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Photocatalytic production of H,O, and H, holds promise for conquering the impending energy crisis. In
order to accomplish this goal, the photocatalysts must be robust and effective enough to harvest
photons from a wide solar spectrum as well as having a high rate of exciton antirecombination. Low
visible light absorption and fast recombination of exciton pairs are two major setbacks encountered in
pristine MOF-based photocatalysts. Herein, the MOF UiO-66-NH, modified with noble bimetallic
nanoparticles (Ag/Pd) was synthesized via a facile adsorption—reduction technique and utilized for effec-
tive photocatalytic H,O, and H, production. The composite (1:2) Ag/Pd@UiO-66-NH, displayed a H,O,
production rate of 39.4 pmol h™* in an O,-saturated environment in the presence of IPA and water
under visible light illumination, which is almost four-fold more than that of the pristine UiO-66-NH,
MOF and twofold greater than those of the monometallic counterparts (Ag@MOF or Pd@MOF). More-
over, the photocatalytic H, evolution of the prepared materials was studied and a similar trend was
observed in which the composite (1:2) Ag/Pd@UiO-66-NH, showed the highest H, evolution capacity
of 448.2 pmol h™!. The enhanced photocatalytic performance of the Ag/Pd@MOF composite can be
attributed to its ability to suppress exciton recombination, superior photon reception, and fast charge
transfer. Mechanistically the transfer of photogenerated electrons from the UiO-66-NH, surface to the
bimetallic component was promoted through the LSPR effect of Ag and this is further enhanced by the
Pd support. The electron-trapping capacity of the bimetallic nanoparticle (NP)-based co-catalyst
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enhances the overall reaction mechanism by giving highly surface active sites on the surface for the

rsc.li/energy-advances photocatalytic production of H,O, and H, as a sustainable means of green energy production.

1. Introduction

Hydrogen peroxide (H,O,) is considered as a green and eco-
friendly oxidant, which can be treated as an active oxidant,
producing water as by-product, with potential for use in exten-
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treatment, chemical industry, sterilization, and other environ-
mental applications. Recently, H,O, has also attracted a lot of
attention as a promising energy carrier for fuel cells because it
is water-soluble and can be used to generate electricity in a
single-compartment cell."”” Mainly, the commercial generation
of H,0, follows the anthraquinone process, which includes
two steps: the conversion of 2-alkyl-anthraquinone to alkyl-
anthraquinone followed by high-energy oxidation and hydro-
genation processes using noble-metal-based catalysts in
organic solvents. As the anthraquinone process involves multi-
ple steps and is an energy-consuming method, it is applicable
only for large-scale production, and is thus considered as an
environmentally unfriendly approach. To overcome this, there
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has been growing research interest in the production of H,0,
through photocatalysis. This process mainly involves water,
oxygen, semiconductors, and sunlight, and is therefore con-
sidered a green pathway. However, typically, the photocatalytic
production of H,0, gives low yields owing to the photocatalysts’
poor visible light absorption, rapid recombination of excitons,
and limited surface active sites.’™®

Additionally, the photon-assisted hydrogen evolution reac-
tion via water splitting has been carried out to estimate the
photocatalytic characteristics of semiconducting materials. The
generation of H, from the photocatalytic water splitting reac-
tion has become an emerging research topic since the discovery
by Fujishima and Honda’s hydrogen production from H,O
using a TiO, semiconductor under light irradiation, with
the aim of reducing the world’s reliance on fossil fuels for
energy.”*° Moreover, the construction of a cost-effective, sus-
tainable, and environmentally friendly photocatalytic semicon-
ductor that is capable of performing this reaction has received
much interest from the scientific community and remains a
grand challenge.’* Amongst the various semiconducting mate-
rials, MOFs are receiving a lot of attention owing to their
exceptional characteristics, including ultra-high surface area,
tuneable porosity, easy fabrication, flexible functionality, and
large numbers of surface active sites. MOFs are 3D porous
coordination polymers containing metal nodes/clusters that are
connected with the organic linkers through coordination
bonds.">"? They are promising for use as photocatalysts owing
to their superior light-harvesting capacity, band structure tune-
ability, and populous active sites. Moreover, these exceptional
features boost the potential for MOFs to be used as an efficient
material for several other applications, such as chemical sen-
sing, wastewater treatment, drug delivery, and organic pollu-
tant degradation. From the perspective of band structure, the
metal centre’s vacant outside orbitals contribute mostly to the
valence band (VB), whereas the outer orbitals of the organic
linkers contribute primarily to the conduction band (CB) of the
MOF.'"""'® Ligand to metal/cluster charge transfer, also known
as LCCT or LMCT, is the process through which the linker
efficiently captivates sunlight and transmits energy to the metal
centre. Additionally, MOFs demonstrate the two essential con-
ditions for a water redox reaction of a proper band gap
accompanied by a tolerable band edge potential and they also
exhibit long-term stability against photocorrosion in aqueous
solution. Among the largest family of MOFs, Zr-based MOFs
such as the UiO-66 series are considered as highly stable and
active materials towards various photocatalytic applications.
Remarkably, the physicochemical characteristics of (Zr) UiO-
66 allow them to be functionalized using substituted terephtha-
late linkers, such as -NH,, -Br, and -NO,.*®*® Thanks to these
unique properties, the (Zr) UiO-66 series MOFs (UiO-66-NH,)
can be used to photocatalyze the H, and H,O, production
reactions. However, the pristine UiO-66-NH, MOF suffers from
rapid photogenerated exciton recombination, which prevents it
from becoming an efficient photocatalyst. Hence researchers
have followed various strategies to improve the exciton lifetime
as well as light responsiveness of the pristine UiO-66-NH,
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MOFs. Typically, these strategies involve forming a heterojunc-
tion with suitable photocatalysts, post-synthetic modification
of the framework, hetero metal atom doping, and metallic
nanoparticle-based co-catalyst addition. Amidst
approaches, the addition of suitable metal nanoparticles as a
co-catalyst significantly improves the photocatalytic character-
istics of pristine Zr-MOFs. In recent years, bimetallic nano-
particles have captured massive attention in various research
fields, including sensing, plasmonics, electrocatalysis, photo-
catalysis, and specifically heterogeneous catalysis.'®>* As a new
class of materials, bimetallic NPs are made up of two separate
metal components. Typically, they display an amalgam of the
qualities of the two component metals, thus making them
superior to the individual metal components. Additionally,
the physicochemical properties of bimetallic NPs can be
improved through synergistic effects, such as lattice strain,
electron effect, ensemble effect, and bifunctional effect. Parti-
cular attention has been focused on bimetallic cocatalysts
using noble metals like Au-Ag, Ag-Pd or Au-Pd because bime-
tallic materials created using plasmonic materials can be useful
as both charge collectors and light absorbers, thus simulta-
neously improving the photocatalytic performance. Hence,
pristine MOFs with low photocatalytic yields demonstrate
improved performance upon the addition of noble bimetallic
NPS.23_26

