3 shows the derivative spectra of various ionic systems,
along with the predictions by Eq. (1) (the “hybrid” model).15 To
produce a proper comparison, the theoretical curve is horizon-
tally shifted by adjusting the characteristic relaxation time in the
model and vertically shifted by choosing an appropriate value for
the dielectric relaxation strength ∆ε ∝ σ0τ/ε0. At high tempera-
tures, Eq. (1) provides an excellent description of the derivative
spectrum of [EMIm][EtSO4] on both the high- and low-frequency
sides of the peak [Fig. 3(a)]. However, as the temperature is low-
ered towards the glass transition, the low-frequency side of the
derivative peak becomes increasingly broader. Similar behavior
is also observed in [BMIm][NTf2] [Fig. 3(b)]. The case of CKN
is slightly more complicated: because of the high intrinsic con-
ductivity,34,61 electrode polarization and bulk response are not
well separated even in the presence of a large capacitor gap [Fig.
3(c)]. However, by modeling the EP by a power-law ε ′ ∼ A f n,46 it
is clear that a significant portion of the low-frequency derivative
spectrum is unaccounted for by Eq. (1). In other words, the low-
frequency dispersion of ionic dynamics in CKN is much broader
than a Debye process as well. Lastly, we apply the derivative anal-
ysis to the (Na2O)x(GeO2)1−x data reported by Sidebottom.5 The
derivative spectrum is obtained from an apparent fitting of the
reported real permittivity ε ′( f ) [inset of Fig. 3(d)]. The low-
frequency spectrum broadening is also evident [Fig. 3(d)], al-
though the high-frequency derivative spectrum is well described
by Eq. (1) over a wide frequency range. These observations (Fig.
3) are consistent with the previous analyses of ε ′′ or ε ′′pol in the lit-

erature.44,62 Nevertheless, these early data apparently have not
attracted sufficient attention in the recent studies. Finally, we
point out that similar low-frequency spectrum broadening has
also been reported for electronic semiconductors amorphous sili-
con and germanium around liquid nitrogen temperatures.27–29

While the derivative spectra ε ′′der( f ) of the present ionic systems
display individual characteristics at low frequencies, their corre-
sponding real conductivity spectra σ ′( f ) conform with the known
ac universality and fall onto a mastercurve after proper scaling
(Fig. 4). Additionally, Eq. (1) provides a reasonable description
of the universal mastercurve. This result should be hardly surpris-
ing: the dominating contribution from dc conduction completely
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Fig. 3 Derivative spectra of various ionic glass-forming systems: (a)
[EMIm][EtSO4], (b) [BMIm][NTf2], (c) [Ca(NO3)2]0.4[KNO3]0.6, and (d)
(Na2O)0.1(GeO2)0.9.5 Dashed lines: “Fittings” by Eq. (1). The dash-
dotted line in panel (c) describes the contribution of electrode polar-
ization (EP) to the low-frequency spectrum. The solid line in panel
(c) is the combined contribution from EP and hybrid model. For the
(Na2O)0.1(GeO2)0.9 data from Sidebottom,5 the derivative spectrum is
computed from an apparent fitting of the reported real permittivity
ε ′( f ) (inset) with a “double Boltzmann” equation: ε ′ = ε0 + Ap/(1 +

e(ln f−ln f1)Γ1 )+A(1− p)/(1+ e(ln f−ln f2)Γ2 ). We note that the functional
form of the apparent fit is not of critical importance for the current
analysis. For example, fitting the data of ε ′ vs. ln f with a ninth degree
polynomial yields an almost identical derivative spectrum below ∼ 104 Hz.
Similar to the case of CKN, the low-frequency upturns in [EMIm][EtSO4]

and [BMIm][NTf2] are due to electrode polarization.

