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ABSTRACT

Liquid-infused structured non-wetting surfaces provide alternating no-slip and partial slip 

boundary conditions to the fluid flow, resulting in reduced friction at the interface. In this paper, 

an analytical model is developed for the evaluation of effective slip and, in turn, friction factor 

and drag reduction on liquid-infused structured non-wetting surfaces. By considering the entire 

range of anisotropy and heterogeneity of the surface structures as well as the full range of partial 

slip offered by the infusion liquid, the present model overcomes eliminates empirical fitting or 

correlations that are inherent in previous studies. Based on the effective slip length, drag 

reduction and skin friction coefficient values for Newtonian flow between two infinite parallel 

plates and flow in round tubes are presented. Extension of Moody charts for non-wetting surfaces 

and design maps of surface meso/micro/nano texturing for achieving desired drag reduction are 

presented for a broad range of engineering applications. The article further presents independent 

validation of the model across experimental and computational data from the literature and 

brings together several previous studies in a unified manner. 
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1. INTRODUCTION

In the past few decades, structured non-wetting surfaces have received significant interest for 

their role in a multitude of applications such as drag reduction 1–3, phase change heat transfer 4–6, 

self-cleaning surfaces 7–9, anti-icing surfaces 10–12, etc. Structured non-wetting surfaces are known 

to offer high static contact angle, low contact angle hysteresis, and a finite amount of slip under 

dynamic fluid flow conditions. The characteristic parameters that give rise to the aforementioned 

properties of non-wetting surfaces are the bare surface hydrophobicity, micro/nano-scale 

roughness features, and the presence of infusion liquid in the valleys of the roughness features. 

Structured non-wetting surfaces are broadly categorized into two types: (1) slippery liquid-

infused porous surfaces and (2) superhydrophobic surfaces. Slippery liquid-infused porous 

surfaces (SLIPS) are created by impregnating a liquid in the voids created by the porous 

micro/nano-scale structures, as depicted in Figure 1a. The choice of infusion liquid is governed 

by its expected physical properties such as immiscibility with the working fluid, high affinity 

towards the base surface 13,14, high thermal conductivity, low surface tension and low viscosity. 

On the other hand, superhydrophobic (SH) surfaces have air trapped in the cavities created by 

micro/nano-structures15. Note that the limiting case of an infinite slip length (shear-free) on 

infusion liquid corresponds to the presence of air pockets in the asperity valleys, and the 

structured liquid infused non-wetting surfaces default to conventional SH surfaces. Therefore, in 

the present work, the term structured liquid infused non-wetting surfaces is used generically to 

represent both SLIPS and SH surfaces.  

Typical static contact angle measurements on SLIPS (SH) surfaces are 120–140° (> 150°) and 

the corresponding range of contact angle hysteresis is 5–10° (< 4°). Under dynamic conditions, 

fluid flow over a typical liquid-infused structured non-wetting surface experiences alternating 

(periodic) partial slip and no-slip boundary conditions at the interface.16,17 The partial slip 

condition offered by the infused liquid gives rise to a significant reduction in the friction 

compared to the case of smooth solid surfaces that offer a no-slip boundary condition throughout. 

As a result, the extent of effective slip length correlates directly to the drag reduction on liquid-

infused structured non-wetting surfaces.
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Estimating the effective slip of fluid flow over structured non-wetting surfaces has been 

explored in the literature via numerical simulations, experiments, or statistical correlations. 

Rothstein18 and Voronov et al.19 have systematically summarized seminal studies on effective slip 

length and drag reduction on structured non-wetting surfaces.  In contrast, there are relatively 

scant closed-form analytical models that can predict the effective slip length based on surface 

topographical information. Further, most of the existing studies are limited to structured SH 

surfaces whereas liquid infused structured surfaces are relatively less explored in the literature. 

Philip20 developed analytical models for SH longitudinal- and transverse-striped geometry on 

flat and curved surfaces (round tubes). Further, Lauga and Stone21 expanded the analysis with 

asymptotic behavior of slip lengths on longitudinal and transverse striped geometries. However, 

their analysis was restricted and is valid to striped geometries only. In addition, Feuillebois et 

al.22,23 presented bounds through minimum and maximum possible effective slip lengths on 

striped geometry and synthetic fractal pattern of nested circles. In Feuillebois et al.24 a theoretical 

model is presented for the optimization of transverse flow over a two-component structured 

surface. However, the exact nature of the effective slip length relationship with the area fractions 

of solid and non-solid regions is not covered in their study. Belyaev and Vinogradova25 

incorporated the contribution of finite slip at the infused liquid for transverse- and longitudinal-

striped geometries. Davis and Lauga26 developed an asymptotic analytical model in the vanishing 

region of solid area fraction on SH surfaces with square posts geometry. Ybert et al.27 presented 

scaling laws for a SH square posts geometry, although their analysis is limited to the vanishing 

regions of solid and non-solid area fractions, does not incorporate the contribution of finite slip 

offered by infused liquid region, and does not consider inhomogeneity of the structures (e.g. 

rectangular posts). Solomon et al.28 presented a model for drag reduction (equivalently, effective 

slip length) on liquid infused structured non-wetting surfaces. However, the underlying 

assumption of a linear velocity profile in the infused liquid layer limits the applicability of their 

model to highly viscous infusion liquids. Cottin-Bizonne et al.29 developed a scaling law for 

slippage on superhydrophobic fractal surfaces, which does not directly apply to structured non-

wetting surfaces. A number of experimental studies30–32 have reported significant effective slip 
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(and drag reduction) on structured non-wetting surfaces, but do not establish a direct correlation 

between the measured slip length and surface topology.

It is evident from the foregoing discussion that the existing studies have mostly focused on 

the effective slip length and the drag characteristics of striped surface textures or other synthetic, 

isotropic homogeneously patterned surfaces. A general analytical treatment of non-wetting 

surface textures with anisotropy and heterogeneity and infused with any fluid medium is 

presently lacking. Such a treatment is of much interest as the field and applications of liquid 

infused and textured non-wetting surfaces continues to grow. Furthermore, it is of interest to 

determine the conditions under which such surfaces indeed offer a drag reduction advantage, 

and to tailor the design of the textures for a desired drag reduction performance, which are also 

lacking in the currently available studies. 

With the above motivation, in the present study, an analytical expression is developed for 

calculating the effective slip length on a generic fluid-infused structured non-wetting surfaces. 

The present formulation overcomes a number of limitations observed in the models previously 

reported in the literature by accounting for the finite slip offered by the non-solid regions of the 

surface, and the heterogeneity and anisotropy of structures. The analytical model presents a 

unified treatment of the different topographies and reduces to the striped geometry that’s often 

considered in the literature under limiting cases of the geometric parameters. Based on the 

effective slip length calculations from the analytical model, drag reduction and skin friction 

coefficient values for Newtonian flow between two infinite parallel plates (Figure 2a) and flow in 

round tubes (Figure 2b) are quantified. The friction coefficient expression provides, for the first 

time, an extension of the conventional Moody diagram to flow in channels and cylindrical 

geometries with non-wetting surfaces. The predictions of effective slip length and drag reduction 

from the present study are shown to be in good agreement with experimental and computational 

data obtained from the literature. Further, design maps are presented for tailoring the surface 

textures for achieving desired drag reduction in applications. Overall, the model is shown to be 

generally applicable to a wide range of topographies, infused liquid parameters, and channel 

thickness, which forms the primary contribution of the article. 
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The paper is organized as follows: first, a geometric description of the structured non-wetting 

surface is provided in section 2, followed by a mathematical description of effective slip length, 

drag reduction and friction coefficient calculations in section 3. Next, the effects of surface 

structural parameters and flow conditions, followed by validation of the present model with the 

data obtained from the literature is presented in section 4. 

 

2. GEOMETRICAL DESCRIPTION

Figure 1a shows an isometric view of a liquid-infused anisotropic heterogeneously patterned 

structured (AHePS) surface. The coordinate system for the analysis is established with the x-axis 

being along the fluid flow direction, y-axis being perpendicular to the flow direction in the plane 

of the surface and the z-axis being perpendicular to the plane of the surface and the flow direction. 

The periodic length scales of the post structures, as shown in Figure 1a in the x- and y- directions, 

are  and , respectively, such that for an isotropic structured surface, . Fluid flow 𝐿𝑥 𝐿𝑦  𝐿𝑥 = 𝐿𝑦 = 𝐿

over such a surface experiences alternating boundary conditions at the interface of flowing fluid 

and solid/infused liquid regions. In the present study, surface heterogeneity is defined by the 

inequality of the length scales of the infused liquid regions,  and . Accordingly, homogeneous 𝛿𝑥 𝛿𝑦

and heterogeneous structures refer to square post  and rectangular post  (𝛿𝑥 = 𝛿𝑦) (𝛿𝑥 ≠ 𝛿𝑦)

geometries, respectively.

