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Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging
accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular
modeling and drug discovery, from rapid virtual screening to detailed free energy calculations.
Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete
chemical perception rules (atom types) for applying parameters to small molecules or biopolymers,
making it difficult to optimize both types and parameters to fit quantum chemical or physical property
data. Here, we propose an alternative approach that uses graph neural networks to perceive chemical
environments, producing continuous atom embeddings from which valence and nonbonded parameters
can be predicted using invariance-preserving layers. Since all stages are built from smooth neural
functions, the entire process—spanning chemical perception to parameter assignment—is modular and
end-to-end differentiable with respect to model parameters, allowing new force fields to be easily
constructed, extended, and applied to arbitrary molecules. We show that this approach is not only
sufficiently expressive to reproduce legacy atom types, but that it can learn to accurately reproduce and
extend existing molecular mechanics force fields. Trained with arbitrary loss functions, it can construct
entirely new force fields self-consistently applicable to both biopolymers and small molecules directly
from quantum chemical calculations, with superior fidelity than traditional atom or parameter typing
schemes. When adapted to simultaneously fit partial charge models, espaloma delivers high-quality
partial atomic charges orders of magnitude faster than current best-practices with low inaccuracy. When

trained on the same quantum chemical small molecule dataset used to parameterize the Open Force
Received 16th May 2022 Field (‘Parsley”) openff-1.2.0 small molecule force field ted with tide dataset, the resulti
Accepted 5th September 2022 ie arsley’) openff-1.2.0 small molecule force field augmented with a peptide dataset, the resulting

espaloma model shows superior accuracy vis-d-vis experiments in computing relative alchemical free

DOI: 10.1035/d2sc0273%a energy calculations for a popular benchmark. This approach is implemented in the free and open source

rsc.li/chemical-science package espaloma, available at https://github.com/choderalab/espaloma.

Molecular mechanics (MM) force fields—physical models that
abstract molecular systems as atomic point masses that interact
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terms—have powered in silico modeling to provide key insights
and quantitative predictions in all aspects of chemistry, from
drug discovery to materials science.”® While recent work in
quantum machine learning (QML) potentials has demonstrated
how flexibility in functional forms and training strategies can
lead to increased accuracy,'* " these QML potentials are orders
of magnitude slower than popular molecular mechanics
potentials even on expensive hardware accelerators, as they
involve orders of magnitude more floating point operations per
energy or force evaluation.

On the other hand, the simpler physical energy functions of
MM models are compatible with highly optimized imple-
mentations that can exploit a wide variety of hardware,>'’* but

© 2022 The Author(s). Published by the Royal Society of Chemistry
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rely on complex and inextensible legacy atom typing schemes
for parameter assignment:*

e First, a set of rules is used to classify atoms into discrete
atom types that must encode all information about an atom's
chemical environment needed in subsequent parameter
assignment steps.

e Next, a discrete set of bond, angle, and torsion types is
determined by composing the atom types involved in the
interaction.

e Finally, the parameters attached to atoms, bonds, angles,
and torsions are assigned according to a look-up table of
composed parameter types.

Consequently, atoms, bonds, angles, or torsions with
distinct chemical environments that happen to fall into the
same expert-derived discrete type class are forced to share the
same set of MM parameters, potentially leading to low resolu-
tion and poor accuracy. Furthermore, the explosion of the
number of discrete parameter classes describing equivalent
chemical environments required by traditional MM atom typing
schemes not only poses significant challenges to extending the
space of atom types,* but optimizing these independently has
the potential to compromise generalizability and lead to over-
fitting. Even with modern MM parameter optimization frame-
works*™* and sufficient data, parameter optimization is only
feasible in the continuous parameter space defined by these
fixed atom types, while the mixed discrete-continuous optimi-
zation problem—jointly optimizing types and parameters—is
intractable.

Here, we present a continuous alternative to traditional
discrete atom typing schemes that permits full end-to-end
differentiable optimization of both typing and parameter
assignment stages, allowing an entire force field to be built,
extended, and applied using standard automatic differentiation
machine learning frameworks such as PyTorch,* TensorFlow,*
or JAX* (Fig. 1). Graph neural networks have recently emerged
as a powerful way to learn chemical properties of atoms, bonds,
and molecules for biomolecular species (both small organic
molecules and biopolymers), which can be considered isomor-
phic with their graph representations.**** We hypothesize that
graph neural networks operating on molecules have expres-
siveness that is at least equivalent to—and likely much greater
than—expert-derived typing rules, with the advantage of being
able to smoothly interpolate between representations of
chemical environments (such as accounting for fractional bond
orders*). We provide empirical evidence for this in Section 1.1.

Next, we demonstrate the utility of such a model (which we
call the extensible surrogate potential optimized by message-
passing, or espaloma) to construct end-to-end optimizable
force fields with continuous atom types. Espaloma assigns
molecular mechanics parameters from a molecular graph in
three differentiable stages (Fig. 1):

e Stage 1: continuous atom embeddings are constructed
using graph neural networks to perceive chemical environ-
ments (Section 1.1).

e Stage 2: continuous bond, angle, and torsion embeddings
are constructed using pooling that preserves appropriate
symmetries (Section 1.2).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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e Stage 3: molecular mechanics force field parameters are
computed from atom, bond, angle, and torsion embeddings
using feed-forward networks (Section 1.3).

Additional molecular mechanics parameter classes (such as
point polarizabilities, valence coupling terms, or even parame-
ters for charge-transfer models*) can easily be added in
a modular manner.

Similar to legacy molecular mechanics parameter assign-
ment infrastructures, molecular mechanics parameters are
assigned once for each system, and can be subsequently used to
compute energies and forces or carry out molecular simulations
with standard molecular mechanics packages. Unlike tradi-
tional legacy force fields, espaloma model parameters @xy—
which define the entire process by which molecular mechanics
force field parameters @pr are generated ad hoc for a given
molecule—can easily be fit to data from scratch using standard,
highly portable, high-performance machine learning frame-
works that support automatic differentiation.

Here, we demonstrate that espaloma provides a sufficiently
flexible representation to both learn to apply existing MM force
fields and to generalize them to new molecules (Section 2).
Espaloma's modular loss function enables force fields to be
learned directly from quantum chemical energies (Section 3),
partial charges (Section 4), or both. The resulting force fields
can generate self-consistent parameters for small molecules,
biopolymers (Section 5), and covalent adducts (Section 1).
Finally, an espaloma model fit to the same quantum chemical
dataset used to build the Open Force Field OpenFF (“Parsley”)
openff-1.2.0 small molecule force field, augmented with peptide
quantum chemical data, can outperform it in an out-of-sample
kinase : inhibitor alchemical free energy benchmark (Section
A.4 in ESIY).