eclipses any other low-frequency dynamic processes.
How do we interpret the discrepancy between theory and ex-

periment at low frequencies? We note that the different low-
frequency behaviors of EMA and DCA equations likely arise from
their distinct treatments of spatial inhomogeneity. While the
effective-medium approximation assumes an effective spatial ho-
mogeneity, the diffusion cluster approximation considers the frac-
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tal dimension in which conduction effectively takes place. There-
fore, it is not unreasonable to associate the observed spectrum
broadening in experiments to the heterogeneous molecular dy-
namics in glass-forming systems, although the exact nature of
“dynamic heterogeneity” itself is still a subject of consideration
debate. On the surface, the increasing degree of spectrum broad-
ening with the decrease of temperature does seem to resemble the
behavior of some dipolar glass-forming liquids (e.g., pages 179,
191, and 246 of Ref.48). Additionally, there is a close connec-
tion between ionic transport and structural relaxation in glass-
forming liquids in general.19,61 There is also evidence that the
decoupling of ionic transport from structural relaxation in poly-
mers as well as ionic liquids finds its origin in phenomena related
to glass transition.32,63 We thus argue that the ac universality pic-
ture must be supplemented with “individual characteristics” in or-
der for us to properly understand the ionic transport mechanism
in the broader context of the glass transition phenomenon.
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Fig. 4 “Universal” master curve for the same data in Fig. 3. To create the
master curve, σ ′ is normalized by the dc conductivity σ0, and a horizontal
shift factor f0 is applied to the frequency f . Solid line: Prediction of Eq.
(1).

3.3 Comparison with RBM Simulations

To get a deeper understanding of the observed low-frequency
spectrum broadening phenomenon, we turn to numerical simula-
tions of the random barrier model6–15 with different distributions
p(Ẽ) of activation energy. The technical details of the calculations
can be found in Section 2 and the previous studies by Schrøder
and Dyre.6,14,15,53 It is well known that that percolation often
plays a pivotal role in electrical conduction of disordered mate-
rials.64,65 For a given distribution p(Ẽ), one can define a “per-
colation energy” Ec that is associated with the bond percolation
threshold pc:6,14,15,66

∫ Ẽc

0
p(Ẽ)dẼ = pc. (11)

For computer simulations of the RBM, it typically suffices to apply
an energy cutoff Ẽcut slightly above the percolation thresold to

speed up calculations and avoid numerical problems:14,15

∫ Ẽcut

0
p(Ẽ)dẼ = pc + k/β , (12)

where the parameter k controls the level of cutoff. For uni-
form (“box”) random distribution, p(Ẽ) = 1 (0 < Ẽ < 1), we have
Ẽcut = pc + k/β . The pathways with barriers above the cutoff are
excluded in the calculation, which can be technically realized by
directly modifying the incidence matrix.53,54 Discarding the high
activation energy links above Ẽcut generally has very little impact
on the overall complex conductivity spectrum.14,15 However, it
turns out that this energy cutoff holds the key for resolving some
of the apparent discrepancy between the experiment and the ran-
dom barrier model concerning the fine spectral features at low
frequencies.
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Fig. 5 Random barrier model predictions for the derivative spectrum
ε̃ ′′der(ω̃) at β ≡ E0/kBT = 160, with different activation energy cutoffs
above the percolation threshold: Ẽcut ≡ Ecut/E0 = pc + k/β , where pc =

0.2488 is the bond percolation threshold for simple cubic lattice.14,15,67,68

The activation energy barrier, expressed in reduced unit Ẽ ≡ E/E0, is
drawn from a uniform distribution between 0 and 1. The dashed line
represents the analytical approximation by Eq. (1). Note that slightly
different horizontal and vertical shift factors are needed in order to col-
lapse the data at different cutoffs onto a master curve at high frequencies.

Figure 5 presents the simulation results of the RBM at dimen-
sionless inverse temperature β = 160 for different cutoff parame-
ters k. Here, the energy barriers are drawn from a uniform ran-
dom distribution: p(Ẽ) = 1 (0 < Ẽ < 1). Evidently, the high ac-
tivation energy pathways have no appreciable influence on the
spectral shape of ε̃ ′′der at high frequencies, which is consistent with
the previous study on the real conductivity.15 On the other hand,
the derivative spectrum becomes increasingly broader at low fre-
quencies, as more and more high energy barriers are included
with increasing cutoff threshold k. The previous RBM simulations
by Schrøder and Dyre15 focus on the case of k = 6.4 for β = 160
and 320. Fig. 5 indicates that under these conditions, the devia-
tion from Eq. (2) is indeed relatively small for the derivative spec-
trum. On the other hand, the low-frequency dispersion broadens
substantially at large k values. Ideally, one approaches the “real”
solution of the RBM, when pc +k/β → 1, i.e., no link is excluded.
Practically, for large β and lattice size, the calculation proves dif-
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Fig. 6 Results for random barrier model calculations at β = 160 with dif-
ferent distributions p(Ẽ) of activation energy. (a) Uniform distribution:
p(Ẽ) = 1, 0 < Ẽ < 1. (b) Exponential distribution: p(Ẽ) = 2e−2Ẽ , 0 <

