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Identification of potential solid-state Li-ion
conductors with semi-supervised learning†

Forrest A. L. Laskowski,‡a Daniel B. McHaffie‡b and Kimberly A. See *a

Despite ongoing efforts to identify high-performance electrolytes for solid-state Li-ion batteries,

thousands of prospective Li-containing structures remain unexplored. Here, we employ a semi-

supervised learning approach to expedite identification of superionic conductors. We screen 180 unique

descriptor representations and use agglomerative clustering to cluster B26 000 Li-containing structures.

The clusters are then labeled with experimental ionic conductivity data to assess the fitness of the

descriptors. By inspecting clusters containing the highest conductivity labels, we identify 212 promising

structures that are further screened using bond valence site energy and nudged elastic band

calculations. Li3BS3 is identified as a potential high-conductivity material and selected for experimental

characterization. With sufficient defect engineering, we show that Li3BS3 is a superionic conductor with

room-temperature ionic conductivity greater than 1 � 10�3 S cm�1. While the semi-supervised method

shows promise for identification of superionic conductors, the results illustrate a continued need for

descriptors that explicitly encode for defects.

Broader context
All-solid-state batteries (ASSBs) could help to address energy storage needs for widespread renewable energy adoption as they may offer improved safety and
performance over conventional Li-ion batteries. The discovery of novel solid-state electrolytes (SSEs) is necessary to meet the conductivity and stability
requirements of ASSBs. In this work, we describe a method for identifying highly conductive SSEs and use this to screen over 26 000 Li-containing materials.
The utility of this approach is confirmed by demonstrating superionic conductivity in a candidate phase from our model. Included in this report is our database
containing the experimental ionic conductivities of 1346 compounds digitized from over 300 publications. This repository will enable future data-driven efforts
by the community to find high-performance SSEs, accelerating the development of improved energy storage technologies. Additionally, the described technique
for assessing material descriptor efficacy and identifying novel materials can be broadly applied to expedite materials discovery in other emerging fields limited
by data scarcity.

Identifying new materials that could improve solid-state ion
battery prospects is an ongoing challenge. The search for an
ideal solid-state Li electrolyte is a prime example. Research
has focused on eight classes of materials: LISICON-type struc-
tures, argyrodites, garnets, NASICON-type structures, Li–nitrides,
Li–hydrides, perovskites, and Li–halides.1 However, relatively
few compounds with near-liquid–electrolyte conductivity
(B10�2 S cm�1) have been discovered. Notable examples
include Li10GeP2S12 (LGPS),2 Li6PS5Br argyrodite,3 and Li7P3S11

ceramic-glass.1,4 Although promising discoveries, all three
high-conductivity structures are unstable against the Li anode.5–10

While investigations to limit instability are ongoing,11,12 identifi-
cation of additional superionic structures is desirable. Discovery
of new structures that support superionic conductivity improves
the odds of identifying or engineering a stable electrode|SSE
interface. For example, engineering solutions that fail to stabilize
the Li|argyrodite interface may prove more successful when
applied to not-yet-discovered superionic conductors. The dis-
covery of new superionic conductors may also enable stable
architectures via multi-electrolyte approaches which have been
proposed as more promising than single-electrolyte architec-
tures for achieving stability against Li metal and cathode
materials.13 High-performing structures that enable new bat-
tery chemistries may exist outside of the eight classes. However,
exploration under the traditional Edisonian approach priori-
tizes small perturbations to well-known variable spaces.
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Machine learning (ML) is a promising tool for expediting
the discovery of useful solid-state materials. By representing
prospective materials with physically meaningful descriptors,
ML models can identify high-dimensional patterns in large
datasets that are not readily apparent.14–20 Ongoing descriptor
engineering21–26 has enabled discovery of battery components,27,28

electrocatalysts,15,29 photovoltaic components,16,30 piezoelectrics,31

new metallic glasses14 and new alloys.32 However, application
of ML for discovery of SSEs and other emerging technologies
can be challenging. Supervised ML approaches require empiri-
cal data for use as ‘‘labels’’. For example, graph neural network
(GNN) approaches have been successful in many domains but
generally require thousands to tens of thousands of labels to
avoid overfitting.33 By contrast, relatively few SSEs have been
experimentally characterized compared to the B26 000 known
Li-containing structures.19,34–36 Characterized materials often
exhibit ill-defined properties owing to the variety of synthetic
approaches and non-standardized testing methods.37 Well-
performing materials often contain charge-carrying defects that
are not explicitly characterized or reported.38 Negative exam-
ples, i.e. materials with undesirable properties, are useful for
ML models but are seldom reported.

Semi-supervised ML can guide synthetic prioritization of
SSEs by overcoming the issues associated with label scarcity.
Supervised ML requires labels because it infers correlation
functions by mapping the input descriptors to the labels.39

Semi-supervised ML prioritizes comparison of descriptors to
identify relationships between the descriptors in a dataset.36,39

The input materials are clustered (or grouped) by comparison
of descriptors using a similarity metric. The clustering process
does not consider labels, and thus circumvents the need for an
abundant respository of labels. The resultant clusters can be
labeled ex post facto to examine correlation between the
descriptor and a physical property of interest. For semi-
supervised ML, ideal descriptors result in a set of clusters
where each cluster has similar labels and thus the label
variance is minimized. Promising synthetic targets may then
be identified by their membership in clusters that contain
desirable labels.

