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Construction of axially chiral molecules enabled by
photoinduced enantioselective reactions

Zhaofei Zhang® and Lei Dai ® *

Axially chiral molecular scaffolds are widely found in pharmaceutical molecules, functionalized materials,

and chiral ligands. The synthesis of these compounds has garnered considerable interest from both
academia and industry. The construction of such molecules, enabled by transition metal catalysis and
organocatalysis under thermodynamic conditions, has been extensively studied and well-reviewed. In
recent years, photoinduced enantioselective reactions have emerged as powerful methods for the
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catalytic construction of axial chirality. In this review, we provide an overview of various synthetic

strategies for the photoinduced construction of axial chirality, with a specific focus on reaction design

DOI: 10.1039/d4sc03766a

rsc.li/chemical-science future directions in this field.

1. Introduction

Axially chiral molecular scaffolds widely exist in bioactive
molecules and pharmaceutical agents,* as well as privileged
chiral organocatalysts and ligands in asymmetric catalysis
(Scheme 1a).> Consequently, atroposelective construction of
these axially chiral compounds is of growing interest to chem-
ists in both academia and industry.® The construction of axial
chirality enabled by transition metal catalysis and organo-
catalysis via a two-electron pathway has been extensively
studied, with many impressive achievements reported (Scheme
1b).> The significant applications of axially chiral compounds
notwithstanding, expanding substrate scope and developing
sustainable and cost-effective methods are still in high demand.

Visible light photocatalysis* has gained immense attention
and witnessed great development in recent years, as it can
activate substrates via single electron transfer (SET) or energy
transfer (EnT)® to generate key radical intermediates leading to
a variety of transformations, which are difficult to obtain under
standard thermodynamic conditions. Since the pioneering
report by the MacMillan group® for the construction of central
chirality, many strategies for enantioselective visible-light pho-
tocatalysis have been designed by incorporating transition
metal catalysis” and organocatalysis (Scheme 1b).? Despite the
significant success of photoinduced construction of central
chirality, the construction of axial chirality by photocatalysis
has become an intriguing topic of tremendous potential.
However, there remain some daunting tasks, such as
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and catalytic mechanisms. Additionally, we discuss the limitations of current methods and highlight

incorporating unactivated substrates into the reaction scope,
developing general methods for radical generation,” and effi-
ciently controlling the stereochemistry of radical-mediated

reactions under photocatalysis.
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a) Represemative molecules containing axial chirality

b) Atroposelective synthesis of axially chiral molecules under thermodynamic conditions
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Scheme 1 Strategies for the photoinduced construction of axial
chirality.
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In this review, we will present an overview of the recent
advances of photoinduced construction of axially chiral
compounds. Based on the activation modes of substrates by
photocatalysis, three strategies will be discussed (Scheme 1c).
The first strategy relies on the generation of radical intermedi-
ates through photoredox mediated SET, and the following
stereoselective reactions of the generated radical intermediates
lead to axially chiral compounds. Second, relay photocatalysis
and asymmetric transformation are described. Third, photoin-
duced via energy transfer is also involved, where a key inter-
mediate is formed to facilitate the deracemization reaction.
Lastly, we will also provide a discussion on the existing limita-
tions and possible future directions in this field.

2. Construction of axial chirality via
photoinduced single electron transfer

Enantioselective metallaphotocatalysis'® has become a powerful
strategy to access chiral compounds over the past decade. Since
the first report by the Molander group,'* asymmetric metal-
laphotoredox catalysis to access central chirality has been well
studied. Nevertheless, its application for the construction of
axial chirality has been far less developed.

In 2022, the Xiao and Lu group* reported a dual photoredox/
cobalt'* catalyzed dynamic kinetic resolution (DKR) of trans-
formation of racemic heterobiaryls 1 with 1,4-dihydropyridine
(DHP) reagent 2, producing axially chiral heterobiaryls 3 in

a) Dual photoredox/Co catalysis for the construction of axial chirality
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c) Synthesis of derived multifunctional axially chiral ligands
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Scheme 2 Dual photoredox/Co catalysis for the construction of axial
chirality.
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excellent yields with excellent enantioselectivities (Scheme 2).
Wei-Phos L1 (ref. 13) was screened and it could afford the best
enantioselectivity. In their reaction design, the chiral cobalt
catalyst coordinated to the nitrogen atom of the substrate,
leading to the generation of a configurationally labile complex.
The following photogenerated radical trap of (S)-int and the
subsequent reductive elimination delivered the final product.
Notably, the scope of radical precursors was successfully
extended to alkyl chlorides," demonstrating the great generality
and practicality of this method. Moreover, several derived
multifunctional axially chiral ligands 6-9 could be accessed
through simple procedures, presenting high potential for future
applications (Scheme 2c). This enantioselective dual
photoredox/Co catalysis offers a new valuable alternative for the
synthesis of axially chiral compounds accommodating flexible
and various substitution patterns.

