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Charge transfer complex enabled
mechanochemical synthesis of
chalcogenoacetylenes via alkynyl radicals†
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Mechanochemistry has become an appealing strategy to enable numerous organic transformations.

While significant advancements have been achieved, radical coupling reactions under mechanochemical

conditions are still in their infancy. In this study, a charge transfer complex enabled mechanochemical

generation of alkynyl radicals from alkynyl sulfonium salts is reported. This method provides a convenient

pathway to achieve alkynyl selenides and alkynyl tellurides under much simpler conditions, without inert

gas protection.

Introduction

In the past decades, mechanochemistry has emerged as a
powerful technique with significance across a range of multi-
scale applications in chemical synthesis and materials
science.1 The solvent-free properties and mechanical activation
mode not only make this technique compatible with the
concept of green chemistry,2 but more importantly, can also
provide higher and even completely new reactivities compared
to solution-based methods. Recently, mechanochemistry has
come to be considered a valuable potential synthetic techno-
logy for various synthetically important bond formations.3

However, the application of mechanochemical processes in
radical chemistry is quite limited due to the inherent unpre-
dictable nature of highly reactive radical intermediates.4 Only
recently, seminal studies using piezoelectric materials5 as
ideal photoredox catalyst mimics have been accomplished by
the groups of Ito and Bolm,6 opening up new avenues for the
generation of radicals (Fig. 1A). Since then, several radical
transformations have been reported under ball milling con-
ditions.7 However, most of them employed diazonium salts as
aryl radical precursors.7b,e,l,m Recently, Mandal, Bhunia, and
co-workers developed an interesting solid-state method for the

generation of the super electron donor phenlenyl anion under
ball milling conditions for the single electron reduction of aryl
halides (Fig. 1B).8 Compared with these developed alkyl and
aryl radicals under mechanochemical conditions, radical reac-
tions involving alkynyl radicals under ball milling conditions
remain unexplored. Given the importance of the alkyne func-

Fig. 1 (A) Piezoelectric material-catalyzed radical reactions via ball
milling, (B) generation of the super electron donor phenlenyl anion via
ball milling, and (C) this work: charge transfer complex enabled radical
alkynylations via ball milling.
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tionalities in organic synthesis9 and the inherent advantages
of mechanical techniques, investigating new mechanochemis-
try strategies for the generation of alkynyl radicals is
imperative.

Recently, the photoactive charge transfer complex (CTC)
strategy has emerged as an additional approach to photoredox
catalysis, eliminating the need for photocatalysts.10 However,
the applications of this strategy under ball milling conditions
remain underdeveloped. In 2022, we discovered that alkynyl
sulfonium salts could generate alkynyl radicals by a single
electron transfer (SET) process via chalcogen bonding under
blue light irradiation.11 Based on these results, we wondered
whether the CTC strategy could be applied in mechanochemis-
try to generate alkynyl radicals under much simpler conditions
without inert gas protection (Fig. 1C).

Results and discussion

To test our hypothesis, initial experiments were conducted
with the alkynyl sulfonium salt 1 12 and diphenyl diselenide 2.
We were pleased to find that NaI as the electron donor and
ethyl acetate (EA) as the liquid-assisted grinding (LAG) additive
afforded alkynyl selenide 3 13 in 95% yield, as determined by
GC-MS using n-hexadecane as the internal standard (Table 1,
entry 1). Screening LAG additives showed that EA was the best
choice (entries 2–4). Control experiments demonstrated the
importance of the electron donor and the LAG additive
(entries 5–7).

With the optimal conditions in hand, we first evaluated the
substrate scope of various diphenyl diselenides. As shown in
Scheme 1, diphenyl diselenides with both electron-donating
(4-Me and 4-tBu) and electron-withdrawing (4-F, 4-OCF3, and
4-CN) groups on the aryl ring were suitable for this transform-
ation, giving the corresponding products 4–8 in good to high

yields. Moreover, the reaction was compatible with substrates
containing –OMe, –Cl, and –Me at the meta-position and the
ortho-position, providing 9–12 in 61–83% yields. The di-
substituted substrates also reacted smoothly, giving products

Table 1 Optimization of the reaction conditionsa

Entry Variation from standard conditions Yieldb (%)

1 None 89
2 DMF instead of EA 63
3 DCM instead of EA 76
4 THF instead of EA 72
5 Without Nal Trace
6 Without EA 47
7 Without Nal and EA Trace

a Reaction conditions: 1 (0.4 mmol, 2.0 equiv.), 2 (0.2 mmol), NaI
(0.4 mmol, 2.0 equiv.), and EA (0.2 μL mg−1) were added to a stainless-
steel jar (5 mL) with nine stainless steel balls (each stainless steel ball
had a diameter of 5 mm and weighed ca. 0.6 g) under air and milled at
30 Hz for 30 min. bGC-MS yields with n-hexadecane as the internal
standard.