A key insight of this work is that semi-supervised ML can be
used to rank descriptors in terms of their correlation to physical
properties of interest. Descriptors are representations of the
input materials that encode the chemistry, composition, struc-
ture, and/or other system properties. An ideal descriptor should
be a unique representation, a continuous function of the
structure, exhibit rotational/translational invariance, and be
readily comparable across all structures in the dataset.24–26

Recently, Zhang et al. demonstrated that a modified X-Ray
diffraction (mXRD) descriptor lead to favorable clustering for
Li SSEs.34 By labeling the resultant clusters with experimental
room-temperature Li-ion conductivities, they identified 16 pro-
spective fast-ion conductors. However, an ideal descriptor is
not known a priori, and no comprehensive descriptor screening
has yet been pursued for correlation with SSE properties.
Descriptor screening is desirable for both experimentalists and
computationalists. For experimentalists, ranking of descriptors

affords insight into what aspects of materials are most correlated
with target properties. For computationalists, descriptor rankings
enable improved regression and supervised learning models by
guiding the selection of input representation(s). Descriptor trans-
formations for inorganic structures have been curated in a variety
of software packages, including: Matminer,24 Dscribe,25 SchNet,40

and Aenet.41

Herein, we employ hierarchical agglomerative clustering to
screen many descriptors, without assuming correlation to ionic
conductivity. The performance of 20 descriptors is assessed for
semi-supervised identification of Li SSEs. Each descriptor is
paired with 9 structural simplification strategies, yielding a
total of 180 unique representations per input structure. The
approach is applied to a dataset of B26 000 Li-containing
phases, encompassing all Li-containing structures contained
in the Inorganic Crystal Structure Database (ICSD – v.4.4.0) and
the Materials Project (MP – v.2020.09.08) database (Fig. 1). A set
of 220 experimental room temperature ionic conductivities
(s251C) are aggregated from literature reports and used as labels.
Experimental labels are selected because they may bias models
towards identifying structures that are synthetically tractable
and processable. Descriptors that encode the spatial environ-
ment are found to be the most correlated with the ionic
conductivity labels. Whereas descriptors that encode the elec-
tronic, compositional, or bonding environment have less pre-
dictive power. For the structural descriptors, simplifications
that neglect the mobile ion perform best. The descriptor
screening results suggest that ionic conductivity is most sensi-
tive to the spatial environment of the framework lattice.

Using the descriptors, the semi-supervised approach can
identify potential fast solid-state Li-ion conductors. By selecting
structures in clusters containing high conductivity labels,
the B26 000 input structures are down selected to just 212
promising structures. Application-based considerations, a
semi-empirical bond valence site energy (BVSE) method42 and
the Nudged Elastic Band (NEB) method are employed to rank
the structures. From the ten highest ranking structures, Li3BS3

is selected for model validation. Synthesis of pure Li3BS3 yields
a poor conductor. However, by employing defect engineering
strategies we demonstrate that Li3BS3 is a superionic conductor
with an ionic conductivity greater than 10�3 S cm�1.

Main text
Screening simplification-descriptor combinations

A set of 20 descriptors is selected for screening the semi-
supervised learning approach (Table 1). The descriptors generally
encode four types of information: the spatial environment, the
chemical bonding environment, the electronic environment, and
composition. All descriptors are implemented in Python using the
Matminer24 or Dscribe25 libraries. The code is published to a
GitHub repository and is available for download (https://github.
com/FALL-ML/materials-discovery). Zhang et al. illustrated that
structure simplification prior to learning can produce lower
variance outcomes.34 Their mXRD descriptor was found to work
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best with the removal of all cations, all the anions replaced by a
single representative anion, and the structure volume scaled to

40 Å3 per anion. Inspired by the previous success in using
structure simplification, we screen eight structure simplifications

Fig. 1 Schematic of the semi-supervised machine learning approach. Li-containing structures are aggregated from the ICSD and MP database. Each
input structure is simplified and transformed to yield a unique descriptor representation. The descriptor representations are clustered with hierarchical
agglomerative clustering. Each cluster is then labeled with experimental s251C data and the intracluster conductivity variance is calculated. Comparison of
the composite intracluster conductivity variance (intracluster conductivity variance summed across all clusters) enables identification of descriptors that
are well correlated with ionic conductivity.

Table 1 The descriptors used for agglomerative clustering. Descriptor vectors are attained by simplifying the input structures and then applying the
descriptor transformation. In total, 180 unique descriptor vectors are screened for each structure

Descriptor Descriptor description Ref.

Bond fraction ‘‘Bag of bonds’’ approach described in Hansen et al. wherein pairwise nuclear
charges and distances are encoded.

43

Band center Estimation of band center from constituent atoms’ electronegativity
values described by Butler et al.

44

Crystal structure analysis by
voronoi decomposition (CAVD)

Calculation of the largest sphere that can pass through the
lattice-sans-mobile-ion using Voronoi decomposition of structures.

45

Chemical ordering Warren-Cowley-like ordering method to determine how different
the structure’s ordering is from random.