Incorporation of metal nanoparticles into MOF frameworks
has received massive attention in both catalysis and photoca-
talysis. Typically, zirconium(iv)-based MOF UiO-66-NH, has
drawn a lot of interest recently because of its distinctive
qualities, including light harvesting, high thermal and
chemical stability, variable pore sizes, large specific surface
area, and the potential for functionalization.>’*® Amongst
various noble metals, Ag nanoparticles are of interest due to
the LSPR effect. Through coordination or electrostatic contact
with the -NH, groups in the MOF, Ag and Pd can be immobi-
lised on the UiO-66-NH, surface via adsorption-reduction
method. The benefits of incorporating metallic Ag and Pd
include an increase in light-harvesting capacity as well as the
ability to control the Schottky barrier height by varying the
Ag:Pd molar ratio. In this work, Ag/Pd bimetallic NP-loaded
MOF nanocomposites are studied for photocatalytic H,O, and
H, production, giving significantly superior yield to that of the
pristine MOF (UiO-66-NH,).>**°

several

2. Materials and methods

2.1. Chemicals used

Zirconium chloride (ZrCl,), sodium  tetrachloropalladate
(Na,PdCl,), 2-amino-1,4-benzene dicarboxylic acid (BDC-NH,),
silver nitrate (AgNO;), sodium borohydride (NaBH,), and
Nafion-117 were purchased from Sigma-Aldrich. Sodium sul-
phate (Na,SO,), N,N-dimethyl formamide (DMF), potassium
bromide (KBr), methanol (MeOH), and isopropanol (IPA) were
acquired from Merck and used without any additional

© 2024 The Author(s). Published by the Royal Society of Chemistry
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refinement. For all reactions carried out in this study deionized
water was used.

2.1.1. Fabrication of UiO-66-NH,. The fabrication of UiO-
66-NH, was carried out according to a previously reported facile
solvothermal approach.'®3° The synthesis process includes the
separate stirring of 2-aminoterephthalic acid (0.38 g, 2 mmol)
and zirconium chloride (0.47 g, 2 mmol) for 60 min in DMF as
the solvent (40 mL each). The two prepared solutions were then
added together and the mixture was again subjected to stirring
for 60 minutes. Thereafter, the resultant solution was subjected
to solvothermal treatment in a Teflon-lined autoclave (24 h/
120 °C). The autoclave was subjected to gradual cooling at room
temperature and then solvent exchange was done using metha-
nol to remove the unreacted metal salt/organic parts, followed
by drying in an oven (24 h/70 °C). Finally, the prepared yellow-
coloured material was ground and termed as UiO-66-NH,.

2.1.2. Fabrication of Ag@UiO-66-NH,, Pd@UiO-66-NH,,
and Ag/Pd@UiO-66-NH,. By following the adsorption—-
reduction procedure, bimetallic (Ag and Pd) nanoparticle-
decorated UiO-66-NH, was fabricated.>®" In the typical pro-
cess, 0.3 g of pristine UiO-66-NH, was introduced to 50 mL of
water/methanol solution (1:1, v/v) followed by continuous
stirring for 1 h. Then, to this solution the Ag and Pd salts were
introduced followed by dropwise addition of NaBH, solution at
low temperature (in an ice bath). Five separate UiO-66-NH,
solutions were arranged followed by the addition of 0.025 M of
AgNO, (7 mL), 0.025 M PdCl, (7 mL), AgNO; + PdCl, (2.4 + 4.6
mL, 0.025 M), AgNO; + PdCl, (3.5 + 3.5 mL, 0.025 M), or AgNO;
+ PdCl, (4.6 + 2.4 mL, 0.025 M) solutions separately in five
different reaction bottles. Stirring was carried out at low
temperature for 1 h followed by the dropwise addition of 5
mL of NaBH, (0.05 M) to each reaction solution for the
reduction of adsorbed AgNO; or/and PdCl,. This reaction was
carried out for 3 h and then the obtained suspension was

(
ZrCl,

o
.l' Cﬁﬁ\
BDC-NH, i \

1 h stirring

Solvothermal Treatment
(120°C 24 h)

1 h stirring

AgNO, solutit%s &dclz solution
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centrifuged and dried in an oven at 70 °C overnight. The dried
samples were labelled as Ag@UiO-66-NH,, PdA@UiO-66-NH,, (1:1)
Ag/Pd@UiO-66-NH,, (1:2) Ag/Pd@Ui0-66-NH,, and (2:1) Ag/Pd
@Ui0-66-NH,, respectively. The typical synthesis procedure for
UiO-66-NH, and Ag/Pd@UiO-66-NH, is illustrated in Scheme 1.
The details of the characterization techniques used and additional
experimental procedures followed in this work are discussed in
the ESIt (1. Experimental techniques).

2.1.3. Photocatalytic H,0, and H, production. The photo-
catalytic performance of the synthesized samples towards H,O,
production was tested in an O, atmosphere under visible light
illumination for 2 h (4 > 420 nm). A solution of 19 mL of
deionized water (DI) and 1 mL of isopropanol (IPA) was mixed
with 20 mg of the synthesized material. The mixture was then
ultrasonicated for 10 min to completely disperse the contents.
Thereafter, the resulting solution was purged with O, for 30
min to obtain an O,-saturated environment, followed by light
irradiation. When the reaction time was over, the suspended
solution was centrifuged to obtain a clear solution. Then, 1 mL
of the resultant solution was taken, to which 0.1 M KI solution
(2 mL) and 0.01 M ammonium molybdate solution (0.05 mL) were
added to develop a lightyellow colour in the liquid sample.
Finally, the concentration of photocatalytically produced H,O,
was evaluated using a UV-visible spectrophotometer.