Continuing with their research interest, Xiao, Gao and co-
workers employed synergistic photoredox-cobalt catalysis in
DKR conjugative addition (Scheme 3) for the synthesis of
enantioenriched heterobiaryls 11 in good to excellent yields.™
Various functionalities, such as ester, cyano, amido, carbonyl,
heteroaryl, sulfonyl and phosphonyl groups could be intro-
duced into the axially chiral products, which holds significant
potential for the development of axially chiral ligands. Inter-
estingly, the derived N-oxide 16 showed excellent enantiocon-
trol in the asymmetric allylation reaction of aldehydes (Scheme
3c). It should be noted that reductive cobalt catalysis was also
viable with 30 eq. of Zn as the reductant, demonstrating certain
practicality of the dual catalytic method.

Simultaneous construction of both axial chirality and central
chirality’® via enantioselective metallaphotocatalysis was dis-
closed by the Xiao and Cheng group (Scheme 4a) in the
desymmetrization of diaryl based dialdehydes 17."7 The

a) Dual photoredox/Co catalyzed DKR conjugate addition
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Scheme 3 Dual photoredox/Co catalyzed DKR conjugate addition.
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a) Dual photoredox/Co catalyzed desymmetrization of dialdehydes
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Scheme 4 Dual photoredox/Co catalyzed desymmetrization of
dialdehydes.

synergistic use of photoredox and cobalt catalysis showcased
high efficiency in the reductive coupling of alkynes 18 or aryl
iodines 19, achieving exceptional stereocontrol with a broad
range of substrate scope. Additionally, the versatilities of alde-
hyde and alkyne in the products allowed for multiple derivati-
zations of the products. Very recently, the Li group (Scheme 4c)
employed a similar strategy in the desymmetrization of diaryl
ethers 22 with alkynes 23 under metallaphotocatalysis.'®* While
the dual catalysis could afford excellent reactivities and ster-
eocontrol, the reductive cobalt catalysis delivered only a trace
amount of product, underscoring the superiority of the dual
catalysis.

In recent years, radical mediated 1,4-difunctionalization of
1,3-enynes™ served as an efficient method for the synthesis of
chiral allene compounds. With the advances in photocatalysis,
numerous methods have been developed for the synthesis of
a diverse range of functionalized allenes. Asymmetric synthesis
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a) Dual photoredox/Cr catalysis for the synthesis of chiral a-allenols
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Scheme 5 Dual photoredox/Cr catalysis for the synthesis of chiral a-
allenols.

of allene mediated by photocatalysis was disclosed by the Wang
group® where aldehydes 28, 1,3-enynes 29 and DHP esters 30
were incorporated in a three-component reaction (Scheme 5). In
their proposed mechanism, single electron oxidation of DHP
ester by the photocatalyst generates an alkyl radical and pyr-
idinium A. The radical addition to 1,3-enyne and the subse-
quent trapping by the Cr" catalyst lead to propargyl radical
chromium D, which is in equilibrium with the alkenyl chro-
mium intermediate D’. The alkenylation product readily yields
the intermediate E, and the dissociation of the Cr-O bond in E
by pyridium B delivers the desired product. Finally, the SET
reduction of Cr'™" closes the catalytic cycle. The regioselectivity
might be attributed to the use of the steric bulky substitution
group (TIPS). Simultaneous control of axial and central chirality
is successfully achieved, producing the corresponding chiral o-
allenols 31 in good to excellent yields with excellent diaster-
eoselectivities and enantioselectivities (up to 95% yield, >20:1
dr & 97% ee).

Radical mediated N-heterocycle carbene (NHC) catalysis
opens a new avenue for organic synthesis.”* In 2022, the Zhang
and Zheng group® reported a dual photoredox/NHC catalyzed
1,4-sulfonylacylation of 1,3-enynes 35 for the synthesis of tet-
rasubstituted allenyl ketones 38 (Scheme 6). In the proposed
mechanism, a photogenerated sulfonyl radical generated from
sulfinate undergoes radical addition to 1,3-enynes to form an
allenyl radical, which then undergoes radical-radical coupling
with the photogenerated ketyl radical from the combination of
acyl fluoride and the NHC catalyst to afford the final product. In
the optimization of reaction conditions, the low concentration
is critical for achieving high yield. The asymmetric version of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a) Dual photoredox/NHC catalyzed 1,4-difunctionlization of 1,3-enynes
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Scheme 6 Dual photoredox/NHC catalyzed 1,4-difunctionalization of
1,3-enynes.

this reaction was also investigated, however, only poor enan-
tioselectivities were obtained when NHC-1 and NHC-2 were
used.

