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Critical biotransformation half-lives of chemicals in
air-breathing wildlife to assess food-chain
bioaccumulation and biomagnification

Roman Ashauer (2 *@°

Biomagnification, the process by which chemical concentrations increase in organisms at higher trophic
levels, can pose significant risks to wildlife and ecosystems. Despite its importance, our understanding of
species-specific differences in biomagnification potential remains limited. The analysis of the critical
biotransformation half-life, the maximum half-life to avoid biomagnification of a chemical, can help
address this gap. Here, | present a comprehensive analysis of critical biotransformation half-lives across
diverse air-breathing wildlife species, providing novel insights into the factors influencing biomagnification.
By constructing species-specific contour plots in chemical partition space, | reveal substantial variations in
biomagnification potential among different organisms, with differences in critical biotransformation half-
lives reaching more than two orders of magnitude. These substantial interspecies differences underscore
the need for species-specific biotransformation data and biomagnification modelling. This analysis also
demonstrates that model normalisation methods significantly impact these species-specific differences,
suggesting that the choice of normalisation can alter biomagnification assessments. | further delineate the
chemical partition space regions where elimination is dominated by urination versus respiration,
highlighting important interspecies variations. Finally, | introduce a weight-of-evidence approach for
assessing potential food-chain biomagnification, illustrated through a case study on methoxychlor, which is
a generalizable approach that differs from current approaches by its stronger focus on biotransformation. A
critical discussion of allometric scaling and sources of uncertainty identifies further research needs. This
work enhances our ability to predict and assess biomagnification risks across diverse ecosystems and
species, offering valuable tools for environmental risk assessment and conservation efforts.

Biomagnification of chemicals in food chains can pose a significant risk to wildlife and ecosystems. This study addresses a critical knowledge gap in species-specific
differences in biomagnification potential. By analyzing critical biotransformation half-lives across diverse air-breathing wildlife across chemical partition space, I reveal

substantial variations in biomagnification potential among organisms and the dependence of those interspecies differences on chemical partitioning. This work enhances

our ability to predict and assess biomagnification risks across diverse ecosystems and species. By introducing a weight-of-evidence approach for assessing potential food-

chain biomagnification, illustrated through a case study, I provide a generalizable approach that differs to current approaches by its stronger focus on biotransformation.

Introduction

properties of the substance as well as biological traits of the species
comprising the relevant food-chains. Biomagnification can be

Synthetic chemicals can bioaccumulate and some biomagnify along
food-chains'® and this can pose a risk to humans and wildlife. Bi-
omagnification means that concentrations in biological organisms
increase with trophic level.* More accurately biomagnification is
characterized by an increase in fugacity in the organism over its
food and is explained by digestion of lipids in the gastrointestinal
tract, leading to solvent depletion and solvent switching.>” Whether
biomagnification occurs depends on the physical and chemical
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quantified with a biomagnification factor (BMF), defined as the
ratio of the fugacity in the organism and the fugacity in its diet at
steady-state, and when the BMF is greater than one, bi-
omagnification occurs. Instead of using fugacities, the BMF can also
be calculated as the ratio of appropriately normalized concentra-
tions in the organism and its diet.* Because biomagnification is
defined operationally for the purpose of assessing potential chem-
ical risks and informing regulatory decisions, it is generally assessed
by comparing concentrations of a chemical in organisms at
different trophic levels (i.e., in predators relative to their prey). For
that purpose, it is desirable to reduce variability in the calculation of
the BMF caused by differences in body composition of organisms

This journal is © The Royal Society of Chemistry 2025
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through normalization,* specifically differences in the amount and
composition of sorptive phases in the organism and its diet. Lipid-
normalization which accounts for different lipid contents and lipid-
equivalent normalization, which accounts for differences in body
lipid, protein, carbohydrate and water content, are two normaliza-
tion methods,**™ whilst the fugacity approach is another.>*

There are many well established regulatory frameworks to assess
biomagnification and bioaccumulation in water-breathing (aquatic)
organisms and more recently the assessment of air-breathing
(terrestrial) species is receiving increased attention too.*'* Some
models for bioaccumulation and biomagnification in air-breathing
species and terrestrial food-chains are already available***>'® and
some are even integrated into user-friendly assessment tools."”
Assessing the potential of chemicals to biomagnify in air-breathing
species requires considering their partitioning between body and
air and body and water, as well as understanding the chemical's
biotransformation in the relevant species. Biotransformation,
sometimes also termed metabolic transformation (metabolism), is
the biochemical break-down of the parent chemical into trans-
formation products, which are usually less toxic, more water soluble
and thus easier to transport out of the body.