Additionally, the photocatalytic H, evolution ability of the
synthesized photocatalysts was further studied. Herein, a 100
mL sealed quartz batch reactor was used to investigate the
photocatalytic H, production capacity of the fabricated pristine
Ui0-66-NH, and Ag@UiO-66-NH,, Pd@UiO-66-NH, and Ag/
Pd@UiO-66-NH, composites. The produced nanomaterials (20
mg) were introduced into 20 mL of 10% MeOH-water solution
and placed in the photoreactor. A xenon arc lamp (300 W, 1 >
420 nm) was used as the visible light source and was illumi-
nated for 1 h. The reactor’s contents were stirred thoroughly to

Activation in MeOH
Centrifuged & Dried

Ui0-66-NH,

E NaBH,
g

Centrifuged & Dried Ag/Pd@Ui0-66-NH,

Scheme 1 Schematic representation of the preparation of UiO-66-NH, and Ag/Pd@UiO-66-NH,.
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avoid particle aggregation and promote uniform distribution
throughout the reaction medium. Prior to placing under the Xe
lamp, the solution was rigorously purged with bubbling N, gas
for 30 minutes to eliminate dissolved gases. The evolved gas-
eous compounds were collected using direct water displace-
ment and analysed using gas chromatography (GC; GC-7890B,
Agilent Technologies) customised with 5 A molecular sieves
and a thermal conductivity detector (TCD).

3. Physicochemical characterization

3.1. Structural characterization

The crystallographic structure and nature of the MOF-based
composite materials was studied through X-ray diffraction
(XRD) method. The resulting diffraction patterns for pristine
Ui0-66-NH,, Ag@UiO-66-NH,, Pd@Ui0-66-NH, and the UiO-
66-NH, nanocomposites decorated with different ratios of Ag:
Pd (1:1, 1:2, and 2:1 Ag/Pd@UiO-66-NH,) are displayed in
Fig. 1(a). The intense peak exhibits the outstanding crystallinity
of neat UiO-66-NH,, which is similar to previous reports.**> The
diffraction pattern remained analogous even after adding Ag
and Pd to the parent UiO-66-NH, by following the adsorption—
reduction process, demonstrating the unchanged rigid frame-
work of the MOF in the composites. Additionally, the peak
intensity of UiO-66-NH, is slightly reduced in the synthesized
composite materials, which might be due to robust interaction
between the MOF and the loaded noble metal nanoparticles.>
However, a small peak was observed at 20 = 46.3° in the
Ag@UiO-66-NH, and Ag/Pd@UiO-66-NH, composites, which
corresponds to the (200) crystal plane of Ag.**** The Pd NPs
decorated in Pd@UiO-66-NH, and Ag/Pd@UiO-66-NH, did not
exhibit any additional diffraction peaks owing to their low
weight percentage and the possibility that the diffraction peaks
of the Pd metallic nanoparticles might merge with those of the
Ui0-66-NH,.*® Moreover, the existence of both Ag and Pd NPs
in the composite was further supported by XPS, electron
microscopy, colour mapping, and EDAX analysis results.
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To confirm the various functional groups present in UiO-66-
NH, and the prepared Ag and Pd nanocomposites, an FTIR
study was performed and the outcomes are shown in Fig. 1(b).
A double peak was observed for pristine UiO-66-NH, at 3340
and 3477 cm™ ', which are the symmetric and asymmetric
stretching frequencies for -NH, groups, respectively. Two peaks
were seen in the lower wavenumber area, at 1642 cm * and
1244 cm™', which correspond to the distinctive bending vibra-
tion of N-H and the stretching vibration for C-N of aromatic
amines, respectively.’” In addition, the smaller vibrational
band at 1510 cm™ ' denotes the C—=C vibration of the benzene
ring.”® Furthermore, the peaks observed for the vibrational
frequency at the lower range, ie., around 481, 661, and
776 cm™ ', are connected to the asymmetric stretching of
metal-(OC), O—=C—0O0 bending, and C—=C stretching vibrations,
respectively. FTIR analysis of the Ag- and/or Pd-nanoparticle-
loaded composites exhibited an analogous pattern to that of the
parent Zr-MOF, suggesting indistinguishable chemical bonding
environments and functional groups present in the framework
structure. This observation further corroborates the retention
of the framework of UiO-66-NH, after noble bimetallic nano-
particle loading, as earlier seen from XRD analysis. The afore-
mentioned FTIR spectra exhibited good concordance with the
outcomes described in the literature.'®?*”

The surface area (BET) and pore size (BJH) distribution of
(1:2) Ag/Pd@UiO-66-NH, were studied using the N, adsorp-
tion-desorption isotherm technique. The plot of the results
exhibited that a typical type-I isotherm was followed, which
confirms the microporous and mesoporous nature of the
obtained composite material, as depicted in Fig. S2 (ESIf).
Furthermore, after the surface modification of the MOF with
the noble metal NPs, the isotherm pattern remains unchanged
but a decrease in surface area was observed as depicted in
Fig. S1 (ESIt). This lowering of surface area (UiO-66-NH, =
831.49 m® g ';** (1:2) Ag/Pd@Ui0-66-NH, = 681.29 m*> g ) is
based on the metal nanoparticle loading on the MOF surface.
In short, the deposition of Ag/Pd bimetallic NPs on the UiO-66-
NH, surface or the presence of trapped recrystallized BDC-NH,

(a)

(2:1) Ag/Pd@UiO-66-NH,

A

£

A S, POTY PN

-

(b)

2:1) Ag/Pd@UiO-66-NH,

1:2) Ag/Pd@UiO-66-NH,

e 4i1:2) AgPA@UIO-66-NH, 3 .
= < 1:1) AgPd@UiO-66-NH,
. ‘l Ly i(1:1) AgPd@UiO-66-NH, | &
S BN s e g Ag@Ui0-66-NH,
g JA P | Ag@Uio-66-NH, | E
= g Pd@Ui0-66-NH,
~ O Pd@UiO-66-NH, | &
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Fig. 1
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(a) XRD patterns and (b) FTIR spectra for UiO-66-NH,, Ag@UiO-66-

NH,, Pd@UiO-66-NH,, and (1:1, 1:2, 2:1) Ag/Pd@UiO-66-NH,.
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moieties in the Ui0-66-NH, pores may be the cause of the
reduction in surface area of (1:2) Ag/Pd@UiO-66-NH, com-
pared with UiO-66-NH,."”**® The pore volume distribution for
the composite (1:2) Ag/Pd@UiO-66-NH, exhibits a micro-
porous nature that is similar to the parent UiO-66-NH,.