3. MATHEMATICAL DESCRIPTION

A pressure-driven laminar fluid flow between two infinite parallel plates separated by a 

distance  (Figure 2a) is considered for the effective slip length calculation, although the 𝐻

expressions for the slip length are generally applicable to flow in a cylindrical tube of radius  𝑅

(Figure 2b) with the same structured surface topography. The surfaces of the top and bottom 

plates in contact with the flowing fluid are considered to be liquid-infused structured non-

wetting surfaces, as illustrated in Figure 2a. The analytical modeling of the effective slip length 

for flow over a typical liquid-infused structured non-wetting surface (Figure 1a) is developed by 

considering generalized partial slip boundary conditions over both the solid  and the (𝑏𝑠 ≥ 0)

infused liquid regions ( ) for the calculations of effective slip length on longitudinal- and 𝑏𝑓 ≥ 0
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transverse-striped geometries, as shown schematically in Figures 1b and 1d, respectively. The 

present work generalizes their analysis with generalized slip boundary conditions,  and, at 𝑏𝑠 ≥ 0

the respective solid and infused liquid interfaces. With these generalized expressions for the 

effective slip lengths for transverse- and longitudinal-striped surfaces as basis, a further 

contribution of the modeling is the determination of the effective slip lengths of surfaces textured 

with periodic rectangular post geometries, for application to a wide class of non-wetting 

superhydrophobic or slippery liquid infused surfaces. Based on the effective slip length, 

expressions for drag reduction and friction factor are presented for fluid flow in rectangular and 

cylindrical tube geometries.

3.1 Effective Slip Length of Longitudinal- and Transverse-striped Liquid Infused Surfaces

For a fully developed pressure-driven laminar Poiseuille flow between two infinite parallel 

plates (separated by distance H, Figure 2a) structured with longitudinal stripes (Figure 1b), the 

governing conservation of momentum may be written as per eq. 1a in Table 1, where  and   𝑢
𝑑𝑝
𝑑𝑥

are the velocity component and pressure gradient in the flow direction, respectively. The 

associated boundary conditions (eqs. 1b–e) are expressed in Table 1. For the case of longitudinal-

striped geometry (Figure 1b), the symmetry of velocity profile about  and periodicity of  𝑦 = 0 𝐿𝑦

along the -axis lead to eqs. 1b and 1c, respectively, as shown in Table 1. Symmetry of fluid flow 𝑦

velocity profile about the center of the channel  leads to eq. 1d (Table 1). The boundary (𝑧 =
𝐻
2)

conditions at the bottom structured wall, z = 0, take the general form as per eq. 1e in Table 1, 

where  is the local slip length for fluid flow over an interface with alternating partial slip 𝑏(𝑦)

boundary conditions over the solid and the liquid infused regions. 

For a longitudinal-striped geometry, the governing equation (eq. 1a) and the associated 

boundary conditions (eq. 1b-e) are solved using the method of perturbation25 by considering the 

velocity to be , where  is the base parabolic velocity profile for a fully  𝑢(𝑦,𝑧) = 𝑢0(𝑧) + 𝑢′(𝑦,𝑧) 𝑢0

developed flow in a rectangular channel with a partial slip length of  at the fluid/solid interface, 𝑏𝑠

given by: 
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𝑢0(𝑧) =
1

2𝜂( ―
𝑑𝑝
𝑑𝑥)(𝑧2 ―

𝐻2𝑧
𝐻 + 𝑏𝑠

―
𝐻2𝑏𝑠

𝐻 + 𝑏𝑠) #(2)

Substituting , with  given by eq. 2, in eqs. 1a–e in Table 1, results in a 𝑢(𝑦,𝑧) = 𝑢0(𝑧) + 𝑢′(𝑦,𝑧) 𝑢0(𝑧)

Laplace equation for  (eq. 3a in Table 1) and associated conditions (eqs. 3b–e in Table 1), as 𝑢′(𝑦,𝑧)

follows. Since the base velocity  (eq. 2) is independent of , it follows from eq. 1b that the 𝑢0(𝑧) 𝑦

perturbation velocity  is symmetric about , expressed as eq. 3b in Table 1. The base 𝑢′(𝑦,𝑧) 𝑦 = 0

velocity  at the bottom wall  leads to the boundary condition in eq. 1c to periodicity 𝑢0(𝑧) (𝑧 = 0)

of perturbation velocity, , expressed as eq. 3c in Table 1. The symmetry of base velocity profile 𝑢′

 about  (as per eq. 1d) leads to the symmetry of perturbation velocity profile  about  𝑢0 𝑧 =
𝐻
2 𝑢′ 𝑧 =

𝐻
2

as expressed in eq. 3d in Table 1. The vanishing base velocity at the bottom wall  leads to (𝑧 = 0)

a composite boundary conditions in the infused liquid and solid regions as given by eq. 3e in 

Table 1 corresponding to the local slip lengths being  and , respectively. 𝑏𝑓 𝑏𝑠

Using the method of separation of variables, eqs. 3a–e are solved to get the perturbation 

velocity,  in the following form for relatively thicker channels with  𝑢′(𝑦,𝑧)
𝐿𝑦

𝐻 ≤ 0.1,

𝑢′(𝑦,𝑧) =
𝐿2

𝑦

4𝜋2𝜂
𝑑𝑝
𝑑𝑥[𝛼0

2 +
∞

∑
𝑛 = 1

𝛼𝑛cos (2𝜋𝑛
𝐿𝑦

𝑦)𝑒
―

2𝜋𝑛
𝐿𝑦

𝑧] #(4)

where  and  are constant coefficients. From the total velocity , 𝛼0 𝛼𝑛 𝑢(𝑦,𝑧) = 𝑢0(𝑧) + 𝑢′(𝑦,𝑧)

comprising the base velocity profile  (eq. 2) and the perturbation velocity profile  (eq. 𝑢0(𝑧) 𝑢′(𝑦,𝑧)

4), the effective slip length for longitudinal stripes is obtained as,

𝑏𝐿 =

∫
𝐿𝑦

2

―
𝐿𝑦

2

𝑢(𝑦,0)𝑑𝑦

∫
𝐿𝑦

2

―
𝐿𝑦

2

∂𝑢(𝑦,0)
∂𝑧 𝑑𝑦

= 𝑏𝑠 +
𝐿𝑦

𝜋 (𝐿𝑦𝛼0

4𝜋𝐻)#(5)

Eq. 5 suggests that the effective slip length is dependent only on the leading coefficient  in the 𝛼0

perturbation velocity profile (eq. 4) since the harmonic terms in eq. 4 average to zero. According 

to Sneddon33,  may be expressed as:𝛼0

𝛼0 = 2∫
𝜋𝛿𝑦

𝐿𝑦

0
ℎ(𝑡)𝑑𝑡#(6)
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where, for the present case of flow over a surface with slip lengths of  and  over the solid 𝑏𝑠 𝑏𝑓

surface and the infused liquid regions, respectively,  is obtained as: ℎ(𝑡) ℎ(𝑡) =
2
𝜋

𝑑
𝑑𝑡

. Substituting for  in eq. 6 and, in turn, the resulting ∫𝑡
0

𝑠𝑖𝑛(𝜁
2)

cos (𝜁) ― cos (𝑡)[(1 ―
𝑏𝑠

𝑏𝑓) ∙
𝜋𝐻
𝐿𝑦

𝜁 ―
𝛼0𝐿𝑦

4𝑏𝑓 ]𝑑𝜁 ℎ(𝑡)

expression for  into eq. 5, the generalized expression for the effective slip length for 𝛼0

longitudinal-striped geometry is obtained in the following form:

𝑏𝐿 = 𝑏𝑠 +
𝐿𝑦

𝜋 ( (1 ―
𝑏𝑠

𝑏𝑓) ⋅ ln [sec (𝜋
2 ⋅

𝛿𝑦

𝐿𝑦)]
1 +

𝐿𝑦

𝜋𝑏𝑓
ln [sec (𝜋

2 ⋅
𝛿𝑦

𝐿𝑦) + tan (𝜋
2 ⋅

𝛿𝑦

𝐿𝑦)])#(7)

The foregoing expression is valid for relatively thick channels  and for round tubes (𝐿𝑦

𝐻 ≤ 0.1)
. As consistency checks, it is verified that as , which denotes the case of vanishing (𝐿𝑦

𝑅 ≤ 0.1) 𝛿𝑦

𝐿𝑦
→0

infused liquid region, the expression in eq. 7 reduces to , which is the effective slip length on a 𝑏𝑠

smooth surface offering uniform slip length of  throughout. Similarly, for , which denotes 𝑏𝑠
𝛿𝑦

𝐿𝑦
→1

the case of vanishing solid region, the expression correctly reduces to . 𝑏𝑓

For the case of transverse-striped geometry (Figure 1d and 1e), the dependence of pressure 

gradient on  leads to the consideration of a stream function  and vorticity . The 𝑥 𝜓(𝑥,𝑧) 𝜔(𝑥,𝑧)

resultant two-dimensional velocity field in the -  plane is represented in terms of the velocity 𝑥 𝑧

components  and  in the - and - directions, respectively, such that , and 𝑢(𝑥,𝑧) 𝑤(𝑥,𝑧) 𝑥 𝑧 𝑢(𝑥,𝑧) =
∂𝜓
∂𝑧 𝑤

. Note that the definition of a stream function implicitly satisfies the continuity (𝑥,𝑧) = ―
∂𝜓
∂𝑥

equation for incompressible flow, . The vorticity vector, , has only one non-zero 
∂𝑢
∂𝑥 +

∂𝑤
∂𝑧 = 0 𝜔(𝑥,𝑧)

component, in the -direction, given by . Substituting the expressions of velocity 𝑦 𝜔(𝑥,𝑧) =
∂𝑢
∂𝑧 ―

∂𝑤
∂𝑥

components in terms of stream function,  and , into the expression of - 𝑢(𝑥,𝑧) =
∂𝜓
∂𝑧 𝑤(𝑥,𝑧) = ―