Ẽ < ∞. (c) Beta(2,2) distribution: p(Ẽ) = (1− Ẽ)Ẽ/B(2,2), 0 < Ẽ < 1.
(d) Beta(3,3) distribution: p(Ẽ) = (1 − Ẽ)2Ẽ2/B(3,3), 0 < Ẽ < 1. (e)
Beta(0.5,0.5) distribution: p(Ẽ) = (1− Ẽ)−0.5Ẽ−0.5/B(0.5,0.5), 0 < Ẽ < 1.
The distribution is cut off at an energy Ẽcut, which is evaluated according
to

∫ Ẽcut
0 p(Ẽ)dẼ = pc + k/β . The cutoff parameter k is fixed at 9.6 for

these calculations. The filled areas in panels (a)–(e) indicate the portion
of the distribution below the cutoff energy Ẽcut. Panel (e) shows the pre-
dicted derivative spectra ε̃ ′′der. Similar to Fig. 5, horizontal and vertical
shift factors are applied here to collapse the data onto a master curve at
high frequencies.

ficult, when the cutoff energy is too high. Nevertheless, we can
offer two observations. First, it appears that near the peak, ε̃ ′′der
exhibits an asymptotic behavior ε̃ ′′der ∝ ω̃ for large k values (Fig.
5). Second, whenever the real permittivity can be described by
the phenomenological expression of Eq. (2), one always recov-
ers the Debye behavior, ε̃ ′′der ∝ ω̃2, at sufficiently low frequencies
according to Eq. (6). This prediction is in accordance with the
general trend in Fig. 5.

To demonstrate that the above observation is indeed general,
we extend our analysis to four additional distributions of barri-
ers: (1) exponential distribution: p(Ẽ) = 2e−2Ẽ , 0 < Ẽ < ∞; (2)
beta(2,2) distribution: p(Ẽ) = (1 − Ẽ)Ẽ/B(2,2), 0 < Ẽ < 1; (3)
beta(3,3) distribution: p(Ẽ) = (1− Ẽ)2Ẽ2/B(3,3), 0 < Ẽ < 1; (4)

beta(0.5,0.5) distribution: p(Ẽ)= (1−Ẽ)−0.5Ẽ−0.5/B(0.5,0.5), 0<
Ẽ < 1. For the comparison to be more “meaningful,” these distri-
butions are chosen in such a way that they have the same average
barrier height:

∫
Ẽ p(Ẽ)dẼ = 0.5. Similar to the calcultion for the

uniform random distribution, an energy cutoff Ẽcut is applied ac-
cording to the formula

∫ Ẽcut
0 p(Ẽ)dẼ = pc + k/β .

For each distribution, we first explore the influence of the cutoff
parameter k on the behavior of ε̃ ′′der(ω̃). On the qualitative level,
the results resemble what we have found for the uniform distri-
bution: the high-frequency behavior is insensitive to the barrier
cutoff and can be described by Eq. (1); for relatively small k val-
ues, ε̃ ′′der ∝ ω̃2 at low frequencies and can be approximated by Eq.
(1) as well; on the other hand, spectrum broadening is observed
when k is large. Next, we proceed to compare the predictions
of different distributions for the same cutoff k. Fig. 6 shows the
results for β = 160 and k = 9.6. The dashed lines in panels (a)–
(e) depict the full distribution p(Ẽ), whereas the filled areas in
these plots indicate the portion of the distribution below the cut-
off energy Ẽcut. The corresponding normalized derivative spectra
are presented in Fig. 6(e), along with the prediction of Eq. (1)
as a reference line. For the current set of parameters (β = 160
and k = 9.6), all the curves from the RBM calculations deviate
from Eq. (1) at low frequencies [Fig. 6(e)]. Additionally, the
degree of deviation depends on the specific form of the distribu-
tion, although they are cut off at the same level above the bond
percolation threshold pc.
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Fig. 7 Real and imaginary parts of complex conductivity, predicted by
the random barrier model with different distributions of activation energy.
The parameters for the calculations are the same as those in Fig. 6, i.e.,
β = 160 and k = 9.6. Dahsed line: Prediction by Eq. (1). All the
numerical simulation data have been vertically and horizontally shifted
in this analysis, i.e., the results are presented in reduced variables.