X-ray photoelectron spectroscopy (XPS) is used to determine
the oxidation states of various elements present in materials.
Thus, XPS analysis was carried out to elucidate the electronic
valence states of several elements, such as C, N, Zr, O, Ag, and
Pd, in the prepared composite materials. Fig. S2 (ESIf) shows
the XPS survey spectra for the pristine UiO-66-NH, and the
composite (1:2) Ag/Pd@UiO-66-NH,, which supports the
presence of N 1s, O 1s, C 1s, and Zr 3d in pristine UiO-66-
NH, and C 1s, N 1s, O 1s, Zr 3d, Ag 3d, and Pd 3d in the
composite (1:2) Ag/Pd@UiO-66-NH,. The obtained deconvo-
luted peaks for UiO-66-NH, were located at 284.99, 286.30, and
288.96 eV in the C 1s spectrum, which corresponds to the C=C,
C-NH,, and O—C-O of the linker, respectively. The N 1s
spectrum for the pristine MOF was deconvoluted into peaks
at 399.52, 400.63, and 401.76 eV for the -NH,, -NH,", and
=NH," groups of the linker, respectively. The O 1s peak was
observed at 532.14 eV, which represents the Zr-O bond, and the
Zr 3d spectrum was deconvoluted to give the Zr 3ds, and Zr
3d;/, peaks at 183.13 and 185.61 eV, respectively, as depicted in

Table 1 XPS data for the prepared materials
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Table 1.'® Afterwards, the obtained deconvoluted peaks for the
bimetallic (Ag/Pd)-modified UiO-66-NH, were positioned at
284.78, 286.2, and 288.75 eV corresponding to C—C, C-NH,,
and O—C-O for C 1s, which shows slight variation from the
pristine material. The N 1s spectrum of (Ag/Pd)-modified
UiO-66-NH, shows deconvoluted peaks at 399.37, 400.51, and
401.23 eV which represent the -NH,, -NH;", and =—NH,"
groups of the linker, respectively. For O 1s, the peaks were
obtained at 530.25, 531.84, and 532.63 eV, which correspond
to lattice oxygen, Zr-O, and surface-adsorbed H,O, respec-
tively. For Zr 3d, the peaks deconvoluted into 183.01 eV and
185.39 eV, associated with Zr 3ds,, and Zr 3d;/,, respectively,
with slight shifting relative to the peaks for pristine UiO-66-
NH,, as explained in Table 1. In the as-synthesized composite
photocatalyst, the oxidation states of the noble metals Ag
and Pd were deconvoluted into two peaks because of spin-
orbit coupling. The deconvoluted peaks for Ag in (1:2) Ag/
Pd@UiO-66-NH, were obtained at 368.26 and 374.28 eV
for the 3dj,, and 3ds,, spin states, respectively. In contrast,
the Pd spectrum was deconvoluted into 335.5 and 339.2 eV,
representing 3ds, and 3ds;,, respectively, in the (1:2)
Ag/Pd@UiO-66-NH, composite. These obtained oxidation
states of Ag and Pd validate the successful preparation of
bimetallic Ag(0) and Pd(0) species from the reduction of

Binding energy in eV Ref.
Element Carbon/C 1s
UiO-66-NH, 284.99 286.30 288.96 32 and 35
Ag/Pd@UiO-66-NH, 284.78 286.21 288.75
Speculation: C—C of linker C-NH, of linker (0=—C-0) of linker
Difference: —0.21 —0.09 —0.21
Element Nitrogen/N 1s
UiO-66-NH, 399.52 400.63 401.76 18 and 37
Ag/Pd@UiO-66-NH, 399.37 400.51 401.23
Speculation: -NH, of linker -NH;" of linker =NH," of linker
Difference: —0.15 —0.12 —0.53
Element Oxygen/O 1s
UiO-66-NH, — 532.14 — 27 and 29
Ag/Pd@UiO-66-NH, 530.25 531.84 532.63
Speculation: Lattice O Zr-O bond Adsorbed H,O
Difference: —0.30 —
Element Zirconium/Zr 3d
UiO-66-NH, 183.13 185.61 28 and 29
Ag/Pd@UiO-66-NH, 183.01 185.39
Speculation: Zr** (3ds)) Zr** (3ds))
Difference: —0.12 —0.22
Element Silver/Ag 3d
UiO-66-NH, — — 38-40
Ag/Pd@Ui0-66-NH, 368.26 374.28
Speculation: Ag (3ds/2) Ag (3d3/2)
Difference: — —
Element Palladium/Pd 3d
UiO-66-NH, — — 31, 33 and 37
Ag/Pd@UiO-66-NH, 335.50 339.20
Speculation: Pd (3ds)2) Pd (3d3)2)
Difference: — —
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Fig. 2 (a) C1s, (b) N 1s, (c) O 1s, (d) Zr 3d, (e) Ag 3d, and (f) Pd 3d XPS spectra for UiO-66-NH, and the (1:2) Ag/Pd@UiO-66-NH, composite.

AgNO; and PdCl, ions, respectively. The existence of Ag/Pd
in the MOF composite was confirmed by XPS and further

1078 | Energy Adv., 2024, 3,1073-1086

corroborated by the EDS, elemental mapping, and TEM
results (Fig. 2).
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3.2. Morphological characterization

The morphology of the synthesized photocatalysts was char-
acterized through FESEM and HRTEM. The clustered morphol-
ogy of the composite is clearly exhibited in the FESEM image of
(1:2) Ag/Pd@UiO-66-NH,. Furthermore, the HRTEM image of
(1:2) Ag/Pd@Ui0O-66-NH, exhibits the deposition of Ag/Pd on
the surface of UiO-66-NH,, which can be seen as black spots on
the MOF structure.’>*' The lattice fringe of the parent MOF
could not be clearly observed due to the sensitivity of the UiO-
66-NH, framework towards the electron beam bombardment,
but the lattice fringe was observed for (1 :2) Ag/Pd@UiO-66-NH,
at 0.24 and 0.22 nm, which corresponds to Ag and Pd nano-
particles and shows good agreement with the (111) plane of Ag
and (111) plane of Pd in the bimetallic nanoparticles,

View Article Online

Paper
respectively.***” Moreover, the HRTEM analysis suggests that
the bimetallic Ag/Pd NPs present in the composite have sphe-
rical morphology. The colour mapping and EDAX results for the
(1:2) Ag/Pd@Ui0-66-NH, composite are presented in Fig. 3(e)-
(k), confirming the existence of C, N, O, Zr, Ag, and Pd,
respectively. Moreover, the uniform distribution of Ag/Pd on
the MOF can be seen from the elemental mapping results.