46

Density features Calculates density, volume per atom, and the packing fraction. 47
Electronegativity difference Composition-weighted calculation of the electronegativity

difference between cations and anions.
48

Ewald energy Sum of coulomb interaction energies across all lattice sites
described by Ewald et al.

49

Global instability index Averaged square root of the sum of squared differences over
the bond valence sums.

Jarvis Diverse set of descriptors from the Jarvis-ML library. 50
Maximum packing efficiency A measure of the void space within the unit cell. 46
Meredig Composite descriptor from Meredig et al. 51
Modified XRD (mXRD) Powder diffraction pattern calculated using Bragg’s law. 47
Orbital field matrix Descriptor that encodes the distribution of valence shell

electrons for each input structure.
52

Oxidation states Concentration weighted oxidation state statistics. 48
Radial distribution function Radial distribution function for each structure. 47
Sine coulomb matrix Coulomb matrix for periodic lattices, developed by Faber et al. 53 and 54
Smooth overlap of atomic
positions (SOAP)

Geometric encoder that is rotationally/transitionally invariant
through use of spherical harmonics and radial basis functions.
Atoms are represented by a smeared Gaussian.

25

Structural complexity The Shannon information entropy for a given structure. 55
Structure variance Bond length and atomic volume variance for each structure. 46
Valence orbital Structure-averaged number of valence electrons in each orbital. 48 and 56
Control A control descriptor is not explicitly used. Instead,

clustering outcomes are randomly assigned. For composite
intracluster variance calculations, 100 control iterations are averaged.
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in addition to the unperturbed structure. For simplifications the
following categories of atoms are replaced with a representative
specie: (1) cations are represented as Al, (2) anions are represented
as S, (3) mobile ions are represented as Li, and (4) neutral atoms
are represented as Mg. Categories of atoms are removed to yield
the four simplifications: CAMN (all atoms retained), CAN (mobile
ions removed), AM (cations and neutral atoms removed), and A
(only anions retained). Four additional simplifications are formed
by scaling each lattice volume to 40 Å3 per anion: CAMN-40,
CAN-40, AM-40, and A-40.

Agglomerative clustering is performed on all Li-containing
structures from the ICSD and MP repositories. Agglomerative
clustering is a ‘‘bottom-up’’ approach to clustering where each
structure starts in its own cluster of one. Clusters are merged
according to Ward’s Minimum Variance criterion in Euclidean
space, which minimizes the global descriptor variance:57

W ¼
XnC
k¼1

X
i2Ck

di � �dk

� �2

where nC is the number of clusters in a set, Ck is cluster k, di is a
descriptor representation for structure i, and %dk is the average
descriptor representation in cluster k. Each cluster merger
results in the lowest variance set of clusters, relative to all other
possible mergers. Other common linkage criteria (average,
complete, and single linkages) and metrics (l1, l2, Manhattan,
cosine) were screened but are found to result in clustering

outcomes with larger W. For each simplification-descriptor
combination, all clustering sets from 2–300 are computed.
Physically relevant labels are applied to the resultant clustering
sets to assess how well each simplification-descriptor combi-
nation performs. To compare between the 180 different
simplification-descriptions combinations, the data is labeled
with 155 experimental room temperature conductivity (sRT)
values aggregated from the literature reports (see Sections
I–IV, ESI†). A secondary label set is also screened, comprised
of 6845 activation energies (Ea) computationally generated
using a bond valence energy approach (see Section V, ESI†).

An ideal simplification-descriptor combination results in
clustering where each cluster contains labels with similar sRT

values. Ward’s minimum variance method is applied to the
conductivity labels as a measure of clustering efficacy:34

Ws ¼
XnC
k¼1

X
i2Ck

logðsRTÞi � logðsRTÞk
h i2

where nC is the number of clusters in a set, Ck is cluster k, and

logðsRTÞk denotes the mean for all labels in cluster k. Since
clusters containing only one label effectively drop out of the Ws

calculation, a frozen-state strategy is employed when needed
(see Section IV, ESI†). Each descriptor’s Ws results are shown in
Fig. 2 for the first 50 clustering outcomes (i.e. the Ws is shown
for each set of 2, 3, . . ., 49, and 50 clusters). For simplicity, only

Fig. 2 The composite intracluster conductivity variance (Ws) for the first 50 clusters generated using each descriptor. Half-violin plots show the raw Ws

score for each depth of clustering as symbols next to the violin distribution. Simplification-descriptor combinations are sorted in order of ascending
mean. The control is a random assignment of clusters, with Ws values averaged over 100 randomly assigned sets. The smooth overlap of atomic positions
(SOAP) descriptor outperforms all other descriptors. Although not shown here, SOAP continues to outperform for all depths of clustering through 300
clusters.
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the best-performing simplification-descriptor combination is
shown for each descriptor.

Using s251C labels, the best semi-supervised ML performance
is attained when using the SOAP descriptor. SOAP is a spatial
descriptor that employs smeared Gaussians to represent atomic
positions for each crystal structure.25 Predictions using the
SOAP descriptor have exhibited similar performance to state-
of-the-art graph neural networks (GNNs) on a variety of materials
science datasets.58 Optimization of SOAP hyper-parameters (radial
cutoff, number of radial basis functions, degree of spherical
harmonics) is explored in section VI of the ESI.† SOAP is found
to perform best when combined with the CAN structure simpli-
fication. That is, the simplification where the mobile Li atoms are
removed, and the remaining atoms are simplified into three
representative species: cations, anions, and neutral atoms. SOAP
outperforms all other descriptors for all depths of clustering. The
SOAP descriptor can be modestly improved (2–3% decrease in Ws)
by mixing with other descriptors to make a 2nd-order SOAP
descriptor (see Section VI, ESI†).