∂𝜓
∂𝑥 𝑧

component of vorticity leads to governing equation as expressed by eq. 8a in Table 2. The second 

governing equation is a vorticity transport formulation as expressed by eq. 9a in Table 2, which 

is obtained by subtracting the  derivative of - component of momentum conservation equation 𝑥 𝑧

from the  derivative of - component of momentum conservation equation. 𝑧 𝑥
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The presence of impenetrable walls at  and  leads to boundary conditions: 𝑧 = 0 𝑧 = 𝐻 𝑤(𝑥,0)

 and , respectively, which are rewritten in terms of the stream function in eqs. 8b–= 0 𝑤(𝑥,𝐻) = 0

c of Table 2. Equations 8b and 8c, both being Neumann boundary conditions, necessitates 

additional information for a unique solution of the stream function, . These additional 𝜓(𝑥,𝑧)

conditions are obtained by defining a reference value for stream function at an arbitrary point (𝑥0,

 in the plane  such that:  The stream function at the top wall, , is then 𝑦0,0) 𝑧 = 0 𝜓(𝑥0,𝑦0,0) = 0. 𝜓𝐻

equal to the volumetric flow rate between the top and the bottom walls, , as per the 
𝐻3

12𝜂( ―
𝑑𝑝
𝑑𝑥)

methodology given in Priezjev et al.34, where  is a positive pressure gradient and  is the ―
𝑑𝑝
𝑑𝑥 𝜂

viscosity of the fluid flowing in the channel. Figures 1d-e show that the bottom wall  (𝑧 = 0)

consists of an infinite number of symmetry planes located at the geometric centers of solid and 

infused liquid regions: , for all integer values of . The same symmetry appears on the 𝑥 = 𝑛
𝐿𝑥

2 𝑛

upper wall  as well. As a result, the velocity component in the direction of flow satisfies (𝑧 = 𝐻)
∂𝑢
∂𝑥

. From the continuity equation it, then, follows that  is invariant with respect (𝑥 = 𝑛
𝐿𝑥

2 ,𝑧) = 0 𝑤(𝑥,𝑧)

to  at the symmetry plane locations and is given as: . Combined with the 𝑧
∂𝑤
∂𝑧(𝑥 = 𝑛

𝐿𝑥

2 ,𝑧) = 0

impenetrable wall conditions, , we obtain that , which 𝑤(𝑥,𝑧 = 0) = 𝑤(𝑥,𝑧 = 𝐻) = 0 𝑤(𝑥 = 𝑛
𝐿𝑥

2 ,𝑧) = 0

is rewritten in terms of stream function and expressed by eqs. 8d-e in Table 2, for one periodic 

segment of the transverse striped wall . 0 ≤ 𝑥 ≤
𝐿𝑥

2

 For a fully developed steady state flow, the symmetry of velocity component in the direction 

of flow given by  together with the continuity equation leads to symmetry of the 𝑢(𝑥,𝑧) = 𝑢( ― 𝑥,𝑧)

-component of velocity given by  with  and . 𝑧 𝑤(𝑥,𝑧) = 𝑤( ― 𝑥,𝑧) 𝑤(𝑥 = 𝑛
𝐿𝑥

2 ,𝑧) = 0
∂2𝑤
∂𝑧2 (𝑥 = 𝑛

𝐿𝑥

2 ,𝑧) = 0

Substituting this into the expression for the - derivative of vorticity component leads to 𝑥

boundary conditions as expressed by eqs. 9b-c. The Navier slip boundary conditions at the 

bottom structured wall, z = 0, and top structured wall, , take the general forms as per eqs. 𝑧 = 𝐻

9d and 9e, respectively, in Table 2, where  is the local slip length for fluid flow over an 𝑏(𝑥)

interface with alternating partial slip boundary conditions over the solid and the liquid infused 

regions. 
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For a transverse-striped geometry, the governing equations (eqs. 8a and 9a) and their 

respective associated boundary conditions (eqs. 8b–e, 9b–e) are solved using the methodology 

similar to the case of longitudinal striped geometry, by considering the stream function to be

 and vorticity to be , where  and  are the base  𝜓(𝑥,𝑧) = 𝜓0(𝑧) + 𝜓′(𝑥,𝑧) 𝜔(𝑥,𝑧) = 𝜔0(𝑧) + 𝜔′(𝑥,𝑧) 𝜓0 𝜔0

stream function and vorticity profiles for a fully developed flow in a rectangular channel with 

partial slip length of  at the bounding surfaces of the channel, given by:𝑏𝑠

𝜓0(𝑧) = ―
1

2𝜂
𝑑𝑝
𝑑𝑥𝑧(𝑧2

3 ―
𝑧𝐻
2 ― 𝑏𝑠𝐻)#(10)

𝜔0(𝑧) = ―
1
𝜂

𝑑𝑝
𝑑𝑥(𝑧 ―

𝐻
2)#(11)

The perturbation stream function, , and perturbation vorticity function, , are 𝜓′(𝑥,𝑧) 𝜔′(𝑥,𝑧)

determined by substituting  and  with  and  𝜓(𝑥,𝑧) = 𝜓0(𝑧) + 𝜓′(𝑥,𝑧) 𝜔(𝑥,𝑧) = 𝜔0(𝑧) + 𝜔′(𝑥,𝑧) 𝜓0(𝑧)

 given by eqs. 10 and 11, respectively, in eqs. 8a and 9a, and solving the resulting governing 𝜔0(𝑧)

equations (eqs. 12a, 13a in Table 2) along with their respective associated boundary conditions 

(eqs. 12b–e, 13b–e in Table 2) to obtain: 

𝜓′(𝑥,𝑧) =
𝐻𝐿2

𝑥

4𝜋2𝜂
𝑑𝑝
𝑑𝑥[𝛽0

𝑧
𝐻(1 ―

1
4

𝑧
𝐻) +

∞

∑
𝑛 = 1

(𝛽𝑛 ∙
𝐿𝑥

4𝜋𝑛𝑧)cos (2𝜋𝑛
𝐿𝑥

𝑥)𝑒
―

2𝜋𝑛
𝐿𝑥

𝑧]#(14)

and

𝜔′(𝑥,𝑧) =
𝐿2

𝑥

4𝜋2𝜂𝐻
𝑑𝑝
𝑑𝑥[ ―

𝛽0

2 +
∞

∑
𝑛 = 1

𝛽𝑛 ∙ cos (2𝜋𝑛
𝐿𝑥

𝑥)𝑒
―

2𝜋𝑛
𝐿𝑥

𝑧]#(15)

As in the case of longitudinal striped geometry, the foregoing expressions are valid for . 
𝐿𝑦

𝐻 ≤ 0.1

With the base stream function  (eq. 10) and perturbation stream function  (eq. 14), the 𝜓0(𝑧) 𝜓′(𝑥,𝑧)

velocity can be determined as  and the effective slip length for transverse-𝑢(𝑥,𝑧) = (∂𝜓0

∂𝑧 +
∂𝜓′

∂𝑧 )
striped geometry, , can be obtained as:𝑏𝑇

𝑏𝑇 =

∫
𝐿𝑥

2

―
𝐿𝑥

2

𝑢(𝑥,0)𝑑𝑥

∫
𝐿𝑥

2

―
𝐿𝑥

2

∂𝑢(𝑥,0)
∂𝑧 𝑑𝑥

= 𝑏𝑠 +
𝐿𝑥

2𝜋(𝐿𝑥𝛽0

𝜋𝐻 )#(16)

Page 10 of 45Soft Matter



11

Note that, similar to eq. 5, eq. 16 suggests that the effective slip length is dependent only on the 

leading coefficient  in the perturbation stream function (eq. 14). According to Sneddon33,  𝛽0 𝛽0

may be expressed as  where, for the present case of flow over a surface with slip 𝛽0 = 2∫
𝜋𝛿𝑥
𝐿𝑥
0

𝑔(𝑡)𝑑𝑡

lengths of  and  over the solid surface and the infused liquid regions, respectively,  is 𝑏𝑠 𝑏𝑓 𝑔(𝑡)

obtained as: . Following the approach similar to 𝑔(𝑡) =
2
𝜋

𝑑
𝑑𝑡∫

𝑡
0

𝑠𝑖𝑛(𝜁
2)

cos (𝜁) ― cos (𝑡)[(1 ―
𝑏𝑠

𝑏𝑓) ∙
𝜋𝐻
𝐿𝑥

𝜁 ―
𝛽0𝐿𝑥

8𝑏𝑓 ]𝑑𝜁

the case of longitudinal stripes, substituting the expression of  into the integral expression of 𝑔(𝑡)

 leads to an effective slip length formulation for transverse stripes from eq. 16 expressed in the 𝛽0

following form for a general case of partial slip at the fluid-solid and the fluid-infused liquid 

interfaces:

𝑏𝑇 = 𝑏𝑠 +
𝐿𝑥

2𝜋( (1 ―
𝑏𝑠

𝑏𝑓)ln [sec (𝜋
2 ⋅

𝛿𝑥

𝐿𝑥)]
1 +

𝐿𝑥

2𝜋𝑏𝑓
ln [sec (𝜋

2 ⋅
𝛿𝑥

𝐿𝑥) + tan (𝜋
2 ⋅

𝛿𝑥

𝐿𝑥)])#(17)

Similar to the expression for longitudinal stripes with non-zero slip in the solid region , eq. (𝑏𝐿)

17 satisfies all the physical consistency checks. 