Generally, we do not know the biotransformation pathways and
rate constants of chemicals in wildlife (see e.g.*® for birds). Yet, the
biotransformation half-life, which can be calculated from the
biotransformation rate constant, is a key parameter in models to
calculate BMFs. This poses a challenge for assessing the bi-
omagnification potential of chemicals, especially in wildlife,
because this assessment relies strongly on modelling that requires
the generally unknown biotransformation half-life as input.
Consequently, we still have very limited knowledge of actual bi-
oaccumulation and biomagnification of chemicals in wildlife.

To work around the problem of unknown biotransformation,
one can plot biotransformation half-life values as functions of
partition ratios, as demonstrated using models parameterized for
humans by Goss et al.” and Arnot et al..”® Gobas et al. have sug-
gested using biotransformation halflife values to assess the
potential of a substance to biomagnify in terrestrial organisms more
generally.” Recently, Saunders & Wania’ published a model to
calculate the lipid-equivalent normalized BMF for neutral organic
substances at steady-state for a wide range of air-breathing wildlife
and, importantly, Saunders & Wania also published a very
comprehensive set of species-specific model parameters. Thus, we
know the importance of biotransformation for biomagnification,
the use of partition space plots to illustrate patterns across chemical
space and we have BMF models for a wide range of air-breathing
species. What we poorly understand is the interplay between
biotransformation, a chemical's partition properties and biological
differences amongst species in biomagnification modelling.

Improving this understanding is the aim of this study. To do so,
I calculate and plot the critical biotransformation half-life in
a diverse range of air-breathing wildlife and construct species-
specific contour plots of that parameter in chemical partition
space. The critical biotransformation half-life is the maximum
halflife to avoid biomagnification of a chemical. Shorter
biotransformation half-lives do not result in biomagnification.
Biotransformation half-lives longer than the critical half-life value
do result in biomagnification. The critical biotransformation half-
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life is specific for the respective combination of log Ko, (octanol-air
partition ratio) and log Kow (octanol-water partition ratio) of the
chemical and it is specific for each biological species. I also
investigate how model versions with different normalisation
methods result in species-specific differences in critical half-lives
and I calculate for which part of the chemical partition space
elimination is dominated by urination vs. respiration and how that
differs across species. Finally, I illustrate a weight of evidence
approach to assess potential food-chain biomagnification.

Materials & methods

Model 1: kinetic biomagnification model (not normalised).
A simple biomagnification model that assumes dietary
uptake dominates is given by:

EpGp
kr

BMFy = (1)
where subscript D refers to Diet, Ep, is the dietary uptake effi-
ciency [unitless] (the fraction of chemical absorbed into the
body from the ingested food), G, is the weight normalized
feeding rate [kgaier kgorganism + d '], kr is the total elimination
rate [d~'] and BMF, is the kinetic biomagnification factor [Kgg;et
kgorganism’l]. This model does not include fugacity-, lipid- or
lipid-equivalent normalisation; however, it is the model one
would use to calculate the ratio of actual (not normalized)
concentrations in the organism and its diet at steady-state. It is
a simplified model where uptake is only via the diet and other
routes (e.g. inhalation, drinking, skin) are not considered.

Saunders & Wania® included only urinary excretion and
respiratory exhalation as elimination pathways, omitting
biotransformation (implicitly assuming no biotransformation
occurs) because the biotransformation rate is generally
unknown, to model elimination as:

kr = ky + kr

Gurinalion Grespiralion

vvol_oct_eq_organism X KOA ( TB)
(2)

where subscript B refers to Biota, ki is the rate constant for

Vvol_ocl_eq_organism X KOW ( TB)

excretion via respiration [d~'] and ky is the rate constant for
excretion via urination [d™"], Gurination i the weight normalized
urination rate at body temperature [Lysine d™ ' KZorganism 'J»
Grespiration 1 the weight normalized animal respiration rate [Lay;,
d™" Kgorganism '}y Vvol oct_eq organism 1S the volume of octanol
equivalent in the body [Loctanol kgorgamsm_l], Koa is the octanol-air
partition ratio [Lair Loctanol J, Kow iS the octanol-water partition
ratio [Lyater Loctanol ] and T is the body temperature [°C]. Here, I
use the model of Saunders & Wania for the urinary excretion and
respiratory exhalation pathways, and, in addition, I model
biotransformation with a single-first order kinetics loss term:

