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Atom–surface scattering in the classical
multiphonon regime

J. R. Manson ab and S. Miret-Artés *ac

Many experiments that utilize beams of incident atoms colliding with surfaces as a probe of surface

properties are carried out at large energies, high temperatures and with large mass atoms. Under these

conditions the scattering process does not exhibit quantum mechanical properties such as diffraction or

single-phonon excitation, but rather can be treated with classical physics. This is a review of work

carried out by the authors over a span of several years to develop theoretical frameworks using classical

physics for describing the scattering interactions of atom with surfaces.

1 Introduction

There is a long history of using well defined beams of atoms
or small molecules as probes for determining properties of
surfaces. The earliest successful such experiments were carried
out by Otto Stern and his collaborators1,2 in which they demon-
strated, with thermal energy beams of H2 and He, two-dimensional
diffraction patterns from LiF(001). These experiments came shortly
after similar results by Davisson and Germer, using electron
beams scattered from metal surfaces, demonstrated the existence
of the de Broglie wavelength of the electron.3 Not only did the
experiments of Stern and coworkers measure the structure of the
LiF(001) surface, but their experiments were the first demon-
stration that the concept of a de Broglie wavelength applied to
composite particles such as He atoms or hydrogen molecules.2

Since the later decades of the last century, there has been a
resurgence of experimental work using atomic and molecular
beams as probes of surface properties.4–9 This renewed interest
came at the heels of big advances in vacuum technology and
the development of molecular jet beams, which have a much
greater energy and angular resolution than the thermal beams
with which Stern and his collaborators worked.

The greatest detail of the atom–surface interaction is
obtained in experiments carried out in the quantum mechan-
ical regime, which roughly means low projectile energies, low
surface temperatures and small projectile mass. A slightly
better definition of the quantum regime is when the de Broglie

wavelength is comparable to the surface core atom spacing and
the incident energy is comparable to phonon energies in the
target surface, e.g., implying energies less than 100 meV for He
atoms. Under favorable conditions such experiments can reveal
in great detail features of the gas–surface interaction potential,
surface order and structure via measurements of diffraction
peaks. Surface phonons can be investigated in the single
quantum excitation limit, and even defects on the surface are
revealed in the diffuse scattering between diffraction peaks.

However, many experiments have been carried out in the
classical (or multiphonon) regime, so named because the
theories of classical physics can be used to describe these
measurements. This implies larger incident energies, higher
surface temperatures often combined with larger mass projec-
tiles such as the rare gases heavier than He. Under these
conditions all quantum features such as diffraction peaks or
single phonon features are suppressed, or more precisely as
explained below in Section 2, the Debye–Waller factor becomes
vanishingly small and individual quantum features become
unmeasurable. What this leaves behind are rather broad single
and sometimes multiple peaks characteristic of classical
scattering.

The transition from quantum to classical atom–surface
scattering is illustrated in Fig. 1, which in the front of the
schematic shows a typical angular scan taken at low energy. The
angular scan, in which total scattered intensity is plotted
against the incident angle yi primarily shows sharp diffraction
peaks, and in this case the specular (00) peak is dominant.
Above, in the first inset is an energy-resolved measurement
(typically measured with time-of-flight (TOF) methods) taken at
a single point on the angular scan, in this case marked TOF1.
The energy-resolved spectrum, which is a plot of intensity
versus TOF, shows several peaks. The peak marked el. is the diffuse
elastic peak caused by diffuse scattering at all angles by defects.
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The other peaks are typical of single surface phonon excitations,
the two additional peaks indicated both occur at shorter TOF times
than elastic which indicates that the projectile atom has gained
energy. Now, in the direction of this 2D plot marked as increasing
incident wave vector (increasing energy) the diffraction peaks
become smaller and closer together, until at large incident energies
they disappear altogether and merge into a broad feature, which in
fact is the envelope of the underlying, but invisible quantum
features. The second insert is a TOF energy-resolved spectrum
taken at the place marked TOF2 and it also exhibits only a broad
single-peaked feature. The TOF marked el. in the insert TOF2 is the
approximate position where the projectile has neither energy gain
nor energy loss.