1 Espaloma: end-to-end
differentiable MM parameter
assignment

First, we describe how our proposed framework, espaloma
(Fig. 1), operates analogously to legacy force field typing
schemes to generate MM parameters @yr from a molecular
graph ¢ and neural model parameters Py,

@rr —espaloma(9, Pxn), (1)

which can subsequently be used to compute the MM energy (as
in eqn (14) in ESI}) for any conformation. A brief graph-
theoretic overview of molecular mechanics force fields is
provided in the Appendix (Section C in ESI?).

1.1 Stage 1: graph neural networks generate a continuous
atom embedding, replacing legacy discrete atom typing

We propose to use graph neural networks*** as a replacement

for rule-based chemical environment perception.”” These neural
architectures learn useful representations of atomic chemical
environments from simple input features by updating and
pooling embedding vectors via message passing iterations to
neighboring atoms.** As such, symmetries in chemical graphs

Chem. Sci., 2022, 13, 12016-12033 | 12017
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Fig.1 Espalomais an end-to-end differentiable molecular mechanics parameter assignment scheme for arbitrary organic molecules. Espaloma
(extendable surrogate potential optimized by message-passing) is a modular approach for directly computing molecular mechanics force field
parameters &g from a chemical graph ¢ such as a small molecule or biopolymer via a process that is fully differentiable in the model parameters
dyn. In Stage 1, a graph neural network is used to generate continuous latent atom embeddings describing local chemical environments from the
chemical graph (Section 1.1). In Stage 2, these atom embeddings are transformed into feature vectors that preserve appropriate symmetries for
atom, bond, angle, and proper/improper torsion inference via Janossy pooling (Section 1.2). In Stage 3, molecular mechanics parameters are
directly predicted from these feature vectors using feed-forward neural nets (Section 1.3). This parameter assignment process is performed once
per molecular species, allowing the potential energy to be rapidly computed using standard molecular mechanics or molecular dynamics
frameworks thereafter. The collection of parameters @y describing the espaloma model can be considered as the equivalent complete
specification of a traditional molecular mechanics force field such as GAFF2627/AM1-BCC?2° in that it encodes the equivalent of traditional typing
rules, parameter assignment tables, and even partial charge models. This final stage is modular, and can be easily extended to incorporate
additional molecular mechanics parameter classes, such as parameters for a charge-equilibration model (Section 4), point polarizabilities, or

valence-coupling terms for class Il molecular mechanics force fields.303*

(chemical equivalencies) are inherently preserved, while a rich,
continuous, and differentiably learnable representation of the
atomic environment is derived. For a brief introduction to
graph neural networks, see Appendix Section D in ESI 7.

Traditional molecular mechanics force field parameter
assignment schemes such as Antechamber/GAFF***” or
CGenFF** use attributes of atoms and their neighbors (such as
atomic number, hybridization, and aromaticity) to assign
discrete atom types. Subsequently, atom, bond, angle, and
torsion parameters are assigned for specific combinations of
these discrete types according to human chemical intuition.*
On a closer look, this scheme resembles a two- or three-step
Weisfeiler-Leman test,*” which has been shown to be well
approximated by some graph neural network architectures.*
We hypothesize that graph neural network architectures can be
at least as expressive as legacy atom typing rules.

To compute continuous atom embeddings, we start with
a molecular graph % whose atoms (nodes) are labeled with
simple chemical properties (here, we consider element,
hybridization, aromaticity, formal charge, and membership in
various ring sizes) easily computed in any cheminformatics
toolkit. Sequential application of the graph neural network

12018 | Chem. Sci., 2022, 13, 12016-12033

message-passing update rules (Appendix Section D in ESIt) then
computes an updated set of atom (node) features in each graph
neural network layer, and the final atom embeddings /,e RI“/*?
are extracted from the final layer. The loss on training data is
then minimized by minimizing the cross-entropy loss between
predicted and reference types.q

We use a subset of ZINC* provided with parm@Frosst to
validate atom typing implementations® (7529 small drug-like
molecules, partitioned 80:10:10 into train-
ing : validation : test sets) for this experiment. Reference GAFF
1.81 % atom types are assigned using Antechamber” from
AmberTools and are used for training and testing.

1.1.1 Graph neural networks can reproduce legacy atom
types with high accuracy. The test set performance is reported
in Fig. 2, where the overall accuracy between reference legacy
types and learned types is very high—98.31%g5 5300, Where sub-
and superscripts represent a 95% confidence interval. In
analyzing the infrequent failures, we find the model assigns
atom types that correspond to the reference type more often
when the atom type appears more frequently in the training
data, whereas the discrepancies occur in assigning rare types
and types whose definitions follow a more sophisticated (but

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Graph neural networks can reproduce legacy atom types with high accuracy. The Stage 1 graph neural network of espaloma (Section 1.1)
chained to a discrete atom type readout was fit to GAFF 1.81 atom types?®%” on a subset of ZINC*° distributed with parm@Frosst® as a validation
set. The 7529 molecules in this set were partitioned 80 : 10 : 10 into training : validation : test sets for this experiment. Within the test set,
99.07%3332% of atoms were correctly typed, with 1000 bootstrap replicates used to estimate the confidence intervals arising from finite test set
size effects. (a) The distribution of the number of atom type discrepancies per molecule on the test set demonstrates that only a minority of
atoms are incorrectly typed. (b) The error rate per element is primarily concentrated within carbon, nitrogen, and sulfur types. (c) Examining atom
type failures in detail on molecules with the largest numbers of discrepancies shows that the atom types are easily confusing even to a human
expert, since they represent qualities that are difficult to precisely define. (d) The distribution of predicted atom types for each reference atom
type for carbon types are shown; on-diagonal values indicate agreement. The percentages annotated under x-axis denote the relative abun-
dance within the test set. Only the common carbon types are included in the confusion matrix here; for full confusion matrix across all atom

types, see ESI Fig. 14+. (e) A list of common nitrogen types in GAFF-1.81.52 (f) A list of common carbon types in GAFF-1.81.52

chemically arbitrary) logic. For instance, one of the most
frequent confusions is the misassignment of ca (sp> carbon in
pure aromatic systems) to cp (head sp” carbon that connects two
rings in biphenyl systems, occurring in only 0.6% of the data-
set). The relative ambiguity of the various types that are most
frequently confused is suggestive that the graph net makes
human-like errors in perceiving subtle differences between
distinct chemical environments.