3.2 Effective Slip Length of Anisotropic Heterogeneously Patterned Surfaces

The effective slip length of a liquid infused anisotropic heterogeneously patterned surface 

(AHePS), as depicted in Figure 1a, is obtained by considering a no-slip boundary condition over 

the solid regions ( ), for which eqs. 7 and 17 reduce to:𝑏𝑠 = 0

𝑏0
𝐿 =

𝐿𝑦

𝜋 ( ln [sec (𝜋
2 ⋅

𝛿𝑦

𝐿𝑦)]
1 +

𝐿𝑦

𝜋𝑏𝑓
ln [sec (𝜋

2 ⋅
𝛿𝑦

𝐿𝑦) + tan (𝜋
2 ⋅

𝛿𝑦

𝐿𝑦)])#(18)
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𝑏0
𝑇 =

𝐿𝑥

2𝜋( ln [sec (𝜋
2 ⋅

𝛿𝑥

𝐿𝑥)]
1 +

𝐿𝑥

2𝜋𝑏𝑓
ln [sec (𝜋

2 ⋅
𝛿𝑥

𝐿𝑥) + tan (𝜋
2 ⋅

𝛿𝑥

𝐿𝑥)])#(19)

where the superscript 0 denotes the case of no slip at the solid-liquid interface. A liquid infused 

AHePS surface with a regular array of rectangular post geometries can be considered as a 

superposition of transverse- and longitudinal-striped geometries. Fluid flow over such a surface 

experiences alternating no-slip and finite slip boundary conditions in - and - directions (Figure 𝑥 𝑦

1a) at the interface. Considering rows of posts along the flow direction, as marked by the dashed 

boxes, T, in Figure 3a, the fluid flow over each such region experiences alternating boundary 

conditions in the direction of flow that is equivalent to the flow past a transverse-striped 

geometry. Therefore, the effective slip length for flow over each such row is given by eq. 19. 

The AHePS geometry may now be considered as longitudinal stripes of the dashed regions, 

T, in Figure 3a, each with an effective slip length, , given by eq. 19, alternating with liquid 𝑏0
𝑇

infused regions of slip length, . Referring to the case of longitudinal-striped geometry with 𝑏𝑓

finite slip lengths of  and , as derived in eq. 7, the effective slip length for a liquid-infused 𝑏𝑠 = 𝑏0
𝑇 𝑏𝑓

AHePS surface, , may be expressed in terms of  and  and  as:𝑏 𝑏0
𝑇 𝑏0

𝐿 𝑏𝑓

𝑏 =  𝑏0
𝑇 + 𝑏0

𝐿 ―
𝑏0

𝑇 ⋅ 𝑏0
𝐿

𝑏𝑓
#(20)

The expression for the effective slip length  is symmetric in terms of the contributing (𝑏)

individual effective slip lengths of the longitudinal-  and transverse-  striped geometries. (𝑏0
𝐿)  (𝑏0

𝑇)
The same analytical relationship as presented in eq. 20 is obtained if the longitudinal stripes are 

considered first (as depicted in Figure 3b) followed by the equivalent transverse stripes.

The analytical solution (eq. 20) for effective slip length on a liquid infused AHePS surface 

takes into consideration the anisotropy of the structural pattern , heterogeneity of the  (𝐿𝑥 ≠ 𝐿𝑦)

structures , and the contribution of the finite slip  offered by the infusion liquid. From  (𝛿𝑥 ≠ 𝛿𝑦) (𝑏𝑓)

this general treatment of patterned surfaces, specific expressions may be derived for the effective 

slip length of an isotropic heterogeneously patterned structured (IHePS) surface by setting the 

periodic length scales to be equal, i.e., , in eqs. 18–20. In this case, since , the 𝐿𝑥 = 𝐿𝑦 = 𝐿 𝛿𝑥 ≠ 𝛿𝑦
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solid structures take the shape of rectangular posts. For a liquid-infused isotropic homogeneously 

patterned structured (IHoPS) surface with a regular square post geometry, , and it is 𝛿𝑥 = 𝛿𝑦 = 𝛿

convenient to introduce a solid area fraction of the surface, , such that 𝜑𝑠 = (1 ―
𝛿
𝐿)2

 
𝛿𝑥

𝐿𝑥
=

𝛿𝑦

𝐿𝑦
=

𝛿
𝐿 =

. Introducing the dimensionless structural parameters,  and  in eqs. 18 and 19, the (1 ― 𝜑𝑠) 𝛿𝑥

𝐿𝑥

𝛿𝑦

𝐿𝑦

effective slip lengths,  and  are then expressed in terms of the solid fraction, , as:𝑏0
𝐿 𝑏0

𝑇 𝜑𝑠

𝑏0
𝐿 =

𝐿
𝜋( ln [sec (𝜋

2(1 ― 𝜑𝑠))]
1 +

𝐿
𝜋𝑏𝑓

ln [sec (𝜋
2(1 ― 𝜑𝑠)) + tan (𝜋

2(1 ― 𝜑𝑠))]) (21)

𝑏0
𝑇 =

𝐿
2𝜋( ln [sec (𝜋

2(1 ― 𝜑𝑠))]
1 +

𝐿
2𝜋𝑏𝑓

ln [sec (𝜋
2(1 ― 𝜑𝑠)) + tan(𝜋

2(1 ― 𝜑𝑠))]) (22)

using which, the effective slip length for the IHoPS  is obtained from eq. 21 in terms of  and 𝑏 𝜑𝑠

.
𝐿
𝑏𝑓

3.3 Drag Reduction and Friction Coefficient on Liquid Infused Patterned Surfaces

With the effective slip length over structured non-wetting surfaces given by eq. 21, the 

engineering parameters that govern fluid flow namely, drag reduction and friction coefficient, 

are quantified by considering two cases corresponding to the two flow geometries in Figure 2:

3.3.1 Fluid flow between two parallel infinite plates separated by a distance H: 

Considering a pressure driven laminar flow between two parallel infinite plates (separated 

by distance ) with no-slip boundary conditions at the walls, the total volume flow rate is given 𝐻

by: . Similarly, the volumetric flow rate for the same flow configuration with 𝑄0 = ―
𝐻3

2𝜂(∂𝑝
∂𝑥)

0
(1

6)
liquid infused AHePS surfaces with an effective slip length of , given by eq. 21, is calculated as: 𝑏

. In the expressions for the volumetric flow rate, subscripts  and  denote 𝑄𝑠 = ―
𝐻3

2𝜂(∂𝑝
∂𝑥)

𝑠
(1

6 +
𝑏
𝐻) 0 𝑠

the cases of geometries with smooth (no-slip boundary condition throughout) and structured 
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non-wetting surfaces (with an effective finite slip). Also, the negative sign offsets the negative 

value of  resulting in positive flow rate values. A drag reduction, , is defined as the relative 
∂𝑝
∂𝑥 𝐷𝑅

difference between the pressure gradients for AHePS and smooth surfaces, for the same 

volumetric flow rate ( , such that𝑄0 = 𝑄𝑠)

𝐷𝑅,𝐻 =
(∂𝑝
∂𝑥)

0
― (∂𝑝

∂𝑥)
𝑠

(∂𝑝
∂𝑥)

0

=
6𝑏

𝐻 + 6𝑏
(23)

where  for AHePS and IHePS  are given by eqs. 18–20, and for IHoPS by eqs. 20–22.𝑏 (𝐿𝑥 = 𝐿𝑦 = 𝐿)

Drag reduction is a relative parameter that compares the case of structured non-wetting 

surface to the conventional smooth surface. An intrinsic measure of reduced friction on structured 

non-wetting surfaces may be quantified in terms of skin friction coefficient. For a pressure-driven 

laminar flow between two infinite parallel plates with AHePS surfaces separated by distance , 𝐻

the average velocity across the cross-sectional area is given by:  and the wall 𝑢𝑠 = ―
𝐻2

2𝜂(∂𝑝
∂𝑥)

𝑠
(1

6 +
𝑏
𝐻)

shear stress at  = 0 may be expressed as: , where  is the fluid viscosity. The 𝑧 𝜏𝑠 = 𝜂
∂𝑢
∂𝑧 = 𝑢𝑠 ⋅

6𝜂
6𝑏 + 𝐻 𝜂

skin friction coefficient defined as, , where  is the fluid density, is then derived as:𝐶𝑓,𝐻 =
|𝜏𝑠|

1
2𝜌𝑢𝑠

2
𝜌

𝐶𝑓,𝐻 =
|𝜏𝑠|

1
2𝜌𝑢𝑠

2
=

12𝐻
(6𝑏 + 𝐻) ⋅

1
𝑅𝑒𝐻 (24)

where  for AHePS and IHePS  are given by eqs. 18–20, and for IHoPS by eqs. 20–22. 𝑏 (𝐿𝑥 = 𝐿𝑦 = 𝐿)

Further,  is the Reynolds number defined based on the channel height, , as the characteristic 𝑅𝑒𝐻 𝐻

dimension: .𝑅𝑒𝐻 =
𝜌𝑢𝑠𝐻

𝜂

3.3.2 Fluid flow in a round pipe (cylindrical geometry):

For pressure-driven laminar flow through a round pipe of radius  (Figure 2b), the volumetric 𝑅

flow rate with no surface texturing is given by, ,  and with an AHePS surface 𝑄0 = ―
𝜋𝑅4

𝜂 (∂𝑝
∂𝑥)

0
⋅ (1

8)
on the inside of the pipe is expressed as  Defining a drag reduction, , 𝑄𝑠 = ―

𝜋𝑅4

𝜂 (∂𝑝
∂𝑥)