Even though it would appear that having only rather broad
features in the classical regime should lead to more limited
information than could be obtained from observations of the
scattered spectra in the quantum mechanical regime, neverthe-
less there is still a great deal of physical information that can be
extracted. Perhaps foremost are measurements of energy and
momentum transfer in gas–surface interactions, i.e., accommoda-
tion coefficients and friction coefficients. Basic surface structure
is revealed in rainbow peaks arising from surface corrugation, and
these can be due to both direct scattering and inelastic scattering.
Measurements of the temperature dependence of classical peak
features can give information on the nature of the surface
corrugation and its average height. Other aspects of the inter-
action potential such as the attractive physisorption well can be
probed by comparing direct scattering to trapping-desorption
events, and the latter can often lead to scattered distributions
that approach the Knudsen flux, i.e., the scattered distribution
expected from a surface which is desorbing particles in equili-
brium at its temperature. An important factor in a gas–surface
collision is the number of atoms belonging to the surface that

become involved and this can be determined by measuring the
effective mass with which the incoming projectile interacts.
Scattering is very sensitive to this effective mass and experi-
ments of rare gases interacting with molten metals have shown
that this can be an effective way of measuring alloy concentra-
tions in the surface region. Such experiments, in fact can be
isotope sensitive, both with respect to the projectiles and atoms
in the target.10–12 An interesting observation is that in special
cases a classical inelastic peak can be misinterpreted as a
broadened single-phonon peak in an energy-resolved spectrum.
Classical theory can be used to identify such situations.

As mentioned above, surface rainbows are a very important
aspect of this type of scattering. These rainbows were first
observed experimentally by Oman13 and Lorenzen and Raff14

but were not recognized as such until McClure15–17 using a
classical trajectory analysis realized the similarity with the
atmospheric rainbow. Two lobes at opposite sides of the specular
scattering angle were indicative of the surface rainbow effect.
Smith et al.18,19 identified the surface rainbow experimentally by
measuring the scattering of rare gas atoms (in particular, Ne
atoms) in thermal beams from a LiF(001) surface. With higher
resolution apparatus (not an effusive molecular beam source)
and a lower surface temperature to avoid a stronger Debye–Waller
(DW) attenuation, Boato’s group20 observed sharper lobes than
Smith et al. Subsequently, Garibaldi et al.21 developed a simple
theory for atom diffraction and classical and quantum rainbow
scattering by assuming that the surface behaves as a hard
corrugated wall. The number of experimental studies in which
the rainbow effect was observed increased rapidly. The hard wall
model was extended by Garibaldi et al. to diatom–surface
scattering.22 Kleyn et al.23 measured the final rotational energy
distribution of NO scattered from an Ag(111) surface. They
suggested that features in the rotational distribution may be

Fig. 1 A depiction of the transition from quantum mechanical scattering (in the front) to classical scattering (in the rear) as a function of increasing
incident particle wave vector (increasing energy). At low incident energies, sharp quantum features are observed in both the angular distributions and the
energy-resolved TOF1 and TOF2 plots (insets), while at large energy only broad classical features appear. Courtesy of J. R. Manson and J. P. Toennies.
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attributed to rotational rainbows which was later on confirmed
by Schinke.24

Classical trajectory calculations are routine nowadays where
the gas–surface interaction is substituted by a more realistic
interaction potential such as Lennard-Jones or Morse poten-
tials and corrugated Morse potentials25 with the correct long
range behavior. The classical analysis of elastic scattering with
realistic interactions as well as periodic corrugated surfaces has
also led to an exhaustive and detailed study of two aspects very
much related to the rainbow effect: catastrophes and chaotic
behavior. This extensive work has been reviewed by Kleyn and
Horn26 and Guantes et al.27–29 Interestingly enough, when one
of the rainbow angles reaches p/2 one finds the onset of a
multiple scattering regime or chaos appearing from the
so-called skipping singularity.