The benefits of neural embedding compared to legacy
discrete typing are many-fold:

e Legacy typing schemes are generally described in text form
in published work (for example ref. 26 and 27), creating the
potential for discrepancies between implementations when
different cheminformatics toolkits are used. By contrast, with
the knowledge to distinguish chemical environments stored in
latent vectors and not dependent on any manual coding, our
approach is deterministic once trained, and is portable across
platforms thanks to modern machine learning frameworks.

e Both the chemical perception process and the application
of force field parameters @gr can be optimized simultaneously
via gradient-based optimization of @y using standard machine
learning frameworks that support automatic differentiation.

e While extending a legacy force field by adding new atom
types can lead to an explosion in the number of parameter
types, continuous neural embeddings do not suffer from this

© 2022 The Author(s). Published by the Royal Society of Chemistry

limitation; expansion of the typing process occurs automatically
as more diverse training examples are introduced.

1.2 Stage 2: symmetry-preserving pooling generates
continuous bond, angle, and torsion embeddings, replacing
discrete types

Terms in a molecular mechanics potential are symmetric with
respect to certain permutations of the atoms involved in the
interaction. For example, harmonic bond terms are symmetric
with respect to the exchange of atoms involved in the bond. More
elaborate symmetries are frequently present, such as in the three-
fold terms representing improper torsions for the Open Force Field
“Parsley” generation of force fields (k-i—j-I, k—j-I-i, and k-I-i-j,
where k is the central atom).*® Traditional force fields, for bond,
angle, and proper torsion terms, enforce this by ensuring equiva-
lent orderings of atom types receive the same parameter value.||

For neural embeddings, the invariances of valence terms
with respect to these atom ordering symmetries must be
considered while searching for expressive latent representa-
tions to feed into a subsequent parameter prediction network
stage. Inspired by Janossy pooling,”® we enumerate the relevant
equivalent atom permutations to derive bond, angle, and
torsion embeddings #,, hg, h, that respect these symmetries
from atom embeddings 4, (see Fig. 1 Stage 2),

Chem. Sci., 2022, 13, 12016-12033 | 12019
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hy, = NN,(h,, : h,]) + NN,([h,, : h,]); @)
hg,, = NNy([h,, : hy, = h,J) + NNg([hy, < hy 2 h,]); (3)
/ 1¢ifk/propcr - NN%mper([h"t h v h”k : h"/D

+ NNy ([Ay, : 2 by, 2 )5 @

Pkl mproper N¢impmper ( [h"k : h": : h‘i/ : thD

+ NN ([Ay, = by, = by, 2 hy))

+NN¢impmpcr([hvk thy hy, hvj})7 (5)

where columns ( : ) denote concatenation**. As such, the order
invariance is evident, ie., h,{/ = hrﬂ,hguk = h%, and hd,w = h%ﬂT’r.
1.3 Stage 3: neural parametrization of atoms, bonds, angles,
and torsions replaces tabulated parameter assignment

In the final stage, each feed-forward neural network modularly
learns the mapping from these symmetry-preserving atom,
bond, angle, and torsion encodings to MM parameters @y that
reflect the specific chemical environments appropriate for these
terms:

{en, 00} = NN, (h,) atom parameters (6)
{k,ro} = NN, (h,) bond parameters (7)
tkg,00} = NNg_ (hg) angle parameters (8)
tkgy = NNy (h,) torsion parameters 9

where k, and k, denote force constants for bonds and angles, r,
and 6, denote equilibrium bond lengths and angles, kg,
denotes a torsion energy factor (which can be positive or
negative) for periodicity n, o, is the effective radius and ¢, is the
effective well depth for Lennard-Jones interactions. (For a brief
review of the molecular mechanics force fields functional term,
see Appendix Section C in ESI.}) This stage is analogous to the
final table lookup step in traditional force field construction,
but with significant added flexibility arising from the contin-
uous embedding that captures the chemical environment
specific to the potential energy term being assigned.

Here, we use Lennard-Jones parameters from legacy force
fields (here, the Open Force Field 1.2.0 “Parsley” small molecule
force field*®) to avoid having to include condensed-phase
physical properties in the fitting procedure. While including
condensed-phase physical properties in the loss function is
possible, it is very expensive to do so, and as our experiments
demonstrate, may not be necessary for achieving increased
accuracy over legacy force fields.

We also found producing bond and angle parameters directly
in Stage 3 to frustrate optimization, so we employ a mixture of
linear bases to represent harmonic energies that can be trans-
lated back to the original functional form (see Appendix Section
D.1.1 in ESI{). Similarly, we do not fit phases and periodicities of
torsions as they are discrete. We instead fix phases at ¢, = 0 and

12020 | Chem. Sci, 2022, 13, 12016-12033
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fit all periodicities n = 1, ..., 6. This allows the corresponding
torsion barriers K,, to assume the entire continuum of positive or
negative values; as a result, K,, < 0 mimics the effect of ¢, = .

As a result of using the continuous atom embedding vectors
to represent chemical environments for each atom, it is possible
to intelligently interpolate between relevant chemical environ-
ments seen during training. This interpolation produces more
nuanced varieties of parameters than either traditional atom
typing or direct chemical perception, and is capable of
capturing subtle effects arising from fractional bond order
perturbation.*” Due to the modularity of this stage, it is easy to
add new modules or swap out existing ones to explore other
force field functional forms, such as alternative vdW interac-
tions;*” pair-specific Lennard-Jones interaction parameters;*®*
point polarizabilities for instantaneous dipole,*® Drude oscil-
lator,* or Gaussian charge® polarizability models; class II
valence couplings;*** charge transfer;® or other potential
energy terms of interest.

2 Espaloma can learn to mimic
existing molecular mechanics force
fields from snapshots and associated
potential energies

Having established that graph neural networks have the
capacity to learn to reproduce legacy atom types describing
distinct chemical environments, we ask whether espaloma is
capable of learning to reproduce traditional molecular
mechanics (MM) force fields assigned via standard atom typing
schemes. In addition to quantifying how well a force field can be
learned when the exact parameters of the model being learned
are known, being able to accurately learn existing MM force
fields would have numerous applications, including replacing
legacy non-portable parameter assignment codes with modern
portable machine learning frameworks, learning to generalize
to new molecules that contain familiar chemical environments,
and permitting simplified parameter assignment for complex,
heterogeneous systems involving post-translational modifica-
tions, covalent ligands, or heterogeneous combinations of
biopolymers and small molecules.