3.3. Optical and electrochemical characterization

To study the optical properties of the prepared photocatalyst
materials, specifically the parent UiO-66-NH, and the bimetal-
lic nanoparticle-loaded composites, UV-Vis diffuse reflectance
(UV-DRS) investigation was performed, as shown in Fig. 4(a).
From the DRS spectra, the neat UiO-66-NH, exhibits two acute

Fig. 3

(a) FESEM image of Ag/Pd@UiO-66-NH,, (b) HRTEM image of Ag/Pd@UiO-66-NH,, (c) HRTEM image showing lattice fringes of Ag/Pd@UiO-66-

NH,, (d) EDAX results for Ag/Pd@UiO-66-NH,, and (e)-(k) elemental colour mapping results for Ag/Pd@UiO-66-NH,.
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Fig. 4 (a) UV-Vis DRS spectra for the prepared samples. (b) Tauc plot for UiO-66-NH,, (c) MS plot for parent UiO-66-NH,, and (d) EIS plots for UiO-66-

NH; and (1:2) Ag/Pd@UiO-66-NH,.

bands at around 265 and 370 nm, which can be attributed to
the n-n* transition of the lone pair of electrons of the -NH,
group of the linker and the n-n* transition of the ATA linker
with the Zr-oxy cluster absorption, respectively. Likewise, ana-
logous bands to those of the parent UiO-66-NH, were observed
for the bimetal-loaded composites, as shown in Fig. 4(a).'®?®
However, the bimetal loading was accompanied with gradual
red shifting, which signifies the more robust photon receptive-
ness of the composite MOFs upon the varied addition of Ag/Pd.
Moreover, the deposition of metal nanoparticles led to sub-
stantial absorption beginning at 800 nm and extending into the
intrinsic UiO-66-NH, absorption bands because of localised
surface plasmon resonance (LSPR) as well as the d-d transi-
tions of both the noble metals. Compared with individual metal
deposition (Ag or Pd), this effect was significantly more notice-
able in the Ag/Pd bimetallic nanoparticle-loaded MOF compo-
sites. Ag nanoparticles often exhibit a distinctive LSPR peak
between 410 and 480 nm, but depending on the size, shape,
and refractive index of the surrounding medium, its wavelength
can vary throughout a wide range. In the current study, no
strong LSPR peak was observed for Ag NPs, which is due to the
small particle size and uniform dispersion of the Ag NPs,**
which results in the strong absorption of the MOF composites.
Pd metal exhibits strong absorbance up to 650 nm in the visible
light range. The LSPR effect was not seen for the (1:1, 1:2,
and 2:1) Ag/Pd@UiO-66-NH, composites, but the region
was intensified and made wider by the Pd metal presence in

1080 | Energy Adv., 2024, 3,1073-1086

the Ag/Pd-modified UiO-66-NH,.>* So, by loading both the
metals, strong visible light absorbance occurred owing to
positive synergism amongst the metal nanoparticles and the
MOF support. The absorption of visible light by the Ag/Pd
nanoparticle-loaded MOF is considerably stronger than that
of the Pd- or Ag- loaded UiO-66-NH, individually, demonstrat-
ing the creation of superior light-responsive bimetallic nano-
particles with respect to monometallic particles. Moreover, the
material underwent an indirect transition, and for the parent
UiO-66-NH, MOF the optical band gap obtained from the Tauc
plot was around 2.67 eV, as shown Fig. 4(b), and the band gaps
of all of the noble metal-loaded UiO-66-NH,, are reduced with
respect to the pristine material. So, the above results demon-
strated that the loading of Ag/Pd nanoparticles improved the
light-harvesting tendency compared to the monometallic or
pristine MOF counterparts. By following Kubelka-Munk equa-
tion (eqn (1)), the band gap of UiO-66-NH, was obtained.

ahv = A(hv — Ep)"? )]

The respective band edge potential of the so-formed MOF was
evaluated by UV-Vis investigation and following eqn (2):

Ey=VB — CB )

Furthermore, PL analysis was performed for the prepared
pristine MOF and the Ag/Pd-loaded MOF-based photocatalysts.
The PL study gives clear evidence of the separation and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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recombination of the photogenerated exciton pairs, as depicted
in Fig. S3 (ESIt).** The peak intensity is indirectly associated
with the exciton separation efficacy, i.e., high intensity peaks
mean a higher exciton recombination rate and low intensity
peaks indicate a minimal recombination rate. From the plotted
PL analysis peaks, it has been revealed that the (1:2) Ag/
Pd@UiO-66-NH, composite exhibits a higher life span of
photogenerated e~ and h" than those of the pristine UiO-66-
NH, and other composites.”>*® The aforementioned results are
clearly supported by EIS measurements. Additionally, through
time-resolved photoluminescence (TRPL) analysis technique,
the lifespans of the photoexcited electrons of UiO-66-NH, and
(1:2) Ag/Pd@UiO-66-NH, were obtained, as depicted in Fig. S4
(ESIt), which was fitted using a model biexponential eqn (3):

R(t) = Ay exp{—t/1,} + A; exp{—t/1,} (3)

Here, R denotes the normalized emission intensity, t sig-
nifies the lifetime of photogenerated excitons for each compo-
nent, A4 is the amplitude, and ¢ is the time left after pulsed laser
excitation. The essential decay and the average lifetime (7ayg) of
two exponentials demonstrate the inclusive TRPL character,
which can be calculated using eqn (4):

A112 4 Ayt
mgzu @)
Aty + Ar1o

where 7, and 7, represent the trapping period for electrons and
exciton pair generation, respectively. The fluorescence lifetimes
were obtained by fitting the decay profile in Table S1 (ESIt) with
the biexponential terms. Hence, the average excited lifetimes of
UiO-66-NH, and (1:2) Ag/Pd@UiO-66-NH, were found to be
0.504 ns and 0.537 ns, respectively (Table S1, ESIt). So, from the
result it can be clearly seen that the average lifetime of (1:2) Ag/
Pd@UiO-66-NH, is longer, which explains the lower exciton
recombination rate, thereby boosting the photocatalytic
activity.