𝑠
⋅ (1

8 +
𝑏

2𝑅). 𝐷𝑅
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as in eq. 23, the drag reduction for fluid flow through a round pipe with AHePS surface is 

obtained as follows:

𝐷𝑅,𝑅 =
(∂𝑝
∂𝑥)

0
― (∂𝑝

∂𝑥)
𝑠

(∂𝑝
∂𝑥)

0

=
4𝑏

𝑅 + 4𝑏
(25)

A skin friction coefficient may be derived following the same approach as that for flow in a 

rectangular channel discussed above. For a pressure-driven flow through a round pipe of radius, 

, with an AHePS surface, the average flow velocity,  and wall shear stress 𝑅 𝑢𝑠 = ―
𝑅2

𝜂 (∂𝑝
∂𝑥)

𝑠
(1

8 +
𝑏

2𝑅),

at ,  lead to the friction coefficient as: 𝑟 =  𝑅 𝜏𝑠 = 𝑢𝑠 ⋅
4𝜂

4𝑏 + 𝑅,

𝐶𝑓,𝑅 =
|𝜏𝑠|

1
2𝜌𝑢𝑠

2
=

16𝑅
(4𝑏 + 𝑅) ⋅

1
𝑅𝑒𝐷 (26)

It is evident from eq. 23 and 25 that for a pressure-driven flow under laminar conditions, the 

expressions of drag reduction are solely a function of the geometric parameters of the patterned 

surface and are independent of fluid flow conditions such as the Reynolds number, whereas the 

skin friction coefficient, eq. 24 and 26, is a function of both the geometric parameters and the 

Reynolds number based on the respective characteristic length. 

4. RESULTS AND DISCUSSION

Figure 4 shows the variation of dimensionless effective slip length of liquid infused 

longitudinal-  and transverse-striped  geometries assuming no-slip boundary condition at (𝑏0
𝐿

𝐿𝑦) (𝑏0
𝑇

𝐿𝑥)
the solid region (eq. 18 and 19) with the non-dimensional length scales of liquid infusion regions, 

 and , respectively. It is seen in Figure 4 that the effective slip length of the transverse-striped 
𝛿𝑦

𝐿𝑦

𝛿𝑥

𝐿𝑥

surface, , increases with increase in  and, similarly, the effective slip length of the longitudinal-
𝑏0

𝑇

𝐿𝑥

𝛿𝑥

𝐿𝑥

striped surface, , increases with increase in . In both cases, as  or  increases, the amount of 
𝑏0

𝐿

𝐿𝑦

𝛿𝑦

𝐿𝑦

𝛿𝑥

𝐿𝑥

𝛿𝑦

𝐿𝑦

solid (no-slip) region in contact with the flowing fluid decreases, leading to an increase in the 

effective slip length. Further, as the slip length of the infused fluid, , increases (equivalently, as 𝑏𝑓
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 decreases), the fluid flow experiences reduced shear at the surface, leading to an increase in the 
𝐿
𝑏𝑓

effective slip length, for both transverse-  and longitudinal-striped  geometries, as evident (𝑏0
𝑇

𝐿𝑥) (𝑏0
𝐿

𝐿𝑦)
in Figure 4. With  (free shear), both the effective slip length expressions approach the 𝑏𝑓→∞

theoretical formulations derived by Philip20. Figure 4 further establishes that the longitudinal-

striped patterning results in a greater slip than the transverse-striped pattern, for a given solid 

area fraction  or , consistent with the results reported in the literature.20,25
𝛿𝑥

𝐿𝑥
 
𝛿𝑦

𝐿𝑦

Figure 5 shows the variation of non-dimensional effective slip length  for an IHePS
𝑏
𝐿  

 surface with the non-dimensional length scale of infusion liquid region in the flow (𝐿𝑥 = 𝐿𝑦 = 𝐿)

direction,  , for different values of the non-dimensional length scale of infusion liquid region in 
𝛿𝑥

𝐿

the direction perpendicular to the flow, . Figures 5a and 5b present the effect of the slip length 
𝛿𝑦

𝐿

of the infused fluid through the ratio , for values of 0 and 10, which represents a relevant range 
𝐿
𝑏𝑓

based on typical values of experimentally measured slip length on infusion liquid  from (𝑏𝑓)

35. In each plot, the cases represented by  and  correspond to longitudinal 5 ― 500 𝜇𝑚
𝛿𝑥

𝐿 →0
𝛿𝑦

𝐿 →0

and transverse striped geometries, respectively as discussed earlier. Figure 5 indicates that with 

increase in dimensionless length scales of liquid infusion regions,  and , the amount of solid 
𝛿𝑥

𝐿
𝛿𝑦

𝐿

(no-slip) region in contact with the flowing fluid decreases, leading to an increase in the effective 

slip length for all values of . Further, for any particular combination of  and  values, a direct 
𝐿
𝑏𝑓

𝛿𝑥

𝐿
𝛿𝑦

𝐿

comparison between Figures 5a and 5c shows that with increase in the value of the infused fluid 

slip length  (equivalently, as  decreases), the effective non-dimensional slip length of the 𝑏𝑓
𝐿
𝑏𝑓

patterned liquid-infused surface increases. In the limit of  or , which represents a free 𝑏𝑓→∞
𝐿
𝑏𝑓

→0

shear over the liquid infused regions, the effective slip length approaches the theoretical 

formulation derived by Philip20. 

An effect of non-zero slip of fluid flow on liquid-infused structured non-wetting surfaces is 

to reduce drag on the surfaces. From eqs. 23 and 25, it is clear that drag reduction under laminar 

flow conditions is independent of fluid properties and Reynolds number, but is a function of the 

corresponding characteristic flow length scales , and the effective slip length, . Eqs. 23 (𝐻 and 𝑅) 𝑏
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and 25 suggest that with decrease in the characteristic flow length scales (  and ) (equivalently, 𝐻 𝑅

with increase in  or ) the percentage drag reduction increases. This is attributed to the increase 
𝐿
𝐻

𝐿
𝑅

in flow resistance as a result of increase in solid area fraction per unit volume. For practical 

purposes,  typically takes values in the range 0.01–0.1, and typical infusion liquids have  values 
𝐿
𝐻

𝐿
𝑏𝑓

in the range 0–1. Considering selected typical values encountered in practice, the effect of the 

patterned structure parameters,  and , and infused liquid slip length, , on the drag reduction 
𝛿𝑥

𝐿
𝛿𝑦

𝐿
𝐿
𝑏𝑓

for flows in a rectangular channel and a round tube is examined in Figures 6a and 6b, respectively. 

Figure 6a shows the variation of percentage drag reduction with the dimensionless length scale 

of infusion liquid along the direction of flow, , for fluid flow between two parallel plates 
𝛿𝑥

𝐿

 made of IHePS superhydrophobic surfaces  while Figure 6b presents the (𝐿
𝐻 = 0.01) ( 𝐿

𝑏𝑓
→0)

variation in a round tube  with a liquid infused  IHePS surface. In each plot, the (𝐿
𝑅 = 0.1) ( 𝐿

𝑏𝑓
= 1)

different lines correspond to variation of  in the range 0–1. In addition, the curves corresponding 
𝛿𝑦

𝐿

to , denoted by the black dashed lines, quantify the percentage drag reduction for the two 
𝛿𝑥

𝐿 =
𝛿𝑦

𝐿

flow geometries with IHoPS surfaces. 

Figures 6a and 6b show that the percentage drag reduction increases with increase in length 

scale values of liquid-infusion region,  and . For both fluid flow geometries, increase in  and 
𝛿𝑥

𝐿
𝛿𝑦

𝐿
𝛿𝑥

𝐿

 reduces the solid area fraction (no slip) in contact with the fluid flow, thereby increasing the 
𝛿𝑦

𝐿

effective slip length  which, in turn, leads to a higher drag reduction. Also, a decrease in the slip 𝑏

length over the infused liquid region, , (equivalently an increase in ) leads to a decrease in the 𝑏𝑓
𝐿
𝑏𝑓

drag reduction, as seen from Figures 6a and 6b. With decreasing  values, the flowing fluid 𝑏𝑓

experiences increased drag on the infused-liquid region thereby effectively contributing to a 

smaller drag reduction. Therefore, in general, liquid-infused structured surfaces  offer  ( 𝐿
𝑏𝑓

> 0)
less drag reduction compared to structured superhydrophobic surfaces .  ( 𝐿

𝑏𝑓
→0)

Figures 7a shows the variation of non-dimensional effective slip length, , for an IHoPS 
𝑏
𝐿

 surface with the solid area fraction in contact with the flowing fluid for ( 
𝛿𝑥

𝐿 =
𝛿𝑦

𝐿 =
𝛿
𝐿 = 1 ― 𝜑𝑠)
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superhydrophobic surfaces, with . It is evident from Figure 7a that with increase in the solid  
𝐿
𝑏𝑓

→0

area fraction, the effective slip length decreases for all values of . An increase in the solid area  
𝐿
𝑏𝑓

fraction in contact with the flowing fluid increases the no-slip  region, thereby leading to (𝑏𝑠 = 0)

decrease in the effective slip length, . In addition, Figure 7a shows the comparison of the 𝑏

analytical model for the effective slip length on an IHoPS surfaces with several theoretical studies 

in the literature, for  (superhydrophobic surfaces). The current model, as seen in Figure 7a,  
𝐿
𝑏𝑓