Semi-supervised identification of prospective Li-ion conductors

Agglomerative clustering with the 2nd-order SOAP descriptor is
used to identify prospective ionic conductors. Ws minimization
is prioritized over WEa minimization because Ea alone is not
necessarily a good predictor of conductivity; s251C may be
affected by properties including the ionic carrier concentration,

hopping attempt frequency, and the presence of concerted
migration modes.59 The agglomerative dendrogram for the
2nd-order SOAP clustering is shown in Fig. 3, with the label
densities plotted below. The agglomerative dendrogram is
depicted to 241 clusters, after which the Ws does not appreci-
ably decrease. To facilitate discussion, an arbitrary cutoff is
placed to yield 9 large clusters. The results show that although
cluster #2 contains only 15% of the input structures, it accounts
for over half of the high-conductivity (s251C 4 10�5 S cm�1)
labels. By the 17th clustering step, the densest cluster accounts
for 6.2% of the structures while containing over half (52%) of
the high-conductivity labels.

Candidates for next-generation SSEs can be identified by
evaluating clusters that either contain or are near high con-
ductivity labels. Clusters #2, #4, and #7 are promising because
they account for 85% of the high s251C labels. However, target-
ing these clusters would necessitate screening thousands of
structures. Instead, we search from the 241st cluster depth,
targeting all clusters that contain or are directly adjacent
(i.e. the nearest cluster in the Euclidean feature space) to high
s251C labels. The promising structures are further screened
using calculated stability (E vs. Ehull) and band gap (Eg) proper-
ties from the Materials Project, and the BVSE Ea values.
We select the structures that have (1) an Ehull of 70 meV or
lower,60 (2) an Eg of at least 1 eV, and (3) a BVSE-calculated Ea

below a conservative 0.6 eV. We note that while a true Eg value

Fig. 3 Agglomerative clustering dendrogram for the 2nd-order SOAP descriptor. The hierarchical clustering representation is shown for the first 241
clusters. An arbitrary variance cutoff is placed such that 9 large clusters are produced to facilitate analysis. The violin plots show the s251C distribution for
the labels within the 9 large clusters. Three outlier clusters are grouped into two additional clusters and are hereafter ignored. The density (per 241
clusters) of low Ea (o0.6 eV) and high conductivity (s251C 410�5 S cm�1) labels is shown underneath the agglomerative dendrogram. The results illustrate
that agglomerative clustering on the 2nd-order SOAP descriptor results in favorable aggregation of most high-conductivity labels.
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of 1 eV would be problematic for an SSE, the bandgaps reported
on Materials Project are typically underestimated by about
40%.61 The approach identifies 212 structures as prospec-
tive ionic conductors. Climbing image nudged elastic band
(CI-NEB) is employed to calculate the Ea for Li-ion hopping on
the ten materials with the lowest BVSE-calculated Ea and an
Ehull of 0 eV. The CI-NEB computational details can be found
in Section VII (ESI†). The top 10 prospective structures are
tabulated in Table 2.

The CI-NEB calculations generally agree with the BVSE
calculated Ea values, suggesting favorable activation energies
(o500 meV). Discrepancies between the two values may arise
because BVSE does not allow framework ions to relax during Li+

migration and does not account for repulsive interactions
between atoms of the mobile ion species. BVSE also does not
capture cooperative conduction mechanisms or those involving
the so-called paddlewheel effect. Despite these limitations, we
note that the model identifies numerous diverse structures
beyond those routinely explored. Table 1 includes four tell-
urides, a vanadium sulfide, and multiple transition–metal-
containing structures. Of the structures in Table 1, 70% avoid
the space groups for the best-performing SSEs discovered to date:
LPS (62), LGPS (137), the argyrodites (216), and LLZO (230).

Experimental validation of the semi-supervised learning model:
Li3BS3

From the ten most promising candidates, Li3BS3 was selected
for synthesis and characterization. Li3BS3 is noteworthy because
it has been explored experimentally and computationally before.
Experimentally, Vinatier et al. previously determined that Li3BS3

has a total DC conductivity of 2.5� 10�7 S cm�1 with an activation
energy of 700 meV.62 The DC measurement was not included in
our label set because DC measurements cannot differentiate
between ionic and electronic conductivity, so they were categori-
cally discounted from the label set (see ESI,† I for more details on
label selection). Although the conductivity and activation energy
values reported by Vinatier et al. are underwhelming, there are
promising theoretical reports. Density functional theory molecular
dynamics (DFT-MD) simulations from Sendek et al.63 suggest that
Li3BS3 should have a room temperature conductivity between