The previous studies by Schrøder and Dyre demonstrate that
in the extreme disorder limit the normalized complex conductivity
predicted by the RBM is insensitive to the level of energy cutoff
as well as the form of barrier distribution.14,15 This conclusion
holds for our current calculations. Fig. 7 presents the normal-
ized complex conductivity of the same simulations shown in Fig.
6. Despite the differences in the derivative spectra, all the data
can be collapsed onto two mastercurves for real and imaginary
conductivities, respectively. Moreover, Eq. (1) indeed provides
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a reasonable approximation for the complex conductivity over a
wide frequency range. We emphasize that there is no inherent
contradiction between the results in Figs. 6 and 7. The fine fea-
tures revealed by the derivative analysis or the polarization com-
ponent of imaginary permittivity are simply concealed in the con-
ventional conductivity representation. This can be better under-
stood if we consider the complex permittivity [ε∗ = σ∗/(iε0ω)]:
for imaginary permittivity, the polarization component of the re-
sponse is “buried” below the dc conductivity; on the other hand,
the real permittivity approaches a constant value at low frequen-
cies. Only by subtraction of dc conductivity or derivative analysis
can we clearly reveal the “hidden” fine features of these dielectric
spectra.

3.4 Implications and Improvements

Now we must confront the question of whether the observed low-
frequency spectrum broadening is actually important. After all, if
the analytical approximation [Eq. (1)] can capture the main fea-
tures of the complex conductivity spectrum (e.g., Fig. 7), at least
as far as the RBM is concerned, does it really matter if it misses
certain fine details? Our answer to this question is fourfold.

First, theoretically, it is clear that Eq. (1) approximates only a
subset of the solutions of the random barrier model, if we treat
the energy cutoff as an intrinsic model parameter: Eq. (1) is
accurate for pc + k/β → pc; in the opposite limit of pc + k/β → 1,
it fails to capture the derivative spectrum at low frequencies. As
we shall show below, the analytical approximation of the RBM
can be improved by a new formula [Eq. (13)].

Second, derivative analysis is frequently employed to reveal
slow dynamics in ionic liquids,25,69,70 where high conductivity
makes it difficult to directly examine the imaginary permittivity.
Even for a relatively simple system without mesoscopic aggre-
gates, the low-frequency derivative spectrum offers useful infor-
mation about the individual characteristics of the ionic conductor.
In this context, an accurate understanding of the prediction of the
RBM for ε ′′der at low frequencies is crucial. By establishing the cor-
rect reference line, any deviations from this idealized model can
be properly discussed.26

Third, the numerical solutions of the RBM generally provides
an improved description of the dielectric spectra of ionic liquids
and glasses when the level of energy cutoff is treated as an intrin-
sic model parameter. Fig. 8 shows examples of such fittings for
some of the data discussed in Section 3.2. For (Na2O)0.1(GeO2)0.9

and [EMIm][EtSO4] at 206 K, RBM simulations with appropriate
k parameters give excellent fits of the experimental data, elimi-
nating the need of adding ad hoc low-frequency processes. For
[BMIm][NTf2] at 193 K and CKN at 343 K, while RBM simulations
still offer improvement over Eq. (1), they still cannot fully ac-
count for the low-frequency dispersion of the derivative spectra.
In this case, the deviation from the RBM implies that there are
material specific features that are not considered by the model.