To assess how well espaloma can learn to reproduce
a molecular mechanics force field from a limited amount of
data, we selected a dataset with limited chemical complexity—
PhAIKEthOH®***—which consists of 7408 linear and cyclic
molecules containing phenyl rings, small alkanes, ethers, and
alcohols composed of only the elements carbon, oxygen, and
hydrogen. Three- and four-membered rings are excluded in the
dataset since they would cause instability in the prediction of
energies (see Section H in ESI{). We generated a set of 100
conformational snapshots for each molecule using short
molecular dynamics simulations at 300 K initiated from
multiple conformations to ensure adequate sampling of
conformers. The PhAIKEthOH dataset was randomly partitioned
(by molecules) into 80% training, 10% validation, and 10% test
molecules, and an espaloma model was trained with early
stopping via monitoring for a decrease in accuracy in the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Espaloma accurately learns molecular mechanics parameters when fit to snapshot energies from a molecular mechanics force field. In
this experiment, espaloma was used to fit molecular mechanics (GAFF 1.81) potential energies of snapshots generated from short molecular
dynamics (MD) simulations initiated from multiple conformers of molecules from the PhAIKEthOH dataset, which uses only the elements carbon,
oxygen, and hydrogen.®® The dataset contains 7408 molecules with 100 snapshots each, and was partitioned by molecules 80 : 10 : 10 into
train : validate : test sets. We excluded three- and four-membered rings in the dataset; for a detailed study on the roles of these two factors, see
Section H in ESI+. Statistics quoted above the plots provide the root mean squared error (RMSE) between reference and predicted MM energies,
and mean absolute percentage error (MAPE) (in fractional form) between reference and predicted force field parameters. The sub- and
superscripts report the 95% confidence interval of each statistics estimated from 1000 bootstrapped replicates over molecules in the test set.
Energy terms have kcal mol™ units whereas the units of the force field parameters do not affect the statistics reported here. Force field
parameters (@rf): k,: bond force constant; ro: equilibrium bond length; k,: angle force constant; 6o: equilibrium angle value. Torsion parameters
are not shown because of the potential for degeneracy of fit given that all periodicitiesn =1, 2, ..., 6 are learned by espaloma. See Section 2 for

details.

validation set. The performance of the resulting model is shown
in Fig. 3.

2.1 Espaloma can learn existing force fields and generalize
to new molecules with low error

Espaloma is able to achieve very low total energy and parameter
error on the training set, suggesting that espaloma can learn the
parameters of typed molecules from energies alone. In addition,
error on the out-of-sample test set of molecules is comparable—
less than 0.02 kcal mol '—suggesting that espaloma can
effectively generalize to new molecules within the same chem-
ical space. Surprisingly, the total energy RMSE is lower than the
angle energy RMSE, suggesting that there is some degeneracy in
how energy contributions are distributed among valence energy
terms. It is worth noting that espaloma requires very few
conformations per molecule to achieve high accuracy; we
closely study its data efficiency in Appendix Section 8 in ESIf.

3 Espaloma can fit quantum chemical
energies directly to build new
molecular mechanics force fields

Since espaloma can derive a force field solely by fitting to
energies (and optionally gradients), we repeat the end-to-end
fitting experiment (Section 2) directly using quantum chem-
ical (QM) datasets used to build and evaluate MM force fields.
We assessed the ability of Espaloma to learn several distinct
quantum chemical datasets generated by the Open Force Field
Initiative’ and deposited in the MolSSI QCArchive”™ with
B3LYP-D3BJ/DZVP level of theory:

© 2022 The Author(s). Published by the Royal Society of Chemistry

e PhAIKEthOH®® is a collection of compounds containing
only the elements carbon, hydrogen, and oxygen in compounds
containing phenyl rings, alkanes, ketones, and alcohols.
Limited in elemental and chemical diversity, this dataset is
chosen as a proof-of-concept to demonstrate the capability of
espaloma to fit and generalize quantum chemical energies
when training data is sufficient to exhaustively cover the
breadth of chemical environments.

e OpenFF Gen2 Optimization” consists of druglike mole-
cules used in the parametrization of the Open Force Field 1.2.0
(“Parsley”) small molecule force field.” This set was constructed
by the Open Force Field Consortium from challenging molecule
structures provided by Pfizer, Bayer, and Roche, along with
diverse molecules selected from eMolecules to achieve useful
coverage of chemical space.

e VEHICLe™ or virtual exploratory heterocyclic library, is
a set of heteroaromatic ring systems of interest to drug
discovery enumerated by Pitt et al.”® The atoms in the molecules
in this dataset have interesting chemical environments in het-
eroarmatic rings that present a challenge to traditional atom
typing schemes, which cannot easily accommodate the nuanced
distinctions in chemical environments that lead to perturba-
tions in heterocycle structure. We use this dataset to illustrate
that espaloma performs well in situations challenging to
traditional force fields.

e PepConf” from Prasad et al.”” contains a variety of short
peptides, including capped, cyclic, and disulfide-bonded
peptides.  This  dataset—regenerated as an  Opti-
mizationDataset (quantum chemical optimization trajectories
initiated from multiple conformers) using the Open Force Field
QCSubmit tool”>—explores the applicability of espaloma to
biopolymers, such as proteins.

Chem. Sci., 2022, 13, 12016-12033 | 12021
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Since nonbonded terms are generally optimized to fit other
condensed-phase properties, we focused here on optimizing
only the valence parameters (bond, angle, and proper and
improper torsion) to fit these gas-phase quantum chemical
datasets, fixing the non-bonded energies using a legacy force
field.”* In this experiment, all the non-bonded energies
(Lennard-Jones and electrostatics) were computed using Open
Force Field 1.2 Parsley,” with AM1-BCC charges generated by
the OpenEye Toolkit back-end for the Open Force Field toolkit
0.10.0.> Because we are learning an MM force field that is
incapable of reproducing quantum chemical heats of forma-
tion, which are reflected as an additive offset in the quantum
chemical energy targets, snapshot energies for each molecule in
both the training and test sets are shifted to have zero mean. All
datasets are randomly shuffled and split (by molecules) into
training (80%), validation (10%), and test (10%) sets.

3.1 Espaloma generalizes to new molecules better than
widely-used traditional force fields

To assess how well espaloma is able to generalize to new
molecules, the performance for espaloma on test (and training)
sets was compared to a legacy atom typing based force field
(GAFF 1.81 and 2.11,**” which collectively have been cited over
13 066 times) and a modern force field based on direct chemical
perception® (the Open Force Field 1.2.0 (“Parsley”) small
molecule force field,* downloaded over 150 000 times).

View Article Online

Edge Article

The results of this experiment are reported in Fig. 4. As can
be readily seen by the reported test set root mean squared error
(RMSE), espaloma can produce MM force fields with general-
ization performance consistently better than legacy force fields
based on discrete atom typing (GAFF***’). In chemically well-
represented datasets like PhAIkEthOH—which contains only
simple molecules constructed from elements C, H, and O—
espaloma is able to significantly improve on the accuracy of
traditional force fields such as OpenFF 1.2.0, GAFF-1.81, and
GAFF-2.11 on the test set.