- Gurination Grespiration
T =
Vvol_oct_eq_organism X KOW(TB) Vvol_oct_eq_organism X KOA(T B)
In2
HL

(3)
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where HL [d] is the whole-body biotransformation half-life. i.e. the
whole-body biotransformation half-life that results in a BMF equal
to one. Shorter half-lives, indicating faster biotransformation, lead
to BMF values below one and therefore no biomagnification occurs
for such substances in the species modelled (see also*?*). Setting
BMF,, equal to one, such that kr = Ep, x Gp, yields eqn (4), where
the critical biotransformation half-life HLci¢ piotranst, [d] iS:

Gurination

HLerit biotranst. = In 2/(ED x Gp —
anl,ocl,cqiorganism X KOW(TB)

Grespirution > (4)

Vvol,oct,eqiorganism X KOA ( TB)

Model 2: model for hydrophobic chemicals (model normal-
ised, high Kow)

The first model (their eqn (1)) used by Saunders & Wania® to
calculate the lipid-equivalent normalised BMF?® for neutral
organic substances at steady-state is given by:

EpGp

BMF, = B
T

x normalisation (5)

where BMF;, is the lipid-normalized biomagnification factor
[Kgiipia kglipidfl] and normalisation is a term that differs
depending on the applicability domain of the model. For
hydrophobic chemicals that accumulate predominantly in
neutral lipids, the normalisation term is the ratio of the fractional
lipid equivalent content of diet [kgiipia kggiee '] divided by the
fractional lipid equivalent content of body [kgiipia kgorgamsm*l]?*21
Thus, this is the equation to calculate the lipid-equivalent
normalized, whole-body, critical biotransformation half-life
HLcsie biotranst. [d] for hydrophobic neutral organic substances:

f lipid_eq_diet _

HLcrit biotranst. = In 2/ <ED x Gp X f

lipid_eq_organism

Gurination Grespirution

— 6
Vvol_oct_eq__organism X KOA(TB)> ( )

Vvol,oct,eqiorganism X KOW(TB)

where fiipid_eq diet is the fractional lipid equivalent content of
diet [Kgiipia kgaiet '], Jiipid_eq_organism 1S the fractional lipid
equivalent content of body [Kgiipia kgorganismfl].

Model 3: model for hydrophobic and hydrophilic chemicals
(model normalised, all Kow)

A BMF model that is applicable also for hydrophilic chem-
icals requires a more complex normalisation term and was
defined in eqn (14) in Saunders & Wania.® This model is
applicable for substances across the whole range of Koy values,
because it also accounts for partitioning into body water. Par-
titioning into body water is important when comparing
different species because species differ in their water content.
Based on this more widely applicable model the equation to
calculate the whole-body, critical biotransformation half-life
HLerit biotranst. [d] is:

HLcrit.biotransf. =1In 2/ (ED X GD x normalisation—

_ Grcspiration ) (7)

Vvol_oct_eq_organism X KOA ( TB)

Gurinalion

Vvol_oct_eq_organism X KOW ( TB)
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with

DLp + Pppf + Pepb + @W,D/Kow

Normalisation =
DL+ PppB + Pl + ‘I)W‘B/Kow

(8)

where and @, is the fraction lipid [kgjipia Kgpiomass |, Pp is the
mass fraction protein [kgprotein Kgpiomass ], Pc is the mass
fraction carbohydrate [Kg arbohydrate Kgbiomass ], Pw is the mass
fraction water [Kgwater K€biomass ], 8 is the sorptive capacity of
protein relative to lipid (0.05 kgjipia Kgprotein )'™® and 6 is the
sorptive capacity of carbohydrates relative to lipid (0.1 kgjipia

—1\ 1
kgcarbohydrates )