Fourth, our RBM simulations suggest that the low-frequency
spectrum broadening is affected by the functional form of the bar-
rier distribution and is directly linked to the contributions from
high activation energy pathways. Based on this physical inter-
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Fig. 8 Examples of fitting of the derivative spectra of ionic materials
with the numerical solutions of the random barrier model (RBM). The
presented results are based on calculations at β = 160 with a uniformly
distributed activation energy Ẽ (0 < Ẽ < 1). The cutoff k is used as
an adjustable parameter to control the dispersion of the low-frequency
dynamics. Dashed lines: Predictions by Eq. (1). Dash-dotted lines:
Predictions of the RBM. The cutoff parameters are 6.4, 11.2, 12.8, and
9.6 for in panels (a), (b), (c), and (d), respectively. The contribution
of electrode polarization (EP) at low frequencies is modeled by a power-
law function. A Cole-Cole function, ε∗CC = ∆ε/[1+(i2π f τ)α ] is used to
describe the second relaxation of [BMIm][NTf2] at high frequencies.

pretation, we argue that analysis of the low-frequency dispersion
provides a window into the potential energy landscape of ionic
materials, particularly in the supercooled or glassy states. As we
shall show in the Appendix, the traditional fitting method with
the Kohlrausch-Williams-Watts (KWW) function cannot capture
the spectrum broadening phenomenon. Compared to the fitting
method with the Havriliak–Negami function, the RBM approach
offers a theoretical framework for interpreting the low-frequency
dynamics in a physically more meaningful way.

8 | 1–11Journal Name, [year], [vol.],

Page 8 of 11Physical Chemistry Chemical Physics



Finally, we seek to improve Eq. (1) by incorporating low-
frequency broadening into an analytical ac universality equation.
Our analysis in Section 3.1 demonstrates that none of the ana-
lytical forms [Eqs. (1), (7), (8), (9), (10)] can properly produce
the low-frequency dispersion of the derivative spectrum ε̃ ′′der. In
addition, we know that Eq. (1) is almost correct. A successful
functional form must preserve the frequency scalings for com-
plex conductivity: | ln σ̃∗| ∝ |ω̃/σ̃∗|2/3 at high frequencies and
| ln σ̃∗| ∝ |ω̃/σ̃∗| at low frequencies. Mathematically, the low-
frequency dispersion of ε̃ ′′der is determined by how the real per-
mittivity ε̃ ′ approches the static dielectric constant. Putting these
clues together, we conjecture that spectrum broadening can be
generated by controlling how the crossover from DCA [Eq. (9)]
to EMA [Eq. (7)] occurs. A simple formula that satisfies all of our
requirements is:

ln σ̃
∗ =

(
iω̃
σ̃∗

)[
1+A

(
iω̃
σ̃∗

)γ]− 1
3γ

, (13)

where A is a constant on the order of 2 and the parameter γ dic-
tates the low-frequency dispersion of the derivative spectrum. Eq.
(1) is a special case of Eq. (13) when A = 8/3 and γ = 1. Sim-
ilar to Eq. (1), by design Eq. (13) predicts that σ̃ ′′ ∝ ω̃2/3 for
ω̃ ≫ 1 and σ̃ ′′ ∝ ω̃ for ω̃ ≪ 1. The critical difference is that the
low-frequency dispersion of ε̃ ′′der can be tuned by the parameter γ.
For γ > 1, the dispersion of ε̃ ′′der is narrower than a Debye process,
i.e., ε̃ ′′der ∝ ω̃n, with n < 2. Conversely, for γ < 1, Eq. (13) produces
spectrum broadening [Fig. 9(a)] at low frequencies, and the de-
gree of broadening increases with decrease of γ. In accordance
with the design of Eq. (13), the predicted real and imaginary
conductivities agree with those from Eq. (1) [Fig. 9(b)] and thus
the RBM simulations as well. Similar to the examples shown in
Fig. 8 for the RBM, we can use Eq. (13) to improve the descrip-
tion of the dielectric spectra of ionic liquids. It should be pointed
out that Eq. (13) does not produce the correct asymptotic behav-
ior of ε̃ ′′der at very low frequencies for γ < 1 (Fig. 9), where we
should expect ε̃ ′′der ∝ ω̃2. Practically, however, this is not necessar-
ily a problem, as such subtle features may not be experimentally
resolvable.