Surprisingly, even though OpenFF 1.2.0 included the "Open
FF Gen 2" dataset in training, espaloma is able to achieve
superior test set performance on this dataset, suggesting that
both the flexibility and generalizability of continuous atom
typing have significant advantages over even direct chemical
perception.*

Even compared to highly optimized late-generation protein
force fields such as Amber ff14SB**—which was highly opti-
mized to reproduce quantum chemical torsion drive data—
espaloma achieves significantly higher accuracy, improving on
Amber ff14SB error of 3.15023183%" keal mol™ to achieve
1.872719%99 kcal mol " on the PepConf peptide dataset.”** This
suggests that espaloma is capable of effectively parameterizing
both small molecule and biopolymer force fields. Indeed, when
we train an espaloma model using both the OpenFF Gen2
Optimization and PepConf datasets (joint in Fig. 4(a)), we see

Espaloma RMSE

Legacy FF RMSE (kcal/mol) (Test molecules)

a) dataset #mols #trajs # snapshots
@) ! P Train Test  OpenFF1..0 GAFF-1.81 GAFF-2.11 Amber ff14SB
PhAIKEthOH (simple CHO) 7408 12592 244036 0.865609131 1139812332 16071195 172671735 1.7406!8148
OpenFF Gen2 Optimization (druglike) 792 3977 23748 0.741307%  0.76000%5% 21768538 2427423207 253862550
VEHICLe (heterocyclic) 24867 24867 234326 04476290 04233041 g047SBE g0077SRE 94014954
PepConf (peptides) 736 7560 22154 127141000 1872750 SOM43UED  44M6ITE 433561500 315025152
ioint OpenFF Gen2 Optimization 1528 11537 45902 0.82640907  1.8764, %% 2.1768353% 242743200 2.5386355%0
J PepConf 1 2038I.3()5(; 1 73071 8439 3 61433.7288 4 44464 5738 4. 33564.4()41 3 15023.135‘).*
- 1.1178 N 1.6053 - 3.4870 N 4.3386 - 4.1965 N 3.1117

(b) Espaloma shows high resolution in heterocyclic compounds

(c) Espaloma generalizes to reproduce torsion profiles
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Fig. 4 Espaloma can directly fit quantum chemical energies to produce new molecular mechanics force fields with better accuracy than
traditional force fields based on atom typing or direct chemical perception. Espaloma was fit to quantum chemical potential energies for
conformations generated by optimization trajectories initiated from distinct conformers in various datasets from QCArchive.?” All datasets were
partitioned by molecules 80 : 10 : 10 into train : validate : test sets. The number of molecules, optimization trajectories, and total snapshots are
annotated in the table. (a) We report the RMSE on training and test sets, as well as the performance of legacy force fields on the test set. All
statistics are computed with predicted and reference energies centered to have zero mean for each molecule, in order to focus on errors in
relative conformational energetics rather than on errors in predicting the heats of formation of chemical species (which the MM functional form
used here is incapable of). The 95% confidence intervals annotated are calculated by bootstrapping molecules with replacement using 1000
replicates. (b) Optimization trajectory of a representative (with highest OpenFF 1.2.0 RMSE) heterocyclic compound in VEHICLe dataset with
SMILES string [HIC1=C(N2N(N=C(N(N2N=N21)[H])[HD[H][H]. Legacy force fields, because of their limited chemical typing rules, were not able
to perceive the chemical environment of the nitrogen atoms, which were not aromatic. (c) Espaloma is able to predict energies for quantum
chemical torsion scans for an out-of-sample torsion scan dataset (the OpenFF Phenyl Torsion Drive Dataset,**¢® dihedral angle profiled marked
in rouge) to high accuracy even though it was not trained on torsion scans (only optimization trajectories) or any of the molecules in the torsion
scan set. We also include the torsion energy profile computed by a popular machine learning force field, ANI-1ccx.*2 *: Six cyclic peptides that
cannot be parametrized using OpenForceField toolkit engine® are not included.
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that a single espaloma model is capable of achieving superior
accuracy to traditional small molecule and protein force fields
simultaneously.

3.3 Espaloma can reliably learn torsion profiles from
optimization trajectories

We wondered whether espaloma could faithfully recover torsion
energy profiles—which are traditionally expensive to generate
using methods like wavefront propagation®*—from the inex-
pensive optimization trajectories used to train espaloma
models. We therefore examined some representative dihedral
energy profiles for molecules outside of the dataset used to train
espaloma. In Fig. 4(c), we use the espaloma model trained on
OpenFF Gen2 Optimization and PepConf to predict the energy
profiles of several torsion drive experiments in the OpenFF
Phenyl Torsion Drive Dataset®®*—which does not contain any of
the molecules in the training set—and observed that the loca-
tions and heights of torsion energy barriers are recapitulated
with reasonable accuracy. This suggests that optimization
trajectories are sufficient to capture the locations and relative
heights of torsion barriers—a highly useful finding given the
relative expense of generating accurate torsion profiles
compared to simple optimization trajectories.®

3.2 Espaloma can automatically learn distinct atom
environments overlooked by traditional force fields

It is worth noting that the traditional, widely used force fields
considered here uniformly perform poorly on the VEHICLe
dataset” ("Heteroaromatic Rings of the Future”, containing
heterocyclic scaffolds of interest to future drug discovery
programs). In Fig. 4(b), we show the most common mode of
failure of legacy force fields by examining their predicted energy
over the QM optimization trajectory of the compound with
largest RMSE (with SMILES string [H]C1=C(N2N(N=
C(N(N2N=N1)[H])[H])[H])[H])- The initial conformation of the
molecule, generated by OpenEye Toolkit, was planar. As the
conformation was optimized by quantum chemical methods,
the tertiary nitrogens in the system become pyramidal. In
a closer examination, GAFF-2.11, for instance, assigned all
carbons to be of type cc and all nitrogens na, indicating that
they were perceived as aromatic, whereas there is no conjugated
system present in the molecule. This also reflects the limitation
in resolution of legacy force fields. Espaloma, on the other
hand, provides a high-resolution atom embedding that can
flexibly characterize the chemical environments, provided that
similar environments existed in the training data.