Further model assumptions and temperature correction

Following Saunders & Wania I also assume equivalent sorp-
tive properties of lipid and octanol, negligible temperature
dependence of Kow (i.e. Kow(Ts) = Kow(25 °C))** and apply
a temperature correction to Ko, according to Baskaran
et al.:*

AUOA =-8.75x log KOA75~07 (9)

corr_log Kox = —AUoa x 1 _ 1
—08 foa = 7 27315+ Ty 273.15 + 25

x log,(e) + log Koa (10)

Koa(Tg) = corr_log Koa (11)
where AUp, is the internal energy of phase transfer from octa-
nol to air [k] mol™"], R is the ideal gas constant (8.314 x 107> kJ
K™ mol™") and corr_logKo, is the temperature corrected
octanol-air partition ratio [Lair Loctanol -

Input data

Input data for the model originates from Table S5 of the SI
provided by Saunders & Wania® and includes 203 datasets.
These 203 datasets comprise 141 unique species, of which 34
species have multiple entries. The multiple entries represent
different conditions (e.g. flight vs. resting) and consist of
different parameter values for the same species. I have revised
the naming of some species with multiple entries in the first
column of the file to follow a harmonized naming convention
(e.g. correcting some typos and misspellings). The revised data
file is provided in the SI of this study.

In this dataset only the animal respiration rates are derived
directly from species-specific observations. The urination rates
were derived by allometric scaling for mammals and birds, and
the urination rates for reptiles were derived by adjusting the
allometric relationship for birds to the lower body weight of
reptiles.® The animal feeding rates were calculated from field
metabolic rates and energy content of the food, where the field
metabolic rates were obtained from allometric relationships for
birds, mammals and reptiles.® A correction for different body
temperatures was applied to the field metabolic rates using
a Q; value of 2.5 and the same Q,, correction was also applied
to urination rates (less ingestion, metabolic activity and urina-
tion at lower body temperatures).’

This journal is © The Royal Society of Chemistry 2025
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Data analysis and visualization

I plotted critical half-life values as function of the chemical
partition space and created contour plots by calculating
a matrix of critical half-life values corresponding to a range of
log Koa values from 0 to 15 and log Kow values from —2 to 8 with
0.1 spacing (i.e. a matrix of 151 log Ko, values and 101 log Kow
values). I calculated this matrix of critical half-life values for
each entry (species) in the input data file, saved it as text file and
subsequently plotted it (Fig. 1) using the Python contour plot-
ting functionality (see code in SI). Model 1 is eqn (4), model 2 is
eqn (6) and model 3 is eqn (7) and (8). The temperature
correction (eqn (9)-(11)) is used in all three models.

Next, I compared all the datasets (all species) generated with
model 3 with each other and counted chemicals (i.e. combina-
tions of log Kow and log Kpa) for which the critical half-life
differed by more than 10 days or more than 100 days. I also
plotted these frequencies in partition space (Fig. 2).

To better understand for which chemicals elimination,
excluding biotransformation, is dominated by each animal's
capacity to eliminate the chemical via respiration (kz) or
urination (ky) I calculated and plotted the ratio of both rate
constants in a similar matrix corresponding to a range of log
Koa values from 0 to 15 and log Kow values from —2 to 8 (Fig. 3).
The slope of the line that divides the partition space into areas
where elimination via urination dominates (above the line) vs.
areas where elimination via respiration dominates (below the
line) is also calculated.

As an illustrative example I calculated the critical half-lives
for methoxychlor (CAS 72-43-5) with model 3 and plotted
them against body weight, whilst using different symbols to
differentiate different animal categories as well as indicating
whether elimination is dominated by urination or respiration
(Fig. 4). Table 1 summarises this analysis. I also analysed the
correlation in this dataset (Spearman rank correlation coeffi-
cient on log transformed data, full analysis in the SI).

Table 1 also includes critical biotransformation half-live
values scaled to a standardised weight (1 kg) and temperature
(25 °C). These calculations followed the approach described on
page 22 of the BAT user manual* and involve conversion of half-
lives to first-order rate constants in a first step, which are then
scaled as:

kB,s — kB,a( Ws/ Wa)—O.ZSeO.Ol(K—TB) (12)
Where kg ¢ is the scaled critical biotransformation rate constant
[1/d], kg 4 is the actual critical biotransformation rate constant
[1/d] before scaling (calculated from the critical biotransfor-
mation half-life as kg o = In(2)/HLeyi¢ biotranst.)y Ws is the weight
selected for scaling (here 1 kg), W, is the actual body weight of
the animal [kg], Ts is the body temperature [°C] selected for
scaling (here 25 °C) and Ty is the actual body temperature of the
animal [°C].