The propargyl radical, which could isomerize into an allenyl
radical, holds great potential for the synthesis of allene
compounds. The dual photoredox/copper (Scheme 7) catalyzed
transformation of propargyl carbonate 40 to allenyl compounds
was discovered by the Xiao and Lu group.”® During the reaction,
the allenyl radical could be generated by the photocatalytic C-O
bond cleavage and the subsequent isomerization, and then this
allenyl radical participates in the copper catalytic cycle to afford
the allenyl nitrile products. In the substrate scope, when the R

a) Dual photoredox/Cu catalysis for the synthesis of allenyl nitriles
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Scheme 7 Dual photoredox/Cu catalysis for the synthesis of allenyl
nitriles.
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group is an alkyl group, chiral allenes are formed, albeit with
moderate enantioselectivities.

Chiral phosphoric acid (CPA) catalyzed enantioselective
Minisci reaction has emerged as an efficient method to provide
chiral functionalized N-heteroarenes with central chirality.®
Catalytic construction of axial chirality* using this strategy was
introduced by the Xiao group in 2022 (Scheme 8). When the
heterobiaryls 44 were used as the substrates in the Minisci
reaction, the axial chirality could be achieved as well as central
chirality. In their proposed mechanism, the radical addition of
photogenerated radical A to pyrimidines occurs in the presence
of CPA through the transition state I. Subsequent deprotonation
of radical cation B by the CPA catalyst is the rate-determine step,
leading to the radical intermediate C. The following SET
oxidation, deprotonation and rearomatization produce the final
product. The protecting group (TBS) in the substrate is crucial
for achieving excellent diastereoselectivities and it can be easily
removed. The resulting chiral amino alcohol ligand shows
excellent enantioselectivities in the asymmetric alkylation of
aldehydes.

Axially chiral alkenes are widely used as chiral ligands,
catalysts and functional materials,> and therefore catalytic
asymmetric synthesis of these compounds has gained tremen-
dous attention. In 2017, the Yan group reported an elegant
method for the synthesis of axially chiral sulfone-containing
styrenes through the organocatalyzed nucleophilic addition of
sulfinate salts via the vinylidene o-quinone methide (VQM)
intermediate.”® However, this method was limited to aryl sulfi-
nates as the nucleophilic reagents. To expand the scope, the Wu
group®” developed a dual photoredox/organocatalytic method
for the synthesis of a series of chiral alkyl sulfone styrenes 55
(Scheme 9). Upon visible light irradiation, the photogenerated

) Asymmetric Minisci reaction for the construction of central and axial chiralities
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Scheme 8 Asymmetric Minisci reaction for the construction of central
and axial chirality.
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a) Photoinduced asymmetric synthesis of axially chiral styrenes
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Scheme 9 Photoinduced asymmetric synthesis of axially chiral
styrenes.

alkyl radical reacts with (DABCO)(SO,), to form a sulfonyl
radical. Concurrently, the VQM intermediate is formed via
prototrophic rearrangement in the presence of the bifunctional
organocatalyst. Then the radical addition of the sulfonyl radical
to the central carbon of the prochiral VQM intermediate
produces intermediate A. Subsequent photocatalyzed SET
reduction, tautomerization and protonation yield the final
product. The bifunctional organocatalyst exhibits excellent
reactivity and stereocontrol for the reaction.

3. Construction of axial chirality via
photoinduced relay catalysis

Photoinduced relay catalysis, relying on the generation of key
intermediates via photocatalysis, has been established for

developing novel reaction modes and enabling the synthesis of
structural diverse molecules.?® Visible-light-driven [2 + 2] photo-

12640 | Chem. Sci, 2024, 15, 12636-12643
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cycloadditions provide an efficient and direct approach to
functionalized cyclobutanes,” which could serve as versatile
synthons in organic synthesis. In 2022, Lu and Dai*® discovered
that under visible light irradiation, the [2 + 2] cycloaddition of
alkynes and benzoquinones could proceed to give oxetane
intermediates. This intermediate could lead to para-quinone
methide (p-QM) in the presence of the CPA catalyst. This key
prochiral intermediate could then be readily trapped by external
nucleophiles, such as indole, Hantzsch esters or d,-Hantzsch
ester to deliver the corresponding products with high enantio-
selectivities and high deuterium incorporation. The N-arylpyr-
roles 61 have also been demonstrated as efficient external
nucleophiles in the photoinduced transformation,® which
could afford enantioenriched axially chiral N-arylpyrroles 62
containing a quaternary carbon center and C-N axial chirality
(Scheme 10). The ultraviolet-visible spectra revealed that only
benzoquinone was photoexcited under visible light irradiation.
Employing p-QM as the substrate with N-arylpyrrole under the
same conditions could lead to the product with a similar result,
suggesting that the p-QM might be formed during the catalytic
process. The control experiment showed that CPA and light

a) Photoinduced asymmetric synthesis of axially chiral N-arylpyrroles
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Scheme 10 Photoinduced asymmetric synthesis of axially chiral N-
arylpyrroles.