3.1 � 10�6 and 9.7� 10�3 S cm�1. Our NEB-calculated activation
energy for Li3BS3 is 260 meV, corroborating a previous NEB result
from Bianchini et al.64 Additionally, Li3BS3 is practically attractive
because: (1) Li3BS3 contains no redox-active metals, (2) band edge
calculations have suggested stability against metallic Li,65 (3) DFT-
MD calculations have suggested a kinetic barrier for decomposi-
tion against metallic Li,63 and (4) the synthesis is reported.66 It is
simpler to avoid redox active metals in the SSE as they may be
reduced and oxidized at electrode interfaces. However, we note
that Li0.5La0.5TiO3 is a widely studied SSE that contains redox
active Ti67,68 so the compounds we report here that contain Mn, V,
and Cu should not be categorically discounted. It is important to
note that while studying Li3BS3 as a candidate Li-ion conductor for
model validation, Kimura et al. reported that a so-called ‘‘Li3BS3

glass’’ exhibits an ionic conductivity of 3.6 � 10�4 S cm�1 at
25 1C.69

Li3BS3 is prepared using solid-state synthesis from Li2S, B,
and S precursors. The diffraction and quantitative Rietveld
refinement are shown in Fig. 4a, indicating a phase pure
material. Electrochemical impedance spectroscopy (EIS) is
employed at various temperatures and the measured conduc-
tivity is plotted according to the Arrhenius-like relationship
(Fig. 4b):

s ¼ s0
T
e
� Ea
kBT

where T is the temperature, kB is Boltzmann’s constant, s0 is
the conductivity prefactor, and Ea is the activation energy. The
room temperature ionic conductivity (s251C) is 7.2(�3.0) �
10�7 S cm�1 and the activation energy is 400 � 47 meV. The
low conductivity and high activation energy may be due to lack
of charge-carrying defects in the Li3BS3 lattice.70,71 Although a
sufficient carrier concentration is necessary for facile ionic
conduction in most materials, the descriptors in the semi-
supervised model do not explicitly encode for charge-carrying
defects. In the label set, conductivity is likely influenced by the
defect concentration but defects are typically not reported. Still,
the semi-supervised model may infer a structure’s capacity to
support conductive defects via correlation with the descriptors.
To test the hypothesis, we use two strategies to engineer

Table 2 The top 10 prospective structures from the semi-supervised learning model as ranked by BVSE-calculated Ea. Structures in or directly adjacent
to high-conductivity clusters were identified as promising. The list of promising structures was then further simplified by removing structures with
Materials Project reported Ehull values greater than 0 V and Eg values less than 1 eV. To rank the remaining structures, the Ea was calculated using BVSE
and CI-NEB approaches

Compound Space group MP_ID ICSD_ID
E vs. Ehull

(eV per atom) Eg (eV)

Ea_calc (meV)

BVSE NEB

Li3VS4 P%43m (#215) mp-760375 0 1.88 160 390
Na3Li3Al2F12 Ia%3d (#230) mp-6711 9923 0 7.85 230 340
Li2Te Fm%3m (#225) mp-2530 60 434 0 2.49 260 320
LiAlTe2 I%42d (#122) mp-4586 280 226 0 2.46 260 310
LiInTe2 I%42d (#122) mp-20782 658 016 0 1.49 270 450
Li6MnS4 P42/mmc (#137) mp-756490 0 1.55 270 470
LiGaTe2 I%42d (#122) mp-5048 162 555 0 1.59 270 340
Li3BS3 Pnma (#62) mp-5614 380 104 0 2.89 280 260
KLi6TaO6 R%3m (#166) mp-9059 73 159 0 4.27 300 400
Li3CuS2 Ibam (#72) mp-1177695 0 2.03 310 440
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Fig. 4 Characterization of Li3BS3 with vacancy engineering. (a) XRD patterns for Li3BS3, 2.5% Si substituted Li3BS3 (Li2.975B0.975Si0.025S3), 5% Si substituted
Li3BS3 (Li2.95B0.95Si0.05S3), and amorphized 5% Si substituted Li3BS3 (a-Li2.95B0.95Si0.05S3). No impurities are observed in any pattern. (b) Arrhenius fits for
Li3BS3. (c) Lattice parameter comparison for Li3BS3, Li2.975B0.975Si0.025S3, and Li2.95B0.95B0.05S3. (d) Arrhenius fits for Li2.95B0.95Si0.05S3, and
a-Li2.95B0.95Si0.05S3. (e) Electrochemical impedance spectroscopy for a-Li2.95B0.95Si0.05S3 at various temperatures. (f) 7Li NMR and (g) 11B NMR of Li3BS3,
Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3. Results show that combined aliovalent substitution and amorphization can improve the ionic conductivity of
Li3BS3 by approximately four orders of magnitude.
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vacancies: aliovalent substitution and amorphization via extended
ball milling. Aliovalent substitution has been shown to improve
conductivity in Li-argyrodites, -sulfides, and -garnets by introdu-
cing vacancies.70,71 Similarly, amorphization can introduce defects
and vacancies that enable Li+ hopping.69,71–73