4 Espaloma can learn self-consistent
charge models in an end-to-end
differentiable manner

Historically, biopolymer force fields derive partial atomic
charges via fits to high-level multiconformer quantum chemical

electrostatic potentials on capped model compounds, adjusted
to ensure the repeating biopolymer units have integral charge

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(often incorporating constraints to share identical backbone
partial charges).*** Some approaches to the derivation of
partial atomic charges are enormously expensive, requiring
iterative QM/MM simulations in explicit solvent to derive partial
charges for new molecules.**®” For small molecules, state-of-
the-art methods range from fast bond charge corrections
applied to charges derived from semiempirical quantum
chemical methods (such as AM1-BCC*** or CGenFF charge
increments”’) to expensive multiconformer restrained electro-
static potential (RESP) fits to high-level quantum chemistry.***°
Surprisingly little attention has been paid to the divergence of
methods used for assigning partial charges to small molecules
and biopolymers, and the potential impact this inconsistency
has on accuracy or ease of use—indeed, developing charges for
post-translational modifications to biopolymer residues®>** or
covalent ligands can prove to be a significant technical chal-
lenge in attempting to bridge these two worlds.

While machine learning approaches have begun to find
application in determining small molecule partial charges,***
methods such as random forests are not fully continuously
differentiable, rendering them unsuitable for a fully end-to-end
differentiable parameter assignment framework. Recently,
a fast (500x speed up for small molecules) approach has been
proposed that uses graph neural networks as part of a charge-
equilibration®>*® scheme (inspired by the earlier VCharge
model®”) to self-consistently assign partial charges to small
molecules, biopolymers, and arbitrarily complex hybrid mole-
cules in a conformation-independent manner that only makes
use of molecular topology.*® Perhaps unsurprisingly, due to the
requirement that molecules retain their integral net charge,
directly predicting partial atomic charges from latent atom
embeddings and subsequently renormalizing charges leads to
poor performance (0.28e (ref. 36)).

Instead, predicting the parameters of a simple physical
topological charge-equilibration model®**” can produce
geometry-independent partial charges capable of reproducing
charges derived from quantum chemical electrostatic potential
fits.*® Note that, unlike Wang et al.,** here we fit AM1-BCC
charges rather than higher level of quantum mechanics
theory due to their high cost. Specifically, we use our atom
latent representation to instead predict the first- and second-
order derivatives of a pseudopotential energy E with respect to
the partial atomic charge g; on atom i:

_OE  _IF

e =— Si= 75— 10
dg;’ 6261,- (10)

here, the electronegativity e; quantifies the desire for an atom to
take up negative charge, while the hardness s; quantifies the
resistance to gaining or losing too much charge. A module is
added to Stage III of espaloma to predict the chemical envi-
ronment adapted (e; s;) parameters for each atom from the
latent atom embeddings.

The partial charges for all atoms can then be obtained by
minimizing the second-order Taylor expansion of the potential
pseudoenergy contributed by atomic charges:
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{3} = argmmZe,»q,- + Esiqi2> (11)

a3
subject to

Dai=Y a=0 (12)
where Q is the total (net) charge of the molecule.
Using Lagrange multipliers, the solution to 11 can be given

analytically by:

o0+ Zeis ;!
Syl
J

S R
g; = —esi  +i

(13)

whose Jacobian and Hessian are trivially easy to calculate. As
a result, the prediction of {¢;, §;} could be optimized end-to-end
using backpropagation.

When predicting the partial charges independently, we
observe that the RMSE error on the test set (0.00729.0071 €), is
smaller than the difference between the discrepancy between
AM1-BCC charges assigned by two popular cheminformatics
toolkits, Ambertools 21% and OpenEye Toolkit (0.01265:9153 e).
As shown in Appendix Table 1 in ESI f, there is only a slight
decrease in energy performance (within confidence interval)
when we switch from AM1-BCC charges to this neural charge
equilibration model. Additionally, we can integrate the charge
equilibration model into the valence parameter prediction
pipeline outlined in Section 1 to have the atom embeddings
shared across two tasks and curate a single, combined model.
With this approach, we observed a test set total RMSE of
1.22161725 kcal mol™ and charge RMSE of 0.00720:0075 e,
which is within the confidence interval of the performance
when predicting separately. We provide a detailed study of the
joint learning in Appendix Section B in ESI f.

5 Espaloma can parameterize
biopolymers

We have so far established that espaloma, as a method to
construct MM force fields, shows great versatility and flexibility.
In the following sections, we showecase its utility with a model
predicting both valence parameters and partial charges trained
on OpenFF Gen2 Optimization Dataset as well as PepConf
dataset, which we released as ‘espaloma-0.2.2’ with the package.

The speed and flexibility of graph convolutional networks
allows espaloma to parameterize even very large biopolymers,
treating them as (large) small molecules in a graph-
theoretical manner. While graph neural networks perceive
nonlocal aspects of the chemical environment around each
atom, the limited number of rounds of message passing
ensures stability of the resulting parameters when parame-
terizing systems that consist of repeating residues, like
proteins and nucleic acids.

To demonstrate this, we considered the simple polypeptide
system ACE-ALA,-NME, consisting of n alanine residues termi-
nally capped by acetyl- and N-methyl amide capping groups.
Using the joint charge and valence term espaloma model, we
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assigned parameters to ACE-ALA,-NME systems with n = 1, 2,
..., 500, showing illustrative parameters in Fig. 5. Espaloma
stably assigns parameters to the interior residues of peptides
even as they increase in length, with parameters of the central
residue unchanged after n > 3. This pleasantly resembles the
behavior of traditional residue template based protein force
fields, even though no templates are used within espaloma’s
parameter assignment process.

5.1 Espaloma can generate self-consistent valence
parameters and partial charges for large biopolymers in less
than a second

Despite its use of a sophisticated graph net machine learning
model, the wall time required to parameterize large proteins
scales linearly with respect to the number of residues (and
hence system size) on a CPU (Fig. 5, lower right). On a GPU, the
wall clock time needed to parameterize systems of this size stays
roughly constant (due to overhead in executing models on the
GPU) at less than 100 microseconds. Since espaloma applies
standard molecular mechanics force fields, the energy evalua-
tion times for an Espaloma-generated force field are identical to
traditional force fields.

6 Espaloma can produce self-
consistent biopolymer and small
molecule force fields that result in
stable simulations

Traditionally, in a protein-ligand system, separate (but hope-
fully compatible) force fields and charge models have been
assigned to small molecules (which are treated as independent
entities parameterized holistically) and proteins (which are
treated as collections of templated residues parameterized
piecemeal).’® This practice both has the potential to allow
significant inconsistencies while also introducing significant
complexity in parameterizing heterogeneous systems.