To better understand the differences between the three
models I calculated the differences in critical biotransformation
half-lives between the three models. Then I selected the
combination of log Kow and log Ko, where the largest difference

This journal is © The Royal Society of Chemistry 2025
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between any of the three models occurs for a given species and
plotted the critical half-life values for the three models (Fig. 5).

Model implementation

I implemented the models in Python and provide the model
code, including code for data analysis and visualization, as SI.

Sources of methoxychlor case-study data

I used methoxychlor (CAS 72-43-5) as example chemical because
I could easily find the required data and because it has parti-
tioning properties suitable for illustrating biomagnification
modelling questions. Using the kinetic model (eqn (4), model
(1) I calculated the critical biotransformation half-lives for
methoxychlor and the two species of concern in a simple two-
species food-chain (Tundra-vole, Red-tailed hawk, see Results
& discussion section). I retrieved values for methoxychlor of log
Kow (5.08) and log Ko, (10.244) at 25 °C from the EAS-E suite
online tool.*

A whole-organism biotransformation rate constant, easily
converted to a halflife, was derived by Lee et al*® for
methoxychlor in the rat from in vitro experiments (0.252 +
0.00478 SE h™!). Measured loss of parent after two hours in vitro
with liver-slices and "*C-labelled methoxychlor yielded half-life
data for rat, mouse, quail and trout.”” Quantitative structure
activity relationships (gsar) built into the EAS-E web tool*
provide estimates of whole-body biotransformation half-lives in
human and fish.

Results & discussion

Critical biotransformation half-lives: differences between
species

I created contour plots of critical biotransformation half-lives in
chemical partition space (Kow vs. Koa) for all 203 datasets and
using all three BMF models. All contour plots are provided in
the SI and Fig. 1 shows the plots for three species (a mammal,
reptile and bird) that nicely serve to illustrate the typical
differences in the contour plots: diamondback water snake,
humming bird (flight) and thirteen-lined ground squirrel. The
critical biotransformation half-life depends on the chemical
partition space and this chemical partition space plot of the
HLit-biotranst, differs from one species to another (Fig. 1, all
Fig. in SI folder “SI HL contour plots”). It is also evident that the
required half-life to avoid biomagnification can differ by orders
of magnitude for the same chemical in different species (e.g
compare Fig. 1d-f vs. 1la-c and 1g-i, i.e. Hummingbird vs.
Diamondback water snake and Thirteen-lined ground squirrel).

There are regions in the chemical partition space where large
differences in the critical biotransformation half-lives between
species are most frequent. When comparing all species with
each other (20 503 comparisons), using model 3, I found that
differences in critical biotransformation half-lives greater than
10 days (Fig. 2a) or greater than 100 days (Fig. 2b) occur mostly
in two areas of partition space. These are the yellow shaded
regions in Fig. 2. First, for chemicals with log Kow approxi-
mately between 1 and 3 in combination with a log Ko, greater

Environ. Sci.. Processes Impacts, 2025, 27, 3482-3497 | 3485
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Critical half-life: model normalised, all Kow
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Fig. 1 Contour plots of critical biotransformation half-life values (t;/> [d]) within chemical partition space for three models and three illustrative

species (Figures for 3 models and 203 datasets are provided in the S folder "SI HL contour plots”). Results for the kinetic BMF model (no nor-

malisation, model 1) in the left-hand column, the lipid-normalised BMF (model 2) in the middle and the model normalized for lipid- and water-
partitioning (model 3) in the right-hand column. Colours indicate critical biotransformation half-life values, i.e. the maximum half-life to avoid
biomagnification of a chemical with the respective combination of log Ko and log Kow in that species. White space in the plot indicates chemical
partition properties where biomagnification is not possible according to these models.
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Fig.2 Contour plots of the frequency of critical half-life values being >10 days (a) or >100 days (b) within partition space. Calculated with model 3
(model normalised, all Kow) as how often this occurs for a given combination of log Kow and log Koa in @ comparison of all species vs. all species.
Yellow areas indicate chemical properties where large species differences occur most often.