On the other hand, Brako and Newns30–32 developed a
classical model for atom scattering from metals in which the
motion of the incident particle is coupled linearly to the
phonon bath of the surface. They derived an analytical expres-
sion for the angular distribution as well as for the energy and
momentum transfer. However, surface corrugation was not
included in their theory so they could not account for rainbows.
Thermal effects in the presence of corrugation were first treated
by Tully using his so-called washboard model.33,34 Pollak and
Miret-Artés focused on stochastic approaches based on a gen-
eralized Langevin equation of motion of the particles scattered
from the surface which is modelled as a thermal bath of
phonons.35–41 In particular, it is also convenient to see if the
fitted model parameters (the well depth and stiffness para-
meter of the vertical potential) are reliable by carrying out some
ab initio computations of the potential energy between the
incoming atom and the surface. The accurate calculation of
these potentials is not a routine task because correlated meth-
ods with large basis sets are mandatory for a reliable account of
the van der Waals interaction. The potential energy curves were
calculated by means of the approximate coupled cluster doubles
model RICC2.38

A first order perturbation theory leads to analytical formulae
for the angular distributions and energy loss spectra in the
presence of surface corrugation and thermal fluctuations.
This work was later extended to second order perturbation
theory.42–44 The introduction of friction coefficients to atom–
surface scattering is helpful in interpreting these experimental
data and providing insight into the scattering process. Further-
more, it would be also very interesting to analyze the experimental
results issued from the well-known technique called grazing
incidence fast atom diffraction (GIFAD) and the theoretical ones
by this methodology.45

The above list of useful features that can be extracted under
classical conditions is only partial, and they and other features
will be discussed in the following sections. The objective of this
review is to present several variants of classical physics theories
that can be used to explain and interpret experimental observa-
tions. The theories discussed here result in analytical mathe-
matical formulas which are relatively straightforward to use
and calculate. There are other ways of carrying out calculations

of gas–surface scattering in the classical regime and these are
primarily variants of molecular dynamics simulations which,
in the simplest terms attempt to recreate the experiment in a
computer simulation using an interaction potential for the
surface. Many such molecular dynamics simulations have been
carried out, but we will not discuss those here.46–49

In the following Section 2 we present a very brief introduc-
tion into the basic elements of the quantum theory of surface
scattering, including diffraction and single phonon features.
This enables us to describe how the classical regime develops as
the average number of phonons in a given collision increases. In
Section 3 a classical mechanical theory of atom–surface scattering
is presented starting from a generalization of the classic problem
of a two-body collision. This problem was generalized by Brako
and Newns31,32 to account for the broken symmetry inherent in a
surface collision, i.e., the surface itself presents 2D symmetry, but
symmetry is broken in the direction perpendicular to the surface.
This is further developed to include the effects of an interaction
potential and corrugation of the surface. Section 4 presents a
different approach to the theory in which the vibrations of the
surface are treated as an equilibrium Langevin bath together with
friction coefficients, which could be called classical stochastic
scattering theory. Sections 5 and 6, respectively, give a few exam-
ples to illustrate how the theories of Sections 3 and 4 have proved
to be useful. Finally, in Section 7 we present a few concluding
remarks and some perspectives.

2 Brief description of single and
multiple phonon excitation

In order to more clearly understand how multiple excitation of
phonons in an atom–surface collision can result in a classical
scattering distribution it is of interest to consider how, with
increasing incident energy, the scattering pattern gradually
evolves from being quantum mechanical to classical multi-
phonon excitation. For this, one needs to begin with a purely
quantum starting point, and for describing scattering an exact
expression to start from is the generalized golden rule of Fermi
which gives the transition rate wfi in terms of the transition
matrix Tfi as50,51

wfi ¼
2p
�h

Tfij j2dðEf � EiÞ; (1)

where the energies Ei and Ef are the initial and final total
energies of the entire system of interest, consisting of surface
and projectile atom described by the Hamiltonian

H = Hph + Hatom + V, (2)

where Hph is the Hamiltonian of the surface including phonon
vibrations and Hatom is the Hamiltonian of the incoming
projectile atom, and these are connected by the interaction
potential V. The labels i and f denote the good quantum
numbers of the initial and final states of the system when the
atom and surface are widely separated and not coupled by the
interaction potential V.
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An important aspect is that in scattering from a many-body
object the initial and final states of that object are far too
complicated to be measurable, hence one must average over initial
states of the surface and sum over all possible final surface states.
This averaging over initial states and summing over final surface
states leads to a transition rate that depends only on the initial ki

and final kf wave vectors of the projectile atom

wðkf ; kiÞ ¼
2p
�h

X
nf

Tfij j2dðEf � EiÞ
* +

; (3)

where the large brackets h� � �i signify the average over an equili-
brium distribution of initial surface states and the summation is
over final surface states.