Scheme 1 Reaction scope. Reaction conditions: alkynyl sulfonium salts
(0.4 mmol, 2.0 equiv.), diselenides or ditellurides (0.2 mmol), NaI
(0.4 mmol, 2.0 equiv.), and EA (0.2 μL mg−1) were added to a stainless
steel jar (5 mL) with nine stainless steel balls (each stainless steel ball had
a diameter of 5 mm and weighed ca. 0.6 g) under air conditions and
milled at 30 Hz for 30 min. Yields of the isolated products are given
beside the desired products; trace amounts of diynes were detected as
by-products. a 1.0 mmol.
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13–15 in moderate to high yields. Notably, 1,2-di(thiophen-3-
yl) diselane was also compatible and provided 16 in 70% yield.
Based on the success with diphenyl diselenides, we attempted
to apply this strategy to alkyl diselenide substrates. It was
found that dibenzyl diselenide and dimethyl diselenide under-
went smooth transformation to give the corresponding pro-
ducts 17 and 18 in 68% and 89% yields, respectively. Then,
various alkynyl sulfonium salts were examined and all of them
performed admirably (19–23).

Considering the medical applications of tellurides,14 we
further evaluated the corresponding tellurylation reactions
under the same reaction conditions. The ditellurides contain-
ing electron-donating or electron-withdrawing substituents
attached to the phenyl ring, such as 4-methoxyl, 4-methyl,
4-fluro, and 4-chloro, all reacted well with 1 to produce the
corresponding products 24–27 in high to excellent yields. In
addition, several alkynyl sulfonium salts were examined as
well, and all reactions proceeded well, affording the corres-
ponding products 28–32 in high yields.

To obtain a deeper insight into the mechanism of this
transformation, a series of mechanistic experiments were
carried out, and the results are shown in Fig. 2. First, the

alkynyl sulfonium salts containing an iodide anion instead of
a trifluoromethanesulfonate anion reacted well with diphenyl
diselenide 2 in the absence of NaI, affording product 3 in
89% yield (Fig. 2A, top), which demonstrated the importance
of the iodide anion as the electron donor. Then, the reaction
was performed in the absence of diphenyl diselenide 2,
leading to iodoethynylbenzene 34 in a yield of 59%; mean-
while, the dimer of phenylacetylene 35 was detected by
GC-MS (Fig. 2, middle), which indicated the generation of the
alkynyl radical. Next, iodoethynylbenzene 34 and diphenyl
diselenide 2 were milled under the standard reaction con-
ditions and product 3 was not detected, which ruled out the
possible pathway between the iodoethynylbenzene and disele-
nide (Fig. 2A, bottom). Moreover, the radical pathway of this
reaction was further confirmed by a radical inhibition experi-
ment. When 5.0 equiv. of 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO) was subjected to the standard reaction conditions,
product formation was inhibited (product 3 was not detected)
and iodoethynylbenzene 34 was also not formed (Fig. 2B).
These results suggested that radicals may be involved in the
process.

On the basis of the above experimental results and our pre-
vious studies,15 we proposed a possible mechanism for this
mechanochemical alkynylation of alkynyl sulfonium salts
(Fig. 2C). After the formation of a charge transfer complex
between the alkynyl sulfonium salt and NaI, the cleavage of
the C–S bond occurred under ball milling conditions, leading
to the generation of the alkynyl radical and the iodine radical;
the former then reacts with diselenide to give the final
product. Additionally, the alkynyl radical would be coupled
with the iodine radical to give iodoethynylbenzene, which is
supported by the results of the control experiment (Fig. 2A,
middle).

Conclusions

In summary, we have developed a new CTC strategy for synthe-
sizing chalcogenoacetylenes from alkynyl sulfonium salts
using NaI as the electron donor under mechanochemical con-
ditions. The reactions are easy to perform, solvent- and metal-
free, and proceed in a short reaction time (30 min) to provide
products in good to excellent yields. The utilization of NaI as
the electron donor and EA as the liquid-assisted grinding addi-
tive was identified as the key factor for this transformation.
Further exploration on using the CTC strategy with mechanical
techniques to develop new reaction modes is currently under-
way in our laboratory.

Data availability

The authors confirm that the data underlying this study are
available within the article and its ESI.†

Fig. 2 (A) Control experiments, (B) radical inhibition experiment, and
(C) proposed mechanism.
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