Urination vs Respiration Urination vs Respiration Urination vs Respiration
(a) Diamondback water snake ( Humming bird (fllght) ( Thirteen-| Ilned ground squirrel
Slope: 0.99 Slope: 0 Slope:

le+13

le+09
1le+05

le+01

log Koa
log Koa

1e-03

1le-07

le-11

le-15

log Kow ku/kn ‘09 Kow

le+13
le+09
1le+05
le+01
le-03
1le-07
le-11
le-15

log Koa

1le+13
1e+09
1e+05
le+01
1e-03
1e-07
le-11
1le-15

ku/kr Icg Kow kulks

Fig. 3 Capacity to eliminate via urination (k) divided by the capacity to eliminate via respiration (kg) plotted in chemical partition space. This ratio
indicates which elimination pathway dominates in the absence of other elimination pathways. Chemicals with a combination of log Ko and log
Kow above the black line (line indicates: ky/kg = 1) are predominantly eliminated via urination. See Sl for 203 such plots.

than 4, partitioning into the different phases (e.g. water,
protein, lipids) is important and that is why the model predic-
tions differ here because the different normalisation terms
become relevant. Second, the large model differences appear to

This journal is © The Royal Society of Chemistry 2025

also be more frequent for chemicals with log Ko approximately
between 3 and 5 in combination with a log Koyw greater than 2.
This could be due to many species not biomagnifying in this
area of partition space at all, hence the high frequency of model
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Fig. 4 Critical biotransformation half-life vs. body weight (a), critical biotransformation half-life vs. the ratio of ky/kg (b), body weight vs. the ratio
of ku/kg (c) and critical biotransformation half-life vs. body temperature (d). Each data point represents a different dataset in panels (a)—(c), on
log-log scale, symbols indicate different animal categories and whether elimination is dominantly via urination (full symbols) or respiration (open
symbols). Panel (d) shows reptiles at different body temperatures (note: y-axis on log scale, x-axis on normal scale). All data is for the example of

methoxychlor (CAS 72-43-5).

differences in an all-species vs. all-species comparison, and this
same effect could also explain the first pattern of frequent
model differences along the vertical axis. Out of all 20503
comparisons 17 184 (84%) identified differences greater than 10
days and in 8431 (41%) comparisons the difference in the crit-
ical half-life was greater than 100 days. In other words: in the

partition space analysed (15 251 chemicals, log Kow —2 to 8, log

Koa 0 to 15, log unit grid matrix of size 101 x 151) there was at
least one chemical for which the critical biotransformation half-

3488 | Environ. Sci.. Processes Impacts, 2025, 27, 3482-3497

life values differed by at least 100 d for 41% of species-by-species
comparisons.

The methoxychlor case study provides further insights into

species differences for one example chemical. Table 1 shows the
species with the smallest and largest critical half-lives in each
animal category (birds, mammals, reptiles <25 °C, reptiles >25 °©
C). In all four animal categories the differences in critical half-
lives were at least one order of magnitude (Table 1), with the
largest difference for mammals where critical half-lives span-
ned from 1 day to 171 days. This means that a conclusion about

This journal is © The Royal Society of Chemistry 2025
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Table 1 Selection of critical half-life values and the ratio of elimination via urination vs. respiration (ky/kr) for methoxychlor (CAS 72-43-5, log
Kow 5.08, log Koa 10.244, both at 25 °C) as example. Shown are the species with the smallest and largest values in each animal category. The
laboratory rat is also shown for comparison. Critical biotransformation half-lives calculated with model 3. Allometric and temperature scaling

following the approach provided in the BAT user manual (page 22).2*

Critical
biotransformation
Critical half-life scaled by
biotransformation = weight and
Body Body Critical half-life scaled by =~ temperature [d],
weight  temperature  biotransformation  weight [d], scaled to