In an actual surface scattering experiment, the most detailed
quantity that is measured is the differential reflection coefficient
d3R/dOf dEf which is the fraction of the incident beam intensity
scattered into the small final energy interval dEf and the small solid
angle dOf. This is related to the transition rate of eqn (3) by

d3R

dOfdEf
¼ L4

ð2p�hÞ3
m2 kfj j
kiz

wðkf ; kiÞ; (4)

where kiz, which is proportional to the incident flux, is the
component of ki normal to the surface and L is a quantization
length.

One other nuance that must be considered is the type of
detector used in the experiments. Most atom beam detectors
are so-called density detectors and the probability of detection
is proportional to the time the atom spends passing through the
detector. This means that faster atoms have a proportionately less
chance of being detected. To account for this situation the
differential reflection coefficient of eqn (4) above should be divided
by the final speed, which is proportional to |kf|.

The interaction potential V is usually written as a pairwise
sum over all unit cells of the surface V ¼

P
‘

P
k
V‘;k where the

discrete variable c counts surface unit cells and k counts
elements within the unit cell. For simplicity we will assume
Bravais unit cells containing only one surface atom and neglect
the summation over k. Then the simplest realistic form for the
interaction potential is

V ¼
X
‘

V‘ ¼
X
‘

Vðr� r‘ � u‘Þ; (5)

where rc is the position of the c-th unit cell and uc is its
vibrational displacement. When the potential is a pairwise
summation such as eqn (5) then the transition operator, from
which the transition matrix elements Tfi are formed, is also a

pairwise summation T̂ ¼
P
‘

T̂ ‘.

With a potential of the form of eqn (5) the transition rate of
eqn (3) can be evaluated exactly for elastic scattering. Without
going into details, which can be found elsewhere,52–54 the result
for purely elastic diffraction for an ordered surface with no
defects is

wð0Þðkf ; kiÞ ¼
2p
�h

X
G

e�2Wðkf ;kiÞ T�kf ;ki

��� ���2dDK;Gd Ef � Eið Þ; (6)

where DK = Kf � Ki is the difference between final and initial
wave vectors parallel to the surface and G a reciprocal lattice
vector of the surface. This is an exact result, within the kine-
matic approximations of a rigidly vibrating Bravais surface unit
cell and assuming vibrations within the harmonic approxi-
mation. The two d-functions show that the only observable
scattering intensities are diffraction peaks occurring with
Kf = Ki � G and the final wave vector perpendicular to the
surface is given by energy conservation

kfz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki2 � ðKþGÞ2

q
: (7)

Each of the diffraction peaks has an intensity proportional to

the squared transition matrix T�kf ;ki

��� ���2. Each peak is also multi-

plied by a Debye–Waller factor exp{�2W(kf, ki)} whose argu-
ment is given by

2W(kf, ki) = h(Dk�uc(0))2i, (8)

where Dk = kf � ki is the scattering vector; in other words, the
argument of the Debye–Waller factor involves the mean square
vibrational displacement and is independent of the unit cell
number c.

An approximate evaluation of 2W which has proven useful in
explaining many experiments is to use the result valid for
neutron or X-ray scattering from a Debye distribution of pho-
nons at temperatures T as large or larger than the Debye
temperature YD. This gives the result 2W = 3h�2Dk2T/[kBMYD

2]
where kB is the Boltzmann constant and M is the effective mass
of the surface. An even clearer view of the behavior of the
Debye–Waller factor comes from its evaluation for the specular
diffraction beam which is

2W ¼ 24m

M

Ei cos
2ðyiÞT

kBYD
2

; (9)