4 Summary

In summary, the low-frequency dynamics of glass-forming ionic
materials is analyzed in proper forms of permittivity representa-
tion. By virtue of the derivative analysis technique, we show that
the ionic dynamics buried below dc conductivity generally has a
broad dispersion. While the overall real conductivity exhibits uni-
versality, the low-frequency dynamics displays “individual char-
acteristics” that are material and temperature dependent. The
popular ac universality equations fail to capture the experimen-
tally observed low-frequency spectrum broadening. Simulations
with the random barrier model demonstrate that the spectrum
broadening phenomenon can be accounted for by the model, if
the contributions from high energy barriers are considered in the
calculations. Finally, a modification of Eq. (1) is proposed to
improve the predictions at low frequencies, while preserving the
universal ac conductivity behavior predicted by the random bar-
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Fig. 9 Predictions of the new “hybrid” equation [Eq. (13)] with γ =

0.90, 0.85, 0.80, and 0.75. The corresponding values of A are 2.3 (for
γ = 0.90), 2.2 (for γ = 0.85), 2.1 (for γ = 0.80), and 2.0 (for γ = 0.75). (a)
Derivative spectra. Dash-dotted line: Prediction of Eq. (1). (b) Complex
conductivity spectra for the same data. The solid and dashed lines are
the real and imaginary conductivities predicted by Eq. (1), respectively.

rier model. By drawing attention to material “individuality” in
the derivative spectrum, rather than universality, this work pro-
vides a different perspective for understanding ionic transport in
disordered materials. We emphasize that there is nothing special
about the ionic materials investigated in this work, other than that
they have relatively “simple” structures. Our results should be
relevant for transport problems in a wide array of disordered ma-
terials,6 including ionic liquids,71,72 polymerized ionic liquids,20

ionic glasses,5 molten salts,73 and certain electronic semiconduc-
tors.27–29 On the other hand, understanding the low-frequency
dynamics of ionic liquids with mesoscopic structures24,25,33 and
protic ionic liquids with significant contributions from Grotthuss-
type mechanisms74 evidently requires additional considerations
and should not be interpreted on the basis of the RBM alone.

Appendix: Derivative Analysis of KWW Function
Electrical modulus M∗(ω) = M′+ iM′′ = 1/ε∗(ω) has been a pop-
ular choice of material function for analyzing the behavior of
ionic melts and glasses.39,57–60 The reported complex electri-
cal modulus are often discussed in terms of non-Debye (non-
exponential) relaxation and quantified via a Kohlrausch-Williams-
Watts (KWW) stretched exponential function. It is thus helpful to
clarify the relation of the present work, which addresses the non-
Debye low-frequency dynamics in the permittivity representation,
and those in the literature in the modulus representation.

Here we consider the normalized electrical modulus M̃∗(ω) de-
fined by a KWW relaxation function φ(t̃) = exp[−(t/τKWW)βKWW ] =

exp(−t̃βKWW) through unilateral Fourier transform (Laplace trans-
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Fig. 10 Derivative analysis of the real permittivity ε̃ ′(ω̃), Re[ε̃∗(ω)] =

Re[1/M̃∗(ω)], described by a KWW relaxation function φ(t̃) =

exp[−(t/τKWW)βKWW ] = exp(−t̃βKWW ) for the electrical modulus M̃∗(ω̃) =

iω̃
∫

∞

0 φ(t̃)e−iω̃ t̃ dt̃. The reduced frequency ω̃ is defined as ω̃ ≡ ωτKWW. It
can be seen that the asymptotic behavior of ε̃ ′′der at low frequencies is the
same for different values of βKWW.

form with imaginary frequency):

M̃∗(ω̃) = iω̃
∫

∞

0
φ(t̃)e−iω̃ t̃ dt̃. (14)

Figure 10 shows the corresponding derivative spectrum of real
permittivity, ε̃ ′′der ≡ (−π/2)dε̃ ′/d ln ω̃, for different stretched expo-
nents βKWW. Evidently, the asymptotic behavior of ε̃ ′′der is Debye-
like at low frequencies, with ε̃ ′′der ∼ ω̃2. In other words, the tradi-
tional modeling approach of electrical modulus with the KWW
function is inadequate for capturing the spectrum broadening
phenomena discussed in this study. In this context, we mention
that while the KWW function has been used to fit the dielectric
spectra of CKN,34,75 the fine spectrum features cannot be de-
scribed by this approach, as shown by the analyses in Figs. 3 and
10. Lastly, we emphasize that the present investigation focuses
on the low-frequency non-Debye relaxation revealed by deriva-
tive analysis, whereas the same term “non-Debye relaxation” is
often used in a much broader sense in the literature.28,41
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