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03766a

Open Access Article. Published on 25 Julie 2024. Downloaded on 2026-01-31 6:58:45 nm..

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Perspective

were crucial for this transformation. Benefiting from the use of
readily available alkynes, a broad range of axially chiral N-aryl-
pyrroles 62 were synthesized in excellent yields with exclusive
regioselectivities and excellent enantioselectivities. Moreover,
the derived chiral phosphine ligand 66 was successfully ob-
tained through simple chemical transformations, and it showed
excellent enantioselective control in the organocatalyzed [3 + 2]
annulation reaction and Pd catalyzed allylic substitution reac-
tion (Scheme 10d).

4. Construction of axial chirality via
photoinduced energy transfer

Catalytic deracemization®® has emerged as a powerful tool for
the asymmetric synthesis of chiral compounds with 100% atom
economy. With the development of photocatalysis via the
energy transfer process,* this research area has seen a renais-
sance, especially in the synthesis of axially chiral compounds.
The pioneering study for photoinduced deracemization of
penta-2,3-diene was reported in 1973,** however, poor enantio-
selectivity (up to 3.4%) was observed. A significant break-
through in this area came from the Bach group in 2004,* who
demonstrated the construction of central chirality. The photo-
induced deracemization of the construction of axial chirality
was disclosed by the same group in 2018 (Scheme 11a). They

a) Catalytic deracemization via photoinduced energy transfer
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o

H
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Scheme 11 Catalytic deracemization via photoinduced energy
transfer.
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reported an elegant deracemization of allenes 66 catalyzed by
bifunctional chiral thioxanthones under blue LED irradiation,
providing the corresponding axially chiral allenes 67 bearing
six-membered lactam in excellent yields with enantioselectiv-
ities. DFT calculations showed that the amide moiety in the
catalyst could selectively recognize the amide group in the
allene, thus differentiating two diastereomeric complexes of the
two allene amides (Scheme 11a). In contrast to 67-Cat-6, the ent-
67-Cat-6 complex has a shorter distance between the thio-
xanthone photosensitizer and the substrate, which could result
in a more rapid triplet energy transfer to convert to the other
enantiomer via the triplet intermediate. In a subsequent report
of deracemization of primary allene amides 68 from the same
group® (Scheme 11b), mechanistic studies and DFT calcula-
tions were performed to verify that the binding behavior of the
substrate and the catalyst was crucial for the enantioselectivity.
The structure of the triplet intermediates from 68 was also
characterized. Continuing with their interest,*” the Bach group
applied their strategy in the deracemization of chiral allenes 70—
73 containing five-membered lactam moieties and chiral tetra-
substituted alkenes.

5. Conclusions and outlook

Recent years have witnessed considerable efforts in the devel-
opment of photocatalytic synthesis of structurally diversified
axially chiral compounds. The stereocontrol of radical inter-
mediates generated from photocatalyzed SET has been
successfully developed, moreover, simultaneous control of axial
and central chirality has been achieved. Relying on the photo-
induced generation of key intermediates from simple starting
materials, the asymmetric relay catalytic system of photo-
catalysis and organocatalysis has also been developed. A
breakthrough in deracemization reactions relying on photo-
catalyzed energy transfer has been successfully explored. These
general and sustainable methods greatly expand the scope and
functional diversity of axially chiral compounds, opening new
avenues in asymmetric catalysis. Despite the current impressive
advancements, this field is still a burgeoning research area and
some challenging tasks need to be addressed. The scope of
radical precursors and the catalytic modes are currently limited
and worth of further exploration. In deracemization reactions,
the substrates are limited to lactams, indicating a need for the
development of more stereo-induced modes. Moreover,
synthesizing other types of axially chiral compounds beyond
biaryls, styrenes and allenes is highly desirable. The construc-
tion of atropisomeric multi-axis systems and the incorporation
of other chiral elements, such as central and planar chirality,
will be of great interest. Given the significant achievements
made so far, we expect this research area will continue to grow
and eventually be established as a robust catalytic platform in
organic synthesis.
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