→0

agrees well with the scaling analysis developed by Ybert et al.27 for solid area fraction, , greater 𝜑𝑠

than about 0.3, and with the asymptotic analytical model developed by Davis and Lauga26 for 

circular post geometry patterned in a square array, for solid area fraction, , greater than about 𝜑𝑠

0.4. In both models26,27, the dimensionless slip length scales as  in the region of small solid 1/ 𝜑𝑠

area fraction, whereas the present model is based on a detailed physics of the problem over the 

entire range of solid area fraction. Therefore, the comparison in Figure 7a suggests that the results 

of the scaling and asymptotic analysis may overpredict the slip length in the range of small solid 

area fraction values. Further, the analytical solutions in refs. [26] and [27] are for specific isotropic 

geometries, and that too for  only, whereas, the model presented here is applicable in a 𝑏𝑓→∞

generalized manner to isotropic as well as anisotropic and heterogeneous as well as 

homogeneous topographies, and broadly for any slip length, . To demonstrate the generalized 𝑏𝑓

applicability of the model, the data on transverse stripes from Philip20 is also included in Figure 

7a, where it is seen that the current model matches the data closely over the entire range of high 

solid area fraction ( ) reported in their study.𝜑𝑠 > ~0.6

Further, the model is compared with the analytical Wiener and Hashin-Shtrikman bounds on 

the effective slip length developed for thin channels )22,23 as presented in Figures 7a and (𝐻 ≪ 𝐿

7b. Figure 7a considers the comparison for a superhydrophobic surface ( , while Figure 7b 
𝐿
𝑏𝑓

→0)

presents the comparison for a liquid infused surface with , both for a nondimensional thin 
𝐿
𝑏𝑓

= 10

channel thickness of . Note that the Wiener and Hashin-Shtrikman upper bounds for fluid 
𝐻
𝐿 = 0.01

flow over a superhydrophobic surface approach infinity22,23 over the entire range of solid area 

fraction, and are not visible in the plot frame of Figure 7a. Overall, it is seen that the present model 
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falls within the Wiener and the Hashin-Shtrikman bounds over the entire range of the solid area 

fraction for both superhydrophobic and liquid infused surfaces, suggesting a broad applicability 

of the model extending down to thin channels as well. 

As mentioned previously, the analytical upper and lower bounds22,23 are truly valid in the 

limit of thin channels, . It is, therefore, of interest to determine an upper limit on  for the 
𝐻
𝐿→0 𝐻/𝐿

validity of the analytical bounds. To this end, Figure 7c examines the effect of the nondimensional 

channel thickness, , on the variation of the upper and the lower bounds on , for a specific 𝐻/𝐿 𝑏/𝐿

case of  and . It is seen that both the Wiener and the Hashin-Shtrikman lower 𝜑𝑠 = 0.1
𝐿
𝑏𝑓

= 10

bounds increase with increasing , eventually merging with their respective upper bound. 𝐻/𝐿

Figure 7c further includes the present model, shown by the red solid line, which falls within the 

upper and lower bounds for small channel thickness values. At a certain thin nondimensional 

channel thickness,  the dimensionless effective slip length given by each lower bound 
𝐻
𝐿 = (𝐻

𝐿) ∗

equals the value given by the present model. The corresponding values of  indicated in (𝐻
𝐿) ∗

Figure 7c and  for the Hashin-Shtrikman and the Wiener bounds, respectively), may (0.075 0.15

be regarded as the upper limit of the nondimensional thin channel thickness for validity of the 

Wiener or the Hashin-Shtrikman bound22,23

Figure 7c corresponds to a specific case of  and ; however, in general, the 𝜑𝑠 = 0.1
𝐿
𝑏𝑓

= 10

limiting  values are a function of both the solid area fraction, , and the slip length of the (𝐻
𝐿) ∗

𝜑𝑠

infused fluid, . Figure 7d presents the variation of  with the solid fraction, for three 𝐿/𝑏𝑓 (𝐻
𝐿) ∗

different values of , such that  values below each line denote the range of applicability of 𝐿/𝑏𝑓 𝐻/𝐿

the analytical bounds based on the thin channel approximation. It is seen that in the limit of  𝜑𝑠→0

or , , but for most of the solid fraction values other than the extreme, the upper limit 𝜑𝑠→1 (𝐻
𝐿) ∗

→0

on the dimensionless channel thickness for each bound varies within a narrow range, for a given 

. As expected from Figure 7c, the upper limit for the Wiener bound is greater than that for 𝐿/𝑏𝑓

the Hashin-Shtrikman bound; in both cases, the upper limit decreases with increasing . 𝐿/𝑏𝑓

Overall, it is seen that the bounds22,23 based on a thin channel assumption are limited to a 
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maximum nondimensional channel thickness of about 0.3 in the case of the Wiener bound for a 

superhydrophobic surface and to about 0.15 in the case of the Hashin-Shtrikman bound for the 

same surface. In contrast, the present model does not have such restriction and is more generally 

valid for any  ratio.𝐻/𝐿

The drag reduction analysis in Figure 6 provides a relative comparison between the 

structured non-wetting and unstructured smooth surfaces. In order to obtain an intrinsic 

characteristic of friction on structured non-wetting surfaces, quantification of friction coefficient 

is conducted using eqs. 24 and 26. Unlike drag reduction, friction coefficient has a dependence on 

the flow Reynolds number in addition to the structural parameters of the non-wetting surface 

and the partial slip length, , offered by the infusion liquid. In addition, Eq. 24 and 26 suggest 𝑏𝑓

that with decrease in the characteristic flow length scales,  or  (equivalently, as  or  increases), 𝐻 𝑅
𝐿
𝐻

𝐿
𝑅

the friction coefficient decreases. Daniello et al.3 established experimentally that the critical 

Reynolds number for the transition of fluid flow from laminar to turbulent in microchannels with 

structured superhydrophobic walls is 2500. Accordingly, the results discussed here are limited to 

Reynolds number of 2500. 

Figure 8 shows the variation of friction coefficient with Reynolds number in the laminar range 

for different solid area fraction values for IHoPS surfaces ( ). The selection 𝛿𝑥 = 𝛿𝑦 = 𝛿;𝐿𝑥 = 𝐿𝑦 = 𝐿

of solid area fraction values is based on the structural design of non-wetting surfaces. 

Correspondingly, in Figure 8, solid area fraction values equal to 0, 0.01, 0.1 and 1 represent the 

cases of purely liquid-infused, typical nano-structured, typical micro-structured and smooth non-

structured surfaces, respectively. Figures 8a and 8b show the variation of the friction coefficient 

on non-wetting surfaces with Reynolds number for fluid flow in the laminar range between 

bounded plates  with superhydrophobic  (Figure 8a) and in a round tube with (𝐿
𝐻 = 0.1) ( 𝐿

𝑏𝑓
→0) 𝐿

𝑅

 consisting of a liquid-infused IHoPS surface with  (Figure 8b). Note that the linear = 0.1
𝐿
𝑏𝑓

= 1

variation on the log-log plots in Figures 8a,b, reflect the inverse linear relationship between the 

friction factor and the Reynolds number ( ; ). 𝐶𝑓,𝐻 =
12

𝑅𝑒𝐻
𝐶𝑓,𝑅 =

16
𝑅𝑒𝐷

For a particular Reynolds number, an increase in the solid area fraction increases the friction 

coefficient values. Increase in solid area fraction reduces the region of partial slip length leading 
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to lower effective slip length and thereby higher friction at the interface. The black line in Figures 

8a,b, corresponding to , represents the case of laminar flow over smooth non-structured 𝜑𝑠 = 1

surfaces as in the conventional Moody diagram36. It is evident from Figures 8a,b that the lines for 

the structured non-wetting surfaces uniformly fall below the line corresponding to the Moody 

diagram ( ) pointing to the reduced friction advantage of the non-wetting surfaces. Among 𝜑𝑠 = 1

the non-wetting surfaces ( ), the presence of infusion liquid with partial slip length (Figure 𝜑𝑠 < 1

8b) increases the friction coefficient relative to a superhydrophobic surface (Figure 8a). With a 

non-zero partial slip at the infused liquid region reduces the effective slip length thereby leading 

to higher friction at the interface. Figure 8 shows that for all Reynolds numbers, nanostructured 

surfaces ( ) offer lower friction coefficient values compared to micro-structured ( ) 𝜑𝑠 ≈ 0.01 𝜑𝑠 ≈ 0.1

and smooth non-structured ( ) surfaces. 𝜑𝑠 = 1

Figures 9a and 9b show the variation of percentage drag reduction with solid area fraction for 

a fluid flow in a round tube with superhydrophobic  and a parallel channel with liquid ( 𝐿
𝑏𝑓

→0)
infused  surfaces, respectively, for a range of flow characteristic length scale values   and ( 𝐿

𝑏𝑓
= 1)  

𝐿
𝑅

. Corresponding to each value of  and , three distinct curves representing longitudinal-striped, 
𝐿
𝐻

𝐿
𝑅

𝐿
𝐻

transverse-striped and IHoPS surfaces are presented. From Figures 9a and 9b it is evident that for 

a particular value of  or , nanostructured surfaces ( ) offer significantly higher drag 
𝐿
𝑅

𝐿
𝐻 𝜑𝑠 ≲ 0.08

reduction compared to micro-structured ( ) surfaces. Also, for a particular non-0.08 ≲ 𝜑𝑠 ≲ 0.2

wetting surface, decreasing the flow characteristic length scale,  or  (equivalently, increasing  𝑅 𝐻  
𝐿
𝑅

or ) increases the percentage drag reduction, as seen from Figures 9a and 9b. Liquid-infused 
𝐿
𝐻

surfaces  are seen to offer lower drag reduction (Figure 9b) compared to ( 𝐿
𝑏𝑓

= 1)
superhydrophobic surfaces  (Figure 9a), owing to the finite partial slip length  in the ( 𝐿

𝑏𝑓
→0) (𝑏𝑓)

infused liquid region. The observed trends are common to both channel flows as well as flows in 

cylindrical tubes.