Aliovalent substitution of Li3BS3 is achieved by substituting
Si for B. The XRD patterns and quantitative Rietveld refine-
ments of Li2.975B0.975Si0.025S3 and Li2.95B0.95Si0.05S3 are shown
in Fig. 4a. The lattice parameters from the refinements are
plotted vs. stoichiometry with the Li3BS3 end-member in
Fig. 4e. The linear trend shows that the materials obey Vegard’s
law and confirms that Si incorporates into the lattice as a solid-
solution. Substitution to 7.5% Si continues the Vegard trend
but unidentified impurities are apparent in the XRD pattern.
With 5% Si substitution, the ionic conductivity is improved to
1.82(�0.21) � 10�5 S cm�1 and the activation energy is
decreased to 333 � 47 meV (Fig. 4d). All error bars reported
for electrochemical measurements represent the standard
deviation of three replicate cells. Kimura et al. demonstrated
that extended ball milling of Li3BS3 causes amorphization
and improves ionic conductivity, likely due to the introduction
of defects.62,69 Extended ball milling is attempted on the
5%-substituted Li3BS3 to assess whether both defect engineer-
ing strategies are compatible. Planetary ball milling of the
5%-substituted Li3BS3 for 100 h achieves amorphization
(a-Li2.95B0.95Si0.05S3), as verified by the lack of distinct peaks
in the XRD pattern shown in Fig. 4a.

We find that amorphization significantly improves Li-ion
conductivity. EIS measurements of a-Li2.95B0.95Si0.05S3 are
shown in Fig. 4e. A high-frequency semicircle is partially
resolved which may represent grain boundary or bulk ionic
transport. A Warburg tail is evident at lower frequencies,
indicating that electronic charge transfer is blocked. Although
multiple high-frequency semicircles may exist (see Section VII,
ESI†), a conservative estimate of the ionic conductivity is
determined by linear fit of the Warburg tail and extrapolation
to the x-intercept. The s251C of a-Li2.95B0.95Si0.05S3 is 1.07(�0.08) �
10�3 S cm�1 with an activation energy of 345 � 2 meV (Fig. 4d).
The electronic conductivity as measured by DC polarization is less
than 4 � 10�10 S cm�1.

To determine if the local structure in the crystalline material
is maintained after amorphization, we turn to 7Li and 11B NMR.
If the local structure is not altered by amorphization, then it is
likely that the ion diffusion pathways are similar. Comparing
the ion diffusion pathways is important because the machine
learning points to the structure of the crystalline Li3BS3 phase.
The 7Li NMR spectra of Li3BS3, Li2.95B0.95Si0.05S3, and
a-Li2.95B0.95Si0.05S3 are shown in Fig. 4d. All materials show a
single resonance at the same chemical shift, suggesting that the
Li local environment remains unchanged. The resonance width
narrows significantly in the amorphous material due to the
higher mobility. The 11B NMR measurements are shown in
Fig. 4g. The 11B NMR for Li3BS3 and Li2.95B0.95Si0.05S3 show a
single, quadrupolar environment that can be assigned to the
[BS3]3� moieties.69,74 The signal from the a-Li2.95B0.95Si0.05S3

shows a similar signal to that of the crystalline phases but the

shape changes, similarly to the previous measurement for
amorphous Li3BS3.69 Li3BS3, Li2.95B0.95Si0.05S3, and a-Li2.95B0.95-
Si0.05S3 all exhibit a major peak at B60 ppm and a relatively
minor peak B0 ppm. The major peak is assigned to trigonal
planar [BS3]3� while the minor peak likely indicates a minor
impurity with tetrahedrally coordinated B.75–77 The change in
the shape of the 11B spectrum upon amorphization is likely due
to an averaging of the quadrupolar couplings due to the fast
Li dynamics. Thus, Li3BS3 and a-Li2.95B0.95Si0.05S3 have similar
local structures and we can attribute the faster Li dynamics to
the introduction of charge-carrying defects.

Although investigation of interfacial stability is beyond the
scope of the model, we note that the Si-substituted Li3BS3 is a
promising candidate for future investigations into interfacial
stability. Work by Park et al. suggests that the (010) facet
for Li3BS3 has a conduction band minimum 0.5 eV above the
Li/Li+ couple.65 Since decomposition of Li3BS3 is likely to be
mediated by electron injection from Li, their results suggest
that thermodynamic stability can be engineered via orienta-
tion. From a kinetic perspective, high-temperature DFT-MD
simulations show no mobility for B and S, suggesting large
kinetic diffusion barriers.63 Since decomposition of Li3BS3

would entail the diffusion of these species, the reaction
may be sluggish or wholly precluded. Interfacial stability has
been previously demonstrated for a glassy electrode in the
Li–B–S–Si–O phase space.78 This result may indicate that
stability can be engineered into Si-substituted Li3BS3 by
partial isovalent substitution of O for S. Finally, recently-
synthesized Li–B–S–X (X = Cl, Br, I) quaternaries have exhi-
bited promising conductivities.79 With similar elemental com-
position, the Si-substituted Li3BS3 may be a good candidate
for a multi-electrolyte architecture with the halide-containing
quaternaries.13

In addition to our experimental model validation, another
of the predicted materials, KLi6TaO6, was recently synthe-
sized with aliovalent Sn-substitution by Suzuki et al.80 With a
reported ionic conductivity near 10�5 S cm�1, KLi6TaO6 is
better than 70% of the SSEs in the semi-supervised labels.
Further improvement may be possible via extended amorphiza-
tion to introduce structural defects, as is observed for Li3BS3.