Using the joint espaloma model trained on both the
“OpenFF Gen 2 Optimization” small molecule and “PepConf”
peptide quantum chemical datasets (Section 3)*"'°*); we can
apply a consistent set of parameters to both protein and small
molecule components of a kinase : inhibitor system. Fig. 5f
shows the ligand heavy-atom RMSD after aligning on protein
heavy atoms for 0.5 ns trajectories of the Tyk2 : inhibitor
system from the Alchemical Best Practices Benchmark Set
1.0.* It is readily apparent that the espaloma-derived
parameters lead to trajectories that are comparably stable
to simulations that utilize the Amber ff14SB protein force
field'*® with GAFF 1.81, GAFF 2.11,%?*” or OpenFF 1.2.0 (ref.
56) small molecule force fields. All systems are explicitly
solvated with a 9 A buffer around the protein with TIP3P
water'” and use the Joung and Cheatham monovalent
counterion parameters'®® to model a neutral system with
300 mM NaCl salt.

Additionally, the espaloma model also provides sufficient
coverage to model more complex and heterogeneous protein-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Espaloma can be used to generate self-consistent force fields for biopolymers and small molecules. (a) Espaloma-assigned equilibrium
heavy atom bond lengths (left, in angstrom) and heavy atom partial charges (right, in elemental charge unit) for ACE-(ALA);-NME. (b) Espaloma-
assigned equilibrium heavy atom bond lengths (left) and heavy atom partial charges (right) for ACE-(ALA)s-NME, which shows minimal deviation
from ACE-(ALA);-NME and consistent parameters for amino acid residues. (c) Partial atomic charges of selected atoms shown for ACE-(ALA),-
NME for n =1, ..., 10. (d) Equilibrium bond lengths of selected bonds for ACE-(ALA),-NME for n = 1, ..., 10. (e) CPU (left) and GPU (right)
parameter assignment (blue curve) and energy evaluation on OpenMM 7.5.1 (ref. 98) (orange curve) wall times. (f) Espaloma simultaneously
parametrizes macro- and small molecules in a protein-ligand system. Left: Tyrosine kinase 2 system parametrized by espaloma and minimized
and equilibrated with TIP3P water model®® and counterions. Right: Root mean-squared displacement (RMSD) of ligand w.r.t. the initial position, in

systems parametrized by espaloma and traditional force fields.

ligand covalent conjugates, which was highly non trivial in
traditional force fields where protein and ligand are parame-
trized separately. We provide a detailed study of this capability
in Appendix Section I in ESIf.

7 Espaloma small molecule
parameters and charges provide
accuracy improvements in alchemical
free energy calculations

To assess whether the small molecule parameters and charges
generated by espaloma achieve competitive performance to
traditional force fields, we used the perses 0.9.5 relative
alchemical free energy calculation infrastructure'® (based on
OpenMM 7.7 (ref. 17) and openmmtools 0.21.2 (ref. 109) to
compare performance on the Tyk2 kinase : inhibitor bench-
mark set from the Schrodinger JACS benchmark set'® as
curated by the OpenFF protein-ligand benchmark 0.2.0.**° In
order to assess the impact of espaloma small molecule param-
eters and charges in isolation, we used the Amber ff14SB
protein force field,'® and performed simulations with either
OpenFF 1.2.0 (openff-1.2.0) or the espaloma joint model trained
on OpenFF Gen2 Optimization and PepConf datasets
(espaloma-0.2.2) available through the openmmforcefields

© 2022 The Author(s). Published by the Royal Society of Chemistry

0.11.0 package."™ Notably, none of the ligands appearing in this
set appear in the training set for either force field. All systems
were explicitly solvated with a 9 A buffer around the protein with
TIP3P water'”” and use the Joung and Cheatham monovalent
counterion parameters’® to model a neutral system with
300 mM Nacl salt. The same transformation network provided
in the OpenFF protein-ligand benchmark set was used to
compute alchemical transformations, and absolute free ener-
gies up to an additive constant were estimated from a least-
squares estimation strategy"'” as implemented in the OpenFF
arsenic package." Both experimental and calculated absolute
free energies were shifted to their respective means before
computing statistics, as in ref. 100.

Fig. 6 shows a comparison of both relative (AAG) and
absolute (AG) free energy error statistics. While the OpenFF
1.2.0 force field achieves an RMSE of
0.91'66 kcal mol™', using espaloma valence and charge
parameters improves the accuracy to
0.470:50 keal mol ™', Additionally, the Spearman p correlation
coefficient improves from 0.6995s (openff-1.2.0) to
0.9303s (espaloma-0.2.2). While more extensive bench-
marking is necessary to establish the generality of these
improvements, this represents a first demonstration that
performance can be on par with, if not superior to, tradi-
tionally constructed force fields.

impressive
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(b) OpenFF 1.2.0 free energy performance
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Fig. 6 Espaloma small molecule parameters can be used for accurate protein-ligand alchemical free energy calculations. (a) The Tyk2
congeneric ligand benchmark series taken from the Schrodinger JACS benchmark set!® is challenging for both commercial force fields (OPLS2.1
achieves a AG RMSE of 0.93 =+ 0.12 kcal mol™9°) and public force fields (GAFF 1.8 achieves a AG RMSE of 1.13 kcal mol™, and AAG RMSE of
1.27 kcal mol™°1). We show the X-ray structure used for all free energy calculations as well as 2D structures of all ligands in the benchmark set,
along with their experimental binding free energies. This congeneric series from ref. 100 was selected from ref. 102 where experimental errors in
K; are reported to have 6K;/K; < 0.3, yielding 6AG = 0.18 kcal mol™t and 6AAG = 0.25 kcal mol™. Here, we used the persess relative free energy
calculation tool, based on OpenMM,* to assess the accuracy of espaloma on this dataset. (b) The Open Force Field ("Parsley”) openff-1.2.0 small
molecule force field achieves an absolute free energy (AG) RMSE of 0.91 [95% Cl: 0.66, 1.17] kcal mol™ on this set. (c) The espaloma-0.2.2 model
for predicting valence parameters and partial charges—trained jointly on the same OpenFF Gen2 Optimization dataset used for openff-1.2.0 as
well as the PepConf dataset to reproduce quantum chemical energies and AM1-BCC charges—achieves a lower error of 0.48 [95% Cl: 0.30, 0.73]

on this set, despite having never been trained on any molecules in this set.

8 Discussion

Here, we have demonstrated that graph neural networks not
only have the capacity to reproduce legacy atom type classifi-
cation, but they are sufficiently expressive to fit a traditional
molecular mechanics force field and generalize it to new
molecules, as well as learn entirely new force fields directly from
quantum chemical energies and experimental measurements.
The neural framework presented here also affords the modu-
larity to easily experiment with the inclusion of additional
potential energy terms, functional forms, or parameter classes,
while making it easy to rapidly refit the entire force field
afterwards.