Animal Category kulke  [kg] [eC] half-life [d] scaled to 1 kg 1 kg & 25 °C
Species with minimum and maximum critical half-lives
House finch Birds 1.009  0.02 41.25 7.87 x 107" 2.09 x 10° 2.46 x 10°
Ostrich Birds 1.698 88 40 2.96 x 10" 9.65 x 10° 1.12 x 10"
Little brown bat Mammals 216.5  0.006 37 9.59 x 107" 3.45 x 10° 3.89 x 10°
(hibernation)
Florida manatee Mammals 26.33 250 35.4 1.71 x 10> 4.30 x 10" 4.77 x 10"
Lacerta lizard (a) Reptiles <25 °C  1.235  0.016 20 4.77 x 10" 1.34 x 10* 1.27 x 10*
Box turtle (a) Reptiles <25 °C  936.6  0.316 5 4.49 x 10” 5.99 x 10> 4.91 x 10?
Lake eyre dragon (b) Reptiles >25 °C  0.795  0.008 37 9.26 x 10° 3.10 x 10" 3.49 x 10"
Green sea turtle (c) Reptiles >25 °C  4.862  94.5 27.5 1.93 x 10* 6.18 x 10" 6.34 x 10"
Species with minimum and maximum ratio ky/kg
Evening grosbeak (flight)  Birds 0.038  0.059 40 1.55 x 10° 3.14 x 10° 3.65 x 10°
Little penguin Birds 4.567  1.082 40 6.24 x 10° 6.12 x 10° 7.11 x 10°
Egyptian fruit bat Mammals 1197  0.15 36.53 3.62 x 10° 5.82 x 10° 6.53 x 10°
Thirteen-lined Mammals 797.7  0.183 7.6 4.58 x 10" 7.00 x 10" 5.88 x 10"
ground squirrel
Lacerta lizard (a) Reptiles <25 °C  1.235  0.016 20 4.77 x 10" 1.34 x 10> 1.27 x 10>
Box turtle (a) Reptiles <25 °C  936.6  0.316 5 4.49 x 10” 5.99 x 10° 4.91 x 10”
Green iguana (c) Reptiles >25 °C  0.221  0.206 34 1.82 x 10 2.69 x 10 2.95 x 10"
American alligator (b) Reptiles >25 °C  14.09  0.056 27 3.82 x 10" 7.85 x 10" 8.01 x 10"
Laboratory rat for comparison
Sprague-dawley rat Mammal 3.737  0.365 37 6.62x 10° 8.51x 10° 9.60x 10°

the likelihood of biomagnification based on a single half-life for
a standard laboratory animal such as the rat is difficult to
extrapolate to the diversity of wildlife. A large portion of those
inter-species differences can be explained by differences in body
weight and temperature. The last two columns of Table 1 show
the critical biotransformation half-lives scaled to a 1 kg
organism with body temperature 25 °C. After scaling the critical
biotransformation half-lives differ much less, with the largest
difference for birds being reduced from a factor of 38 for
unscaled maximum differences to 5 after scaling and similar
reductions from factor 178 to 12 for mammals, from factor 9 to
4 for reptiles <25 °C and from factor 21 to 2 for reptiles >25 °C.

Fig. 4a further illustrates that the differences between
species are not easily explained by body weight differences
alone because the range of critical biotransformation half-lives
for a given body weight can span several orders of magnitude
across different species, although the two variables correlate
(Spearman rank correlation coefficient on log transformed data
(rs) = 0.756, P = 1.15 x 10~ *?). This correlation is strongest for
birds (rs = 0.806, P = 3.38 x 10~ **) and mammals (r; = 0.886, P
=2.20 x 10~*?), and strong for reptiles > 25 °C (r, = 0.601, P =
3.91 x 10~°), whilst absent for reptiles < 25 °C (r; = 0.072, P =
6.77 x 10 "). The correlation for reptiles >25 °C is strongly

This journal is © The Royal Society of Chemistry 2025

influenced by the two data points with the largest body weight,
which are both for the green see turtle. The correlations
between critical biotransformation half-lives and body weight
are all, at least in part, a consequence of the use of allometric
scaling to derive animal feeding and urination rates. The vari-
ation in critical half-lives for a given body weight is generally
less than one order of magnitude for birds above 0.1 kg body
weight and it is also less variable for mammals compared to
reptiles (Fig. 4a). The greater variation in critical biotransfor-
mation half-lives for species with similar weight that is apparent
in the reptile data can be attributed to the influence of
temperature correction on feeding and urination rates for these
ectothermic animals. The relationship between critical half-
lives and body weight can be useful to approximate critical
half-lives from body weight in the absence of further data, but
the reliability of the species-specific model predictions is much
greater.

There is also a correlation between the cri