Figures 9c and 9d show contours of constant percentage drag reduction as the dimensionless 

flow characteristic length scale   or  and the solid area fraction are varied, corresponding to the 
𝐿
𝑅

𝐿
𝐻
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respective flow configurations in Figures 9a and 9b, respectively. These figures serve as example 

design plots for the design of the structural parameters of the patterned surfaces, for achieving 

target drag reduction values. For a particular desired percentage drag reduction, nanostructured 

surfaces  allow for bigger flow length scales (larger , equivalently smaller , or larger (𝜑𝑠 ≲ 0.08) 𝐻  
𝐿
𝐻

radius,  equivalently, smaller ). Figures 9c and 9d also show that the use of liquid infused 𝑅,
𝐿
𝑅

surfaces  limits the maximum flow length scales (smaller , equivalently larger , or ( 𝐿
𝑏𝑓

= 1) 𝐻  
𝐿
𝐻

smaller radius,  equivalently, larger ) for achieving the same percentage drag reduction as with 𝑅,
𝐿
𝑅

superhydrophobic surfaces . ( 𝐿
𝑏𝑓

→0)
The present formulations for drag reduction takes into consideration the effects of various 

characteristic parameters, such as, surface heterogeneity, structural anisotropy, and partial slip 

offered by infusion liquid. In order to validate the current model, results from a number of 

experimental and computational studies are borrowed from the literature, and a comparison of 

the model predictions relative to the literature data is presented in Figure 10. The selection of 

literature studies for comparison was prioritized with the focus on covering a variety of surface 

topologies and fluid flow conditions, and a wide range of nondimensional channel thickness. As 

a result, superhydrophobic surfaces with surface topologies namely, microridges 37, square posts 

30, circular posts 38, grates 38 and carbon nanotube forest 39 are considered for the comparison. 

From Ou and Rothstein37, two different microridge geometries are considered: the experimental 

and numerical simulation results for  wide microridges spaced  apart are 20 μm 𝛿𝑦 = 20 μm

denoted by the red circular markers and the red solid line, respectively and the experimental and 

numerical simulation results corresponding to  wide microridges spaced  apart 30 μm 𝛿𝑦 = 30 μm

are represented by the blue square markers and the blue solid line, respectively. The experimental 

study by Ou et al.30 on microchannel flows with square post surface topography is presented by 

the green diamond markers. Lee et al.38 presented data from a rheometer test wherein the solid 

area fraction was varied by manipulating the pitch of homogeneously patterned circular posts 

(shown by inverted triangle markers in Fig. 10). Joseph et al.39 considered the case of carbon 

nanotube forest offering a solid area fration of  (right triangle markers) and the 𝜑𝑠 = 0.1

Rev. 1

Com. 5
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experimental results of Solomon et al.28 (purple triangle markers) correspond to the drag 

reduction offered by liquid infused non-wetting surfaces with . Owing to the 
𝐿
𝑏𝑓

= 2.77

considerable drag reduction for microscale values of flow length scales, the majority of the studies 

have considered fluid flow in microchannels and cone-plate rheometer assembly with separation 

of the order of O  micrometers. The data considered for comparison cover a wide range of (102)

nondimensional channel thickness  range from 2 to 333, which complement the thin channel 𝐻/𝐿

thickness range discussed in Figure 7.  

The solid line diagonal to the plot frame in Figure 10 represents the line of exact agreement, 

while the dashed lines on either side of the solid line denote the  error bands. The drag ± 5%

reduction being a percentage itself, the error bands are shown as absolute error bands. From 

Figure 10, it is evident that the present model compares well, to within , with nearly all the ± 5%

cases. The data of Ou and Rothstein37 on the  wide microridges spaced  apart 30 μm 𝛿𝑦 = 30 μm

(red circular markers) are seen to lie at or above the  error band and represent the most +5%

disparity with respect to the present model. However, their data also lie above their own model 

(red line), which itself falls within  of the present model predictions. Moreover, the +5%

experimental data as well as the model predictions of Ou and Rothstein37 for  wide 20 μm

microridges spaced  apart are seen to agree with the current model predictions well. 𝛿𝑦 = 20 μm

Further, the model is seen to closely match the experimental results of Solomon et al.,28 Lee et al.,38 

and Joseph et al.39 It is also evident from the comparison in Figure 10 that the present model 

predictions tend to be conservative in estimating the drag reduction, and that the actual drag 

reduction could be greater by up to 5% in practice. The model may, therefore, be useful in 

practical design exercise with an inherent safety margin. The present model is seen to be generally 

valid for any  ratio, where it falls within the Wiener and Hashin-Shrikman bounds22-23 for thin 𝐻/𝐿

channels in Figures 7a-7c, and as shown in Figure 10, also compares well with data from a variety 

of literature sources for thick channels with 2–333. 𝐻/𝐿 =  

The results presented in this study provide analytical formulations for effective slip length, 

drag reduction and friction coefficient calculations for laminar flow over anisotropic 

heterogeneously patterned structured surfaces. Overall, the results demonstrate the generalized 

applicability of the present model to a wide range of topographies, infused liquid parameters, 
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and channel thickness, which forms the primary contribution of the article. The analytical 

solutions can be used for designing a variety of fluid and thermal systems such as heat exchangers 

by tailoring surface patterns for achieving desired drag reduction and friction coefficient. It was 

seen that the liquid infused structured surfaces provide less drag reduction compared to 

superhydrophobic surfaces with air cavities under Cassie state. However, it is well-known that 

superhydrophobic surfaces degrade from the Cassie state of wettability to the Wenzel state, 

which might limit the durability of the drag reduction advantage over liquid-infused patterned 

surfaces, as considered in a separate study40. Furthermore, liquid-infused surfaces are expected 

to provide enhanced heat transfer rate compared to superhydrophobic surfaces, that would be 

relevant for a number of applications such as pool/flow boiling, drop-wise condensation, etc. 

While the focus of the present study was on the fluid flow aspects, heat transfer characteristics of 

structured non-wetting surfaces will be considered in a future work. Similarly, extension of the 

study to non-Newtonian and turbulent flows will also be addressed in a future study.

5. CONCLUSIONS

An analytical model was developed for prediction of finite effective slip and, in turn, drag 

reduction and friction coefficient on liquid-infused structured non-wetting surfaces. The 

analytical solution is purely in terms of the geometrical parameters of the patterned surface and 

the infusing fluid, and eliminates empirical fitting or correlations that are inherent in previous 

studies. Based on the slip length and drag reduction values, it is shown that superhydrophobic 

surfaces are significantly better in their non-wetting characteristics compared to liquid-infused 

structured surfaces. Also, the laminar flow conditions considered in the present study limit the 

drag reduction to about 40% for a practical range of fluid flow characteristic length-scales, as seen 

in Figures 9 and 10. Design plots are presented to determine the choice of meso-, micro- or nano 

structured non-wetting surface geometrical parameters (  and ) for a given channel/tube 𝜑𝑠 𝐿

dimension, so as to achieve a desired drag reduction. The theoretical solutions from the present 

study closely agree with experimental and computational data on effective slip and drag 

reduction reported in the literature for a wide range of governing parameters. 
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NOMENCLATURE

: Fluid flow slip length on solid region 𝑏𝑠

 Fluid flow slip length on infusion liquid region𝑏𝑓:

 Liquid infusion region length scale in the direction of flow𝛿𝑥:

 Solid region length scale in the direction perpendicular to the flow𝛿𝑦:

 Periodic length scale of posts in the direction of flow𝐿𝑥:

 Periodic length scale of posts in the direction perpendicular to the flow𝐿𝑦: 

Separation between two infinite parallel plates𝐻:

Radius of a round tube (cylindrical geometry)𝑅:

Velocity component in the direction of flow𝑢:

Dynamic viscosity 𝜂:

Pressure𝑝:

Pressure gradient in the direction of flow𝜎0:

Base flow velocity 𝑢0:
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Perturbation velocity𝑢′:

Stream function𝜓:

Base flow stream function𝜓0:

Perturbation stream function𝜓′:

Vorticity𝜔:

Base flow vorticity𝜔0:

perturbation vorticity𝜔′:

Effective slip length on longitudinal striped geometry𝑏𝐿:

Effective slip length on transverse striped geometry𝑏𝑇:

Effective slip length on longitudinal striped geometry with zero slip on solid region𝑏0
𝐿:

 Effective slip length on transverse striped geometry with zero slip on solid region𝑏0
𝑇:

Effective slip length on structured non-wetting surfaces𝑏:

Solid area fraction𝜑𝑠:

Q: Volume flow rate

Drag reduction𝐷𝑅:

Coefficient of friction𝐶𝑓:

Shear stress𝜏𝑠:

Fluid density𝜌:

: Reynolds number𝑅𝑒

Subscripts

Smooth surface0:

Structured non-wetting surface𝑠:

: Case of longitudinal stripes𝐿

: Case of transverse stripes𝑇

Case of fluid flow between two infinite parallel plates𝐻:

Case of fluid flow in round tubes (cylindrical geometry)𝑅:

Acronyms

SLIPS :  Slippery liquid infused porous surface

SH :  Superhydrophobic
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AHePS :  Anisotropic heterogeneously patterned structured 

IHePS :  Isotropic heterogeneously patterned structured

IHoPS :  Isotropic homogeneously patterned structured
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Table 1. List of governing equations and associated boundary conditions for total velocity and perturbation velocity, for 
flow over a longitudinal-striped geometry (Figures 1b-c).