8.1 Espaloma enables a wide variety of applications

Espaloma enables a wide variety of applications in the realm of
molecular simulation: While many force field packages use
complex, difficult to maintain, non-portable custom typing
engines,”” """ simply generating examples is sufficient to train
espaloma to reproduce this typing, translating it into a model
that is easy to extend by providing more quantum chemical
training data. Some force fields have traditionally been typed by
hand, making them difficult to automate;"'® espaloma can in
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principle learn to generalize from these examples, provided care
is taken to avoid overfitting during training. As we have shown
here, espaloma also provides a convenient way to rapidly build
new force fields directly from quantum chemical data.

8.2 Modern machine learning frameworks offer flexibility in
fitting potentials

The flexibility afforded by modern machine learning frame-
works solves a long-standing problem in molecular simulation
in which it is extremely difficult to assess whether a new func-
tional form might lead to significant benefits in modeling
multiple properties of interest. While efforts such as the Open
Force Field Initiative aim to streamline the process of refitting
force fields,'* the ease of refitting models in machine learning
frameworks makes it extremely easy to experiment with new
functional forms: Modern automatic differentiation in these
frameworks means that only the potential need be imple-
mented, and gradients are automatically computed.

This enables a wide variety of exploration: Simple improve-
ments could be widely implemented in current molecular
simulation packages including adjusting the 1-4 Lennard-Jones
and electrostatics scaling parameters, producing 1-4 interaction
parameters that override Lennard-Jones combining rules,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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exploring different Lennard-Jones combining rules,"” changing
the van der Waals treatment to alternative functional forms
(such as Buckingham exp-6 '*® or Halgren potentials®’), and
refitting force fields for various non-bonded treatments (such as
PME" and reaction field electrostatics'®®). Many simulation
packages provide support for Class II molecular mechanics
force fields,*>** which include additional coupling terms that
can drastically reduce errors in modeling quantum chemical
energies at essentially no meaningful impact on cost due to the
O(N) number of these terms; simple extensions to espaloma’s
architecture can easily predict the parameters for these
coupling terms from additional symmetry-preserving features.
More radical potential explorations could involve assessing
different algebraic functional forms—modern simulation
packages such as OpenMM have the ability to automatically
differentiate and compile symbolic algebraic expressions to
produce optimized force kernels for simulation on fast
GPUs.'”*® Excitingly, the simplicity of incorporating a new
generation of quantum machine learning (QML) potentials**'—
such as ANI'®" and SchNet—means that it will be easy to
explore hybrid potentials that combine the flexibility of QML
potentials at short range with the accuracy of physical forces at
long range."

8.3 Espaloma can enable modular loss functions and
regularization

The ease at which the loss function can be augmented with
additional terms enables the addition of other classes of loss
terms to the loss function. For example, one of the molecules
considered in the Tyk2 : inhibitor system included a cyano
group which proved to be slightly unstable with hydrogen mass
repartitioning at 4 fs timesteps. The loss function could either
be augmented to regularize parameters to increase stability
(penalizing short vibrational periods) or to include other data
classes (such as Hessians and/or torsion drive data) to improve
fits to particular aspects. While this will require tuning of the
weighting of different loss classes, these parameters can be
selected automatically via cross-validation strategies.

8.4 Espaloma can enable Bayesian force field
parameterization and model uncertainty quantification

While much of the history of molecular simulation has focused
on quantifying the impact of statistical uncertainty,****** critical
studies over the last decade™*** have improved our ability to
quantify and propagate predictive uncertainty in molecular
mechanics force fields by quantifying contributions from model
uncertainty—which is frequently the major source of predictive
uncertainty in applications of interest. While most attention
has been focused on the continuous parameters of the force
field model with fixed model form, some progress has been
made in discrete model selection among candidate model
forms.136—138

It remains an open problem to rigorously quantify uncer-
tainty in other important parts of the model definition—espe-
cially in the definitions of atom-types. These “chemical
perception” definitions can involve very large spaces of discrete
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choices, and crucially influence the behavior of a generalizable
molecular mechanics model.*>***

An important benefit of the present approach is that it
reduces the mixed continuous-discrete task of “being Bayesian
about atom-types” to the more familiar task of “being Bayesian
about neural network weights.” Bayesian treatment of neural
networks—while also intractable—has been the focus of
productive study and methodological innovation for decades.

We anticipate that Bayesian extensions of this work will
enable more comprehensive treatment of predictive uncertainty
in molecular mechanics force fields.

140

8.5 Ensuring full chemical equivalence is nontrivial

In the current experiments, espaloma used a set of atom
features (one-hot encoded element, hybridization, aromaticity,
formal charge, and membership in rings of various sizes) easily
computed using a cheminformatics toolkit; no bond features
were used (see Detailed Methods in ESIt). While this provided
excellent performance, the non-uniqueness of formal charge
assignment (obvious in molecules such as guanidinium, where
resonance forms locate the formal charge on different atoms)
does not guarantee the assigned parameters will respect
chemical equivalence (a form of invariance) in cases where
these atom properties are not unique. Ensuring full chemical
equivalence would require modifications to this strategy, such
as omission of non-unique features (which may require addi-
tional data or pre-training to learn equivalent chemical infor-
mation), averaging of the output of one or more stages over
equivalent resonance forms, or architectures such as trans-
formers that more fully encode chemical equivalence.

8.6 Future directions: espaloma for free alchemical
parameters

While we used Espaloma to generate parameters for the real
physical endstates of an alchemical free energy calculation in
this world, we note it is also possible to introduce dependence
of these parameters on a global alchemical parameters to
generate parameters for alchemical intermediate states as well.
More complex loss functions could minimize the thermody-
namic length along the alchemical codrdinate to provide an
efficient way to interpolate alchemical parameters.**"'*>
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Notes and references

9 Note that this discrete type assignment layer is only used to address the ques-
tion of how well the continuous embeddings approximate discrete types, and is
not used in subsequent experiments that utilize the standard espaloma archi-
tecture (Fig. 1).
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|| Traditional force fields group bonds, angles, and torsions simply by their
composing ordered groups of atoms. For instance, the first bond type in GAFF 1.81
(ref. 27) is defined by the types hw-ow®, which is equivalent to ow-hw due to
mirror symmetry in identifying bonds. Angles and torsions have similar symme-
tries that must be accounted for when enumerating the atoms or matching
valence types. Note that Amber does not uniquely specify equivariant improper
torsion orderings—see footnote a of Table 3 of (ref. 22) for details.

** Here, we use the threefold improper formulation used by the Open Force Field
“Parsley” generation force fields, which avoids the ambiguity associated with
selecting a single arbitrary improper torsion from a set of four atoms involved in
the torsion (ref. 53).

Tt In ESI Section L, we prove that this form is sufficiently expressive to assign
unique valence types.
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