Conclusions

Identification of functional materials is critical for improv-
ing technologies. Here, we show the utility of using semi-
supervised learning as a method for guiding next-generation
materials discovery in emerging fields. The method’s focus on
identifying the relationships between descriptors, prior to
labeling, enables understanding of compositional spaces where
most inputs are unlabeled. We demonstrate how semi-
supervised learning can be used to identify descriptors corre-
lated with superionic conductivity in Li SSEs. By analyzing all
Li-containing structures from the ICSD and MP database, we
identify 212 materials that show promise as SSEs. All 212
structures exhibit a BVSE-predicted Ea below 0.6 eV.
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The results illustrate why careful screening of descriptors is
useful when identifying new materials. While chemical intui-
tion can be useful for descriptor selection, chemical intuition is
often biased to favor previously investigated compositional
spaces. For material discovery in emerging fields, the use of
handpicked descriptors may miss complex phenomena that
more generally describe the dataset. Descriptor screening
reveals which material properties are correlated to a property
of interest to help enhance chemical intuition. In the case of
Li SSEs, spatial descriptors excel over compositional, bonding,
and electronic descriptors: the Smooth Overlap of Atomic
Positions (SOAP), modified X-ray diffraction (mXRD), and gen-
eral density descriptors are within the top four models. For
spatial descriptors, simplification of the input structure tends
to improve clustering outcomes. Removing the mobile ions
from the structure and simplifying the remaining atoms,
i.e. the ‘‘CAN’’ simplification, is most effective. Thus, the place-
ment of framework atoms, but not their precise identity, is most
correlated with ionic conductivity. Specifying the mobile ion
positions hurts the model performance, suggesting a low correla-
tion of mobile ion positions with ionic conductivity.

Predictions from the semi-supervised method are promising
starting points for the experimental identification of new super-
ionic conductors but defects must be considered. The proposed
materials are diverse, with the top thirty including halides,
sulfides, tellurides, nitrides, oxides, and oxyhalides (see Section
IX, ESI†). As a structure that falls outside of the eight routinely
studied SSE classes, we demonstrate experimental characteri-
zation of Li3BS3 to confirm the utility of the approach. However,
pure Li3BS3 exhibits poor ionic conductivity. Defects must be
introduced into the material to achieve a superionic conduc-
tivity above 10�3 S cm�1, a value that surpasses most reported
SSEs. We note that the defects are introduced while maintain-
ing the local structure of the crystalline material and thus the
ionic conduction pathways are likely similar. The need to
introduce defects highlights the paramount importance that
defects play when measuring real materials. Many of the
highest-performing SSEs contain charge-carrying defects that
are not explicitly encoded in their structure files. It is likely that
some of the descriptors indirectly encode information about
defects. By using experimental conductivity values as the eva-
luation metric, we may be prioritizing descriptors that encode
information about a structure’s ability to support charge-
carrying defects. Although Li3BS3 is a poor conductor, it is
clearly able to support charge-carrying defects. The large con-
ductivity difference between pristine Li3BS3 and a-Li2.95B0.95-
Si0.05S3 highlights the importance of these defects. To improve
predictive models and enhance chemical intuition, descriptors
that explicitly encode defects are needed.

Now developed, the semi-supervised learning approach can
serve as a template for material discovery beyond Li SSEs. The
code is thoroughly documented following pythonic coding
standards and made freely available on GitHub. Although the
present effort focuses on Li SSEs, the approach is applicable
to any material discovery space where labels are sparse. The
discovery of new Li cathodes could be accomplished by using Li

diffusivity, cathode capacity, and metal redox couple voltages as
labels. The discovery of divalent SSEs (e.g. Mg2+, Ca2+, Zn2+)
could foreseeably be accomplished in a similar manner. The
semi-supervised learning strategy may accelerate identification
of fast ionic conductors for ion exchange membranes, solid
oxide fuel cells, and various sensor applications.

Methods
Data processing and semi-supervised learning

The B26 000 input compositions are exported from the Inorganic
Crystalline Structure Database (ICSD v.4.4.0) and Material’s Project
(MP – v.2020.09.08) as crystallographic information files (.cif).
All structures containing Li are imported. Although transition
metals could produce undesirable redox activity, transition
metal-containing structures are not screened out. Some of the
best-performing SSEs contain transition metals (e.g. LLZO and
LLTO). Entries that exist in both ICSD and MP are merged. Data
manipulations and structure simplifications are performed using
the Python libraries NumPy (v1.19.1), Pandas (v1.0.5), ASE
(v3.19.1), and Pymatgen (v2020.8.3). Descriptor transformations
are performed using the Python libraries Pymatgen (v2020.8.3),
Matminer (v0.6.3), and Dscribe. Agglomerative hierarchical cluster-
ing is performed using the Python library scipy (v1.5.0). All code
has been successfully executed on a custom-built CPU with an
AMD Ryzen Threadripper 3990x Processor and 256 GB of RAM, in
Ubuntu 20.04 running on Windows Subsystem for Linux 2.
All code is made available on the GitHub (https://github.com/
FALL-ML/materials-discovery).