Moreover, to understand the better exciton separation effi-
cacy of the Ag/Pd@UiO-66-NH, composite as compared with
the parent UiO-66-NH,, both the materials were studied by
electrochemical impedance spectroscopy (EIS) under zero bias
potential. In the Nyquist plots, the smaller arc radius in the
high-frequency zone for the composite (1:2) Ag/Pd@UiO-66-
NH, indicates a lower recombination rate of e /h" pairs as
compared to that of the pristine UiO-66-NH,. The aforemen-
tioned finding indicates that the process of charge migration in
the composites was relatively smooth and the charge transfer
resistance at the interface was noticeably low, which was the
primary factor contributing to the composite’s higher catalytic
activity than that of neat UiO-66-NH, under identical experi-
mental conditions, as depicted in Fig. 4(d). The EIS results
further support the PL data and exhibit good correlation. In
addition, current versus potential measurement (LSV) was
carried out to study the transfer of photogenerated excitons
and the photocatalytic mechanism. The analysis was performed
for the parent UiO-66-NH,, and all the Ag- and/or Pd-loaded
Ui0-66-NH, composites at 5 mV s ' in a suitable potential

© 2024 The Author(s). Published by the Royal Society of Chemistry
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range, as shown in Fig. S5 (ESIt). The pristine UiO-66-NH, MOF
produces an anodic photocurrent, which indicates n-type char-
acteristics. Moreover, the Ag- and/or Pd-nanoparticle-loaded
composites show similar properties, possessing improved
photocurrent compared to that of the pristine MOF.

MS (Mott-Schottky) analysis of the neat UiO-66-NH,"'® was
performed to explain the band structure, the type of semicon-
ductor material (p-type/n-type), and the flat band potential, as
depicted in Fig. 4(c). The MS plot of pristine UiO-66-NH, shows
a positive slope to the x-axis, which indicates the n-type nature
of the parent UiO-66-NH,. The obtained flat band potential for
the material is —0.73 V. The VB and CB positions calculated
using eqn (5) were 2.03 eV and —0.64 eV, respectively, versus the
NHE (at pH = 7).

Eue,pr=7) = Eagiagc1 — 0.059 x (7-pH of the electrolyte) + 0.198

)

4. Photocatalytic performance

The photocatalytic efficiency of the prepared catalysts towards
hydrogen peroxide (H,0,) and hydrogen (H,) production were
analysed in this study. The production of H,O, in an O,-
saturated atmosphere under irradiation of visible light (1 >
420 nm) for 2 h at ambient conditions was thoroughly investi-
gated. Moreover, in the absence of light or catalyst, no H,O0,
production was observed, which explains that light illumina-
tion and catalysts are the primary instigators for the reaction to
take place. From Fig. 5(a), the H,0, production rate for UiO-66-
NH, is 8.52 umol h™'. Amongst the prepared composite mate-
rials, (1:2) Ag/Pd@UiO-66-NH, exhibits the highest photocata-
lytic H,O, production rate of 39.4 umol h™', as shown in
Fig. 5(a). H,O, production rates of 18.6, 20.2, 37.3, and 34.8
pumol h™* were obtained for Ag@UiO-66-NH,, PA@UiO-66-NH,,
(1:1) Ag/Pd@UiO-66-NH,, and (2:1) Ag/Pd@UiO-66-NH,,
respectively. As compared to the pristine UiO-66-NH,, the
synthesized composite materials showed significantly
enhanced H,0, production, which can be attributed to their
superior light absorption capacity and lowering of the exciton
pair recombination ability due to the presence of bimetallic Ag/
Pd nanoparticles. The fabricated composite (1:2) Ag/Pd@UiO-
66-NH, exhibits superior photocatalytic performance that is
four-fold greater than that of the pristine UiO-66-NH, material.
In addition, the reusability analysis of the composite materials
showed that (1:2) Ag/Pd@UiO-66-NH, is photostable for up to
four consecutive cycles, as illustrated in Fig. 5(b). Moreover, to
study the O, dependency of the photocatalytic H,O, production
by (1:2) Ag/Pd@UiO-66-NH,, the individual reactions were
performed under Ar or O, gas purging, and only a small
amount of H,0, was generated under the Ar atmosphere, as
shown in Fig. 5(c). This suggests the dependence of the photo-
catalytic production of H,0, upon the presence of O,. More-
over, the effect of scavengers on the H,0, production is
illustrated in Fig. 5(d) and discussed in detail in the subsequent
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section. A comparison of the H,0, production rates is given in
Table S3 (ESIf) to show the importance of the synthesized Ag/
Pd@UiO-66-NH, composite.'*?

The photocatalytic efficacy of the synthesized samples was
also measured through their H, evolution ability. The reaction
was executed in a closed quartz batch reactor type with 100 mL
volume, using 20 mg of catalyst in 20 mL of MeOH/water
solution (10% v/v) at room temperature and atmospheric
pressure. In the pre-irradiation stage, the reactor contents were
stirred continuously to prevent the nanoparticles from settling
with N, (gas) purging for 0.5 h to eliminate dissolved gases.
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2004

1004

Rate of H, Evolution (umol h")

Photocatalysts
Fig. 6

Pd@UiO-66-NH, composite.
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Thereafter, the light source was placed above the aqueous
suspension at a distance of 8.7 cm from the bottom of the
reactor. The samples were irradiated using a xenon arc lamp
(300 W) with medium pressure as a source of visible light for
1 h. A GC-7890B (Agilent Technology) with 5 A molecular sieves
and a thermal conductivity detector was used to monitor the H,
gas evolution. Blank readings were taken in the absence of a
catalyst or light irradiation to prove that hydrogen evolution
only occurs in the presence of both photocatalyst and light. The
neat UiO-66-NH, exhibits a mere 115 pmol h™" of H, evolution
because of the high recombination rate of the excitons.'®
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(a) H, production rate of neat UiO-66-NH, and the Ag- and/or Pd-loaded composites. (b) Reusability test for H, production over the (1:2) Ag/
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However, the Ag and/or Pd nanoparticle loading enhances the
rate of H, production due to the superior absorption of visible
light accompanied with enhanced charge separation and trans-
fer. The photocatalytic H, evolution rates of the prepared
composites Ag@UiO-66-NH,, Pd@UiO-66-NH,, (1:1) Ag/
Pd@UiO-66-NH,, (1:2) Ag/Pd@UiO-66-NH,, and (2:1) Ag/
Pd@UiO-66-NH, are 219.5, 248.1, 406.7, 448.2, and
386.3 umol h™*, respectively, as shown in Fig. 6(a). From the
resultant plot it was found that (1:2) Ag/Pd@UiO-66-NH,
shows the highest rate of photocatalytic H, generation, which
is four times greater than that of the pristine UiO-66-NH,. The
apparent conversion efficiency (ACE) is calculated to be 3.30%, as
depicted in Table S2 (ESIt). The photostability of the (1:2) Ag/
Pd@UiO-66-NH, composite was confirmed by executing four
successive cycles of H, evolution, with no significant change in
the production rate (Fig. 6(b)) or its post-photocatalytic XRD
(Fig. S5, ESIt). Moreover, ICP-OES analysis of the spent (1:2)
Ag/Pd@UiO-66-NH, composite showed negligible change in the
Ag-Pd loading percentage (Ag-Pdas.eyntheisea: 1.4-2.4 Wt% and
Ag—Pdpygeyse: 1.25-2.26 wt%, respectively), suggesting the stability
of the prepared photocatalyst. A comparison of the H, evolution is
given in Table S4 (ESIT) to show the importance of the prepared
Ag/Pd@UiO-66-NH, composite.