Total velocity, 𝑢(𝑦,𝑧) Perturbation velocity, 𝑢′(𝑦,𝑧)
Governing
equations

∂2𝑢
∂𝑦2 +

∂2𝑢
∂𝑧2 =

1
𝜂

𝑑𝑝
𝑑𝑥 (1a)

∂2𝑢′
∂𝑦2 +

∂2𝑢′
∂𝑧2 = 0 (3a)

∂𝑢
∂𝑦(0,𝑧) = 0 (1b)

∂𝑢′
∂𝑦 (0,𝑧) = 0 (3b)

𝑢(𝑦,𝑧) = 𝑢(𝑦 + 𝐿𝑦,𝑧) (1c) 𝑢′(𝑦,𝑧) = 𝑢′(𝑦 + 𝐿𝑦,𝑧) (3c)
∂𝑢
∂𝑧(𝑦,

𝐻
2) = 0 (1d)

∂𝑢′
∂𝑧 (𝑦,

𝐻
2) = 0 (3d)

Boundary
conditions

𝑢(𝑦,0) = 𝑏(𝑦)
∂𝑢
∂𝑧(𝑦,0) (1e) 𝑢′(𝑦,𝑧 = 0) = { 𝑏𝑓

∂𝑢′

∂𝑧 (𝑦,𝑧 = 0) ―
𝐻
2𝜂

𝑑𝑝
𝑑𝑥𝑏𝑓  (0 ≤ 𝑦 ≤

𝛿𝑦

2 )
𝑏𝑠

∂𝑢′

∂𝑧 (𝑦,𝑧 = 0) ―
𝐻
2𝜂

𝑑𝑝
𝑑𝑥𝑏𝑠    (𝛿𝑦

2 ≤ 𝑦 ≤
𝐿𝑦

2 ) (3e)

Table 2. List of governing equations and boundary conditions for stream function, vorticity and perturbation functions of stream function and 
vorticity, for flow over a transverse-striped geometry (Figures 1d-e).

Stream function, , and vorticity, 𝜓(𝑥,𝑧) 𝜔(𝑥,𝑧) Perturbation of stream function, , and vorticity, 𝜓′(𝑥,𝑧) 𝜔′(𝑥,𝑧)

Governing
equations

∂2𝜓
∂𝑥2 +

∂2𝜓
∂𝑧2 = 𝜔 (8a)

𝜂
𝜌(∂2𝜔

∂𝑥2 +
∂2𝜔
∂𝑧2 ) =

∂𝜓
∂𝑧

∂𝜔
∂𝑥 ―

∂𝜓
∂𝑥

∂𝜔
∂𝑧 (9a)

∂2𝜓′ 
∂𝑥2 +

∂2𝜓′

∂𝑧2 = 𝜔′ (12a)
∂2𝜔′

∂𝑥2 +
∂2𝜔′

∂𝑧2 = 0 (13a)

∂𝜓
∂𝑥(𝑥,0) = 0 (8b)

∂𝜔
∂𝑥(0,𝑧) = 0 (9b)

∂𝜓′

∂𝑥 (𝑥,0) = 0 (12b)
∂𝜔′

∂𝑥 (0,𝑧) = 0 (13b)

∂𝜓
∂𝑥(𝑥,𝐻) = 0 (8c)

∂𝜔
∂𝑥(𝐿𝑥

2 ,𝑧) = 0 (9c)
∂𝜓′

∂𝑥 (𝑥,𝐻) = 0 (12c)
∂𝜔′
∂𝑥 (𝐿𝑥

2 ,𝑧) = 0 (13c)

∂𝜓
∂𝑥(0,𝑧) = 0 (8d) 𝜔(𝑥,0) =

1
𝑏(𝑥)

∂𝜓
∂𝑧 (𝑥,0) (9d)

∂𝜓′
∂𝑥 (0,𝑧) = 0 (12d) 𝜔′(𝑥,0) =

1
𝑏(𝑥)

∂𝜓′

∂𝑧 (𝑥,0) ―
𝐻
2𝜂

𝑑𝑝
𝑑𝑥

(13d)

Boundary
conditions

∂𝜓
∂𝑥(𝐿𝑥

2 ,𝑧) = 0 (8e) 𝜔(𝑥,𝐻) = ―
1

𝑏(𝑥)
∂𝜓
∂𝑧 (𝑥,𝐻) (9e)

∂𝜓
∂𝑥(𝐿𝑥

2 ,𝑧) = 0 (12e) 𝜔′(𝑥,𝐻) = ―
1

𝑏(𝑥)
∂𝜓′

∂𝑧 (𝑥,𝐻) +
𝐻
2𝜂

𝑑𝑝
𝑑𝑥

(13e)
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FIGURE CAPTIONS

Figure 1. (a) Isometric view of a typical liquid infused AHePS surface, (b) Isometric and (c) top 

view of a typical liquid infused longitudinal striped geometry and (d) Isometric and 

(e) top view of a typical liquid infused transverse striped geometry, with associated 

geometric parameters.

Figure 2. Schematic representation of (a) flow in a rectangular channel formed between two 

parallel liquid infused AHePS surfaces separated by a distance H, and (b) flow in a 

round tube with inner wall structured with liquid infused AHePS patterns. 

Figure 3. Schematic representation of the methodology to calculate the effective slip length on 

a liquid infused AHePS surface: (a) rectangular regions marked T constitute 

transverse stripes (with an effective slip length ), which together with the infused 𝑏0
𝑇

liquid region form an equivalent longitudinal-striped geometry; (b) regions marked L 

constitute longitudinal stripes (with an effective slip length ), which together with 𝑏0
𝐿

the infused liquid region form an equivalent transverse-striped geometry.

Figure 4. Variation of the effective slip length for longitudinal- and transverse-striped 

geometries with the AHePS geometric parameters,  and  for different 𝛿𝑥/𝐿𝑥 𝛿𝑦/𝐿𝑦

dimensionless partial slip length ( values of the infused liquid region.𝐿/𝑏𝑓) 

Figure 5. Variation of the dimensionless effective slip length ( ) on liquid infused isotropic 𝑏/𝐿

heterogeneously patterned structured (IHePS) surface with  and , for (a) 0 𝛿𝑥/𝐿 𝛿𝑦/𝐿
𝐿
𝑏𝑓

→ 

and (b)  10.
𝐿
𝑏𝑓

=

Figure 6. Variation of percentage drag reduction with  for fluid flow (a) between two 𝛿𝑥/𝐿

infinite parallel plates with superhydrophobic IHePS  and (b) in a round tube ( 𝐿
𝑏𝑓

→0)
with liquid infused  IHePS walls, for characteristic flow length scale ( 𝐿

𝑏𝑓
= 1) 𝐿

𝐻 =
𝐿
𝑅

 and for a range of  values.= 0.01 𝛿𝑦/𝐿

Figure 7. Variation of the dimensionless effective slip length ( ) with sold area fraction ( ) 𝑏/𝐿 𝜑𝑠

for (a) superhydrophobic and (b) liquid infused , isotropic homogeneously ( 𝐿
𝑏𝑓

= 10)
patterned surface (IHoPS) for ; (c) variation of the nondimensional effective 

𝐻
𝐿 = 0.01
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slip length with dimensionless channel thickness comparing the present model with 

analytical upper and lower bounds22.23; and (d) variation of the upper limit of 

dimensional channel thickness with solid fraction establishing the range of validity of 

the analytical bounds22,23.

Figure 8. Variation of friction coefficient with Reynolds number for fluid flow (a) between two 

infinite parallel plates with superhydrophobic IHoPS ( ) and (b) in a round tube 
𝐿
𝑏𝑓

→∞

with liquid infused IHoPS wall ( ) for characteristic flow length scale , 
𝐿
𝑏𝑓

= 1
𝐿
𝐻 =

𝐿
𝑅 = 0.01

and different solid fraction, .𝜑𝑠

Figure 9. Variation of percentage drag reduction with solid area fraction for fluid flow (a) in a 

round tube with superhydrophobic IHoPS  and (b) between two infinite parallel ( 𝐿
𝑏𝑓

→0)
plates with liquid infused  surfaces, for a range of flow characteristic length ( 𝐿

𝑏𝑓
= 1)

scale values  and , respectively, and variation of flow characteristic length scales (c)  
𝐿
𝑅

𝐿
𝐻

  and (d)  with solid area fraction for a range of drag reduction values. 
𝐿
𝑅

𝐿
𝐻

Figure 10. Comparison of the percentage drag reduction predicted by the analytical model 

developed in the present study with experimental data and computational simulation 

results reported in the literature for different structured geometries: 20 μm wide 

microridges spaced 20 μm apart (●), 30 μm wide microridges spaced 30 μm apart (■), 

30 μm wide square posts spaced 30 μm apart (♦), circular posts (▼),carbon nanotube 

forest SH structures at solid area fraction 0.1 ( ) , liquid-infused structured surfaces 

(▲), computational results for 20 μm wide microridges spaced 20 μm apart ( ), 

and 30 μm wide micro-ridges spaced 30 μm apart ( ).
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