CI-NEB

Migration barriers for Li-ion hopping are evaluated with the
Climbing Image – Nudged Elastic Band (CI-NEB) method as
implemented in the QuantumESPRESSO PWneb software
package.81–84 Density-functional theory (DFT) calculations are
performed using the Perdew–Burke–Ernzerfof (PBE) generalized
gradient approximation functional and projector-augmented wave
(PAW) sets.85,86 Convergence testing for the kinetic-energy cutoff
of the plane-wave basis and the k-point sampling is performed for
each structure to ensure an accuracy of 1 meV per atom. The
lattice parameters and atomic positions of the as-retrieved struc-
ture are optimized. Supercells are created for each structure that
are a minimum of 10 Å in each lattice direction to minimize
interactions between periodic images of the mobile ion. To study
the migration barrier in the dilute limit, a single Li vacancy is
created in the boundary endpoint structures of each studied
pathway. A uniform background charge is used to balance excess
charge. Each boundary configuration is relaxed until the force on
each atom is less than 3 � 10�4 eV Å�1. Images are created by
linearly interpolating framework atomic positions between the
initial and final boundary configurations. The initial pathway for
the mobile ion is generated from the BVSE output minimum
energy pathway to promote faster convergence of the NEB calcula-
tion. An NEB force convergence threshold of 0.05 eV Å�1 is used.
The calculation is first converged using the default NEB algorithm
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and then restarted with the CI scheme to allow for the maximum
energy of the pathway to be determined.

Li3BS3 synthesis

Li3BS3 is synthesized by reaction of Li2S (Alfa Aesar, 99.9%), S8

(Acros Organics, 499.5%), and elemental B (SkySpring Nano-
materials, Inc. 99.99%). The reactants are first mixed stoichio-
metrically (300 rpm for 1 h) using a planetary ball mill (MSE
PMV1-0.4L) in 50 mL ZrO2 jars with ZrO2 balls. Two grams of
reactants are always combined with 2 large balls (10 mm
diameter), 34 medium balls (5 mm diameter), and 8 grams of
small balls (3 mm diameter). Loading of ball mill jars occurs in
an Ar-filled glovebox (Mbraun) and the jars are sealed before
removal. After the 1 h of milling, the precursor mixture is
pumped back into the glovebox and 330–340 mg of the powder
is loaded into carbon-coated vitreous silica ampoules (10 mm
ID � 12 mm OD). The ampoules are evacuated (o10 mtorr)
prior to sealing. Pure Li3BS3 is obtained via a four-step heating
protocol in a Lindberg/Blue furnace: (1) ramp to 500 1C at
5 1C min�1, (2) hold at 500 1C for 12 h, (3) ramp to 800 1C at
5 1C min�1, and (4) hold at 800 1C for 6 h. The hot melt is then
quenched from 800 1C into room-temperature water. Recovered
ingots are typically covered in an amorphous shell. The shell is
either sanded off or the ingot is ground into smaller pieces and
the shell is manually removed.

Substituted Li3BS3

Aliovalent substitution is accomplished by adding elemental Si
(Acros, 99+%) into the precursor mixture prior to the 1 h mix.
Si-Substitution stoichiometry assumed that each Si atom
replaces one Li and B: Li3�xB1�xSixS3. Aside from the addition
of Si, all steps are the same as for the synthesis of Li3BS3.
Amorphization is accomplished via extended planetary ball
milling in Ar of the 5% Si-substituted Li3BS3 (Li2.95B0.95Si0.05S3).
Approximately 1 g of Li2.95B0.95Si0.05S3 is combined in a ZrO2

ball mill jar with 3 large balls (10 mm diameter), 51 medium
balls (5 mm diameter), and 12 g of small balls (3 mm diameter).
The powder is ground in a planetary ball mill (MSE PMV1-0.4L),
under an Ar atmosphere, for 100 h.

Material characterization

Li3BS3 materials are characterized using powder X-ray diffrac-
tion (XRD) and electrochemical impedance spectroscopy (EIS).
XRD patterns are attained on a Rigaku Smartlab by scanning
from 101 to 701 2y at 2 degrees per minute. The Smartlab
employs a Cu-Ka source with a 20 kV accelerating voltage. For
EIS measurements, 50–100 mg of powder is first hot-pressed
(100 1C, 5 min) into a 1/400 diameter pellet. The pellet faces are
polished using diamond lapping powder (Allied High Tech
Products Inc.) in sequentially finer grits: 60, 30, 6, 0.5, and
0.1 microns. Au contacts are sputtered (90 s at 40 mA) onto the
polished surfaces using a 108 Auto Sputter Coater (Cressing-
ton). Pellets are then assembled into a Swagelok 1/400 cell with
stainless steel current collectors. After applying pressure with a
hand vise (B100 MPa), EIS data is collected on a VSP-300 with
a Biologic low-current channel. All EIS data is collected to an

upper frequency of 3 MHz. The lower frequency is case depen-
dent, with a frequency cutoff selected such that the Warburg
polarization feature is visible. 7Li and 11B MAS MAS NMR
spectra were acquired using a Bruker DSX-500 spectrometer
with a 4 mm ZrO2 rotor. The operating frequencies for 7Li
and 11B are 190.5 and 160.5 MHz, respectively. The 7Li and 11B
spectra were referenced to a 1 M LiCl aq. solution and BF3-OEt2,
respectively. A spinning speed of 12 kHz was used, and the
spectra were gathered after applying a single 0.5 ms to 151 pulse
for both 7Li and 11B.
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