5. Mechanistic insights

The previously discussed analysis results involving physico-
chemical, morphological, and textural characteristics sug-
gested the successful formation of bimetallic nanoparticle
(Ag/Pd)-loaded aqueous stable UiO-66-NH, MOF-based photo-
catalysts. Moreover, the Ag/Pd noble bimetallic nanoparticle
loading significantly improved the optical and electrochemical
features of the pristine Zr-MOF, which is well reflected via the
composite’s enhanced photocatalytic performance. Hence, a
thorough discussion of the underlying photocatalytic mecha-
nism of Ag/Pd@UiO-66-NH, is imperative. Furthermore, the
mechanism of photocatalytic H,O, and H, production over the
Ag/Pd@UiO-66-NH, surface can be posited by considering the
following factors:

(i) Photoresponsive factor: the Ag/Pd bimetallic-loaded UiO-
66-NH, composites are comparatively more photoresponsive in
comparison to their pristine UiO-66-NH, or monometallic
counterparts, as confirmed from UV-Vis DRS analysis.>® This
enhanced photoresponsive factor improves the photon-
trapping ability, leading to the optimal formation of excitons
for effective photocatalytic redox reactions.

(ii) Improved exciton antirecombination: as photoinduced
excitons are the important active species towards any photo-
catalytic redox reaction, their improved lifetime is pivotal for
superior photocatalytic performance. Here, the Ag/Pd
bimetallic-loaded UiO-66-NH, composites have better exciton
segregation tendency because of the electron-trapping ability of
the bimetallic catalysts, i.e., Ag/Pd.>***

(iii) Availability of active metal centres: the Ag/Pd bimetallic
nanoparticle-loaded UiO-66-NH, composites have surplus

© 2024 The Author(s). Published by the Royal Society of Chemistry
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electron-rich noble metal-based active centres, i.e., Ag/Pd nano-
particles tend to provide suitable reaction sites for the photo-
catalytic reduction reaction. Thus, the noble-metal-loaded
MOFs show comparatively better photocatalytic performance,
even with the decreased surface area.”>**

(iv) LSPR effect: Ag nanoparticles can strongly absorb light
because of their plasmonic properties, which is further
enhanced via the Pd support. Therefore, in Ag/Pd-loaded UiO-
66-NH,, enhanced light absorption will occur, which ultimately
helps to accelerate the photocatalytic reaction as well as exciton
formation. In the present research, this approach proved
beneficial towards the improved photocatalytic formation of
H, and H,0,.>"**

(v) Suitable band edge potential: UiO-66-NH, has VB = 2.03
eV and CB = —0.64 eV. This band edge potential is suitable for
the studied application to show redox reactions. However, the
presence of metallic components like Ag and/or Pd further
enhances the reaction rate by capturing the photoexcited
electrons, thereby improving their availability for the target
reactions.*®

Based on these physicochemical factors, as explained on the
basis of suitable instrumental characterization, the superiority
in efficiency of Ag/Pd@UiO-66-NH, over its pristine UiO-66-NH,
counterpart towards photocatalytic H, evolution and H,O,
production has been discussed. The UV-DRS spectra show that
the absorption of Ag/Pd@UiO-66-NH, is significantly boosted
in the visible light region, suggesting that the Ag/Pd bimetal
loaded on the MOF surface plays a vital role in the higher
absorption of visible light.** The co-existence of Ag/Pd was
further confirmed by the XPS data and energy-dispersive X-ray
(EDAX) spectra of the noble bimetallic NPs. The probable
mechanism for the photocatalytic performance of Ag/
Pd@UiO-66-NH, towards H,0, and H, production under UV-
Vis light illumination is depicted in Scheme 2. As shown from
UV-Vis DRS results, the absorption of Ag/Pd@UiO-66-NH, is
significantly increased in the visible light area, suggesting that
the noble bimetal loaded on the surface of the MOF plays a
significant role in the increased absorption of visible light.
From the Tauc plot, the band gap of UiO-66-NH, was found to
be 2.67 eV. Upon irradiation of visible light, the electrons from
the VB of UiO-66-NH, get excited to the CB position. Following
that, the electrons accumulate at the bimetallic surface, which
acts as the electron-trapping agent and forms a Schottky barrier
at the interface region between the MOF and the bimetallic
NPs, which suppresses the recombination of exciton pairs.
Additionally, the LSPR effect was observed due to the Ag
nanoparticles, which enhanced the light-harvesting ability of
the composite materials. The LSPR effect can produce a strong
local electromagnetic field that can increase the energy and
transfer rate of trapped electrons, facilitating easier reactions
with h* to produce H,.** The Mott-Schottky analysis showed
the VB and CB potential of UiO-66-NH, to be 2.03 and —0.64 eV,
respectively. Following photon absorption, the electrons in the
VB are energised and move to the CB of the UiO-66-NH,, leaving
a hole in the VB. As shown by the PL, TRPL, and EIS analyses,
the presence of Ag/Pd bimetallic nanoparticles on the MOF
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Scheme 2 Schematic representation of the mechanistic pathway for H,O, and H, evolution by the prepared photocatalyst.

surface causes the excited electrons from the CB of the UiO-66-
NH, to further transfer to the bimetallic surface to enhance the
surface reaction more effectively and increase the exciton life-
time. When Ag/Pd is loaded onto the MOF, it helps to capture
electrons from the material’s surface, which enhances the
photocatalytic reaction by charge carrier antirecombination in
the material. Therefore, the Ag/Pd bimetallic surface essentially
functions as an electron-trapping agent and aids in charge
carrier separation, which is considered as the driving force
for achieving the photocatalytic reaction.

Mechanistically, H,O, production can be carried out via
two pathways, i.e., one-electron and two-electron pathways, as
discussed subsequently. The CB potential of UiO-66-NH,
(—0.64 eV) satisfies the H,0, production as the minimum
required potentials for H,O, production through the oxygen
reduction reaction are —0.33 eV (via the one-electron pathway)
and 0.68 eV (via the two-electron pathway). Hence, the electrons
transferred from the MOF surface to the bimetallic surface
promote the reduction of O, by accepting electrons from the CB
of Ui0-66-NH,, as shown in eqn (6) and (7):"?

Single-step two-electron reduction pathway:

0, +2H" + 2e” — H,0, (6)
Two-step single-electron reduction pathway:
02 - .027 g Hzoz (7)
Moreover, the photogenerated h* at the VB of UiO-66-NH,
gets trapped by the sacrificial reagent, i.e., isopropanol (IPA).
Additionally, the VB potential of UiO-66-NH, (2.03 eV) satisfies
the hydroxyl radical (OH®) formation (OH*/OH™ = 1.99 eV vs.

NHE). Therefore, the two OH* radicals participate in the H,0,
production, as shown in eqn (8):>*%*’
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OH* + OH® — H,0, (8)

The optimal H,O, evolution rate of 39.44 pmol h™' was
obtained for (1:2) Ag/Pd@UiO-66-NH,. Furthermore, a recycl-
ability test was executed to check the stability of the prepared
sample and it was found the material is stable for up to four
cycles, as shown in Fig. 5(b). Moreover, to check the competi-
tiveness of the reactive species towards H,O, production,
scavenger tests were performed, as shown in Fig. 5(d). From
the analysis, it was found that the contribution of active species
follows the order; e~ > *0,~ > OH® > h' to show the role
towards the formation of H,O,.

Additionally, the synthesized materials were further tested
towards the photocatalytic H, evolution reaction. A thorough
investigation was conducted to explain the increased photo-
catalytic activity towards the evolution of H, gas for the Ag/
Pd@UiO-66-NH, composite. Upon light irradiation, the elec-
trons get excited to the CB of the MOF. These photogenerated
electrons will go to the bimetallic surface due to the SPR effect
of Ag NPs, which offers a driving force for H, evolution.>**° The
protons are reduced by the electrons present at the bimetallic
surface, resulting in the production of molecular hydrogen. At
the same time, holes present at the VB of UiO-66-NH, are
scavenged by methanol to inhibit the exciton recombination
process. Moreover, as the CB of UiO-66-NH, has a suitable
redox potential, the photocatalytic formation of H, molecule
can also be observed here, as shown in Scheme 2 and eqn (9)-
(14). The optimum H, evolution rate of 448.2 pmol h™"' was
obtained for (1:2) Ag/Pd@UiO-66-NH,. A recyclability test was
also carried out to check the stability of the material and it was
found the material is stable for up to four cycles, as shown in
Fig. 6(b). Moreover, the post-photocatalytic XRD analysis of
the used samples showed no significant changes, suggesting
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framework stability of the prepared composite, which is inher-
ited from the parent Zr-carboxylate-based MOF. The related
reaction involving hydrogen evolution is represented in

eqn (9)—(14).
(1:2) Ag/Pd@UIO-66-NH, + hv — (1:2) Ag/Pd@UiO-66-NH,

[VB(h")/CB(e )] )

H,0 - H' + OH~ (10)

(1:2) Ag/Pd@Ui0-66-NH, [CB(e )] + H" —» H, (11)
CH;OH + h" - *CH,OH + H" (12)
*CH,0OH —» CH,0+e” +H" (13)

2H +e” - H, (14)

6. Summary

Initially, the UiO-66-NH, framework was prepared by a sol-
vothermal approach using Zr and aminoterephthalic acid as its
constituents. This Zr-MOF is popular due to its abundant active
sites, high surface area, visible-light-responsive band gap, and
robust framework stability. However, the rapid rate of photo-
generated exciton recombination as well as the relatively lim-
ited photon capture tendency of the pristine UiO-66-NH,
prevents it from becoming an efficacious photocatalyst towards
photocatalytic H,O, and H, production. In an attempt to boost
the photocatalytic performance of pristine UiO-66-NH,, the
framework was loaded with noble bimetallic nanoparticles that
act as a co-catalyst. The Ag/Pd-co-catalyst-modified MOF was
engineered via facile adsorption-reduction method. Physico-
chemical analyses including XRD, FTIR, XPS, and BET sug-
gested the successful loading Ag/Pd nanoparticles on the UiO-
66-NH, surface accompanied with the preservation of the
framework structure. Moreover, morphological analysis further
corroborated the above results. The bimetallic nanoparticle-
loaded composite (1:2) Ag/Pd@UiO-66-NH, exhibited signifi-
cantly enhanced photocatalytic H, (448.2 umol h™') and H,0,
(39.4 pmol h™") production capacity that is almost four-fold
higher than that of the pristine UiO-66-NH,. Additionally the
photoactivity of the Ag/Pd@UiO-66-NH, composite was almost
double those of the monometallic nanoparticle counterparts
(Ag@Ui0-66-NH, or Pd@UiO-66-NH,). The superior output of
the Ag/Pd@UiO-66-NH, composite can be atributed to the
improved photon entrapment ability via Pd/Ag combinatorial
support, as seen from their UV-Vis spectra. Additionally, the Ag/
Pd@UiO-66-NH, composite displays superior exciton separa-
tion compared to the pristine UiO-66-NH,, as demonstrated by
the PL, TRPL, and EIS analyses. Mechanistically, the band
structure of the parent MOF (VB: 2.03 eV and CB: —0.64 eV)
makes it suitable for both H, and two-step H,0, production.
Additionally, a highly rectifying Schottky barrier with the right
height is formed by bimetallic Ag/Pd nanoparticle loading,
which reduces the rate of e /h" recombination. In addition,
the Ag component enhances the visible light absorption
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through the LSPR effect with the Pd support. Meanwhile, the
bimetallic surface was able to readily capture photogenerated
electrons from the photon-activated UiO-66-NH,, which is
further promoted by the Ag(0) and Pd(0) of the bimetallic
NPs, which suppress the charge carrier recombination. In
summary, the addition of Ag/Pd bimetallic NPs on the MOF
surface encourages visible light absorption and electron-hole
antirecombination, leading to improved H,0, and H,
production.
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