where m is the mass of the projectile atom, Ei is the incident
energy and yi is the incident angle measured relative to the
normal to the surface. The appearance of the Debye–Waller factor
in the elastic diffraction intensity of eqn (6) provides an opportu-
nity to discuss the relationship of quantum mechanical scattering
and classical multiphonon scattering. It can be shown that a good
estimate of the total number of phonons excited in a collision is
given by the value of the exponent 2W. Thus, when 2W is
comparable to or less than unity the predominant scattering
features will be elastic diffraction and the inelastic scattering will
be dominated by single phonon processes. In this case, a quan-
tum mechanical theory is necessary to describe the scattering
process. On the other hand, when 2W c 1, i.e., when large
numbers of phonons are excited, the Debye–Waller factor
exp{�2W} becomes vanishingly small implying that all quantum
features are suppressed; this is when classical physics becomes
appropriate to describe the scattering. It is clear from eqn (9) that
2W becomes large when the product of mass ratio, incident
energy and temperature get large, and this is perhaps the most
precise definition of conditions under which classical theory is
valid for describing the surface scattering process.
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Single phonon excitation can also be evaluated with a
treatment similar to that which produces the elastic scattering
intensity of eqn (6) and the resulting transition rate for the
creation or annihilation of a phonon with frequency o(DK, n)
(where n is the branch index of the phonon mode) is

wð1Þðkf ; kiÞ ¼
2p
�h

X
n

e�2Wðkf ;kiÞ Tkf ;ki

�� ��2

� Dk � rðDK;oðDK; nÞÞ � Dk

� nBEðoðDK; nÞÞj jd Ef � Ei � �hoðDK; nÞð Þ;
(10)

where the Bose–Einstein function is given by nBE(o) =
[exp(h�o/kBT) � 1]�1. We have used the fact that �nBE(�o(DK, n)) =
nBE(o(DK, n)) + 1. The term proportional to nBE describes single
phonon annihilation in which the incoming atom gains energy,
while the term proportional to nBE + 1 is for phonon creation

processes. The dyadic rðDK;oðDK; nÞÞ is essentially the surface
projection of the phonon density of states.52 Just as in the case of
elastic diffraction of eqn (6), it is seen that the strength of a single
phonon creation or annihilation peak is governed by the Debye–
Waller factor. When the Debye–Waller factor becomes vanishingly
small, which is when many phonons are excited, then the intensity
of single phonon peaks becomes unmeasurable and once again this
is the signal that the scattering can be described by classical theory.

There is yet another case of real relevance to the question of
excitations of multiple phonons and this is when the surface can
be imagined to have only a single phonon mode, the so-called
Einstein mode vibrational model. Such a situation is actually
physically realized rather well for two classes of systems involving
surfaces. The first is adsorbed layers of the heavy rare gases on
ordered metal surfaces, where the dispersionless vertical vibra-
tional mode of the rare gas layer (the ZA mode) can have energies
in the range of 2–10 meV. The other is adsorbed small molecules
such as CO on metal substrates, where the frustrated translational
vibrational mode can have energies in the range of 4–10 meV and
is also dispersionless. In both cases, scattering with He atom
beams can excite as many as 10–20 resolvable peaks corres-
ponding to multiple excitations of the single Einstein-like mode.

In the case in which the interaction potential contains only a
single phonon mode of frequency o the transition rate of
eqn (3) can be solved leading to the following result55,56

w kf ; kið Þ ¼ 2p
�h

X
n

e�2Wðkf ;kiÞ Tkf ;ki

�� ��2

�
Xþ1
a¼�1

Ijaj
DK2�h

Mo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBEðoÞ½nBEðoÞ þ 1�

p� �

� nBEðoÞ
nBEðoÞ þ 1

� �a=2

dðEf � Ei � a�hoÞ;

(11)

where Ia(z) is the modified Bessel function of order a. Eqn (11)
is a series of discrete intensity peaks in which positive values of
a correspond to multiple phonon annihilation with the atom
projectile gaining the energy supplied by the phonons, and

negative a denotes phonon creation and energy loss from the
incident atom. In the extreme low temperature limit, where the
occupation number nBE(o) approaches zero, eqn (11) becomes
the well known Poisson distribution. Just as in the other
quantum expressions above for elastic and single phonon
processes, this Einstein mode model intensity is governed by
a Debye–Waller factor. As the argument of the Debye–Waller
factor becomes larger and larger (e.g., with increasing incident
energy or temperature) the peaks are suppressed and shifted
away from the elastic point denoted by a = 0. In the extreme
multiphonon limit what is left is basically the envelope of all
the quantum peaks, and this region is where classical theory
can be used to describe the process.

An example demonstrating the usefulness of this equation
for describing surface Einstein modes appears in Fig. 2 which
shows several results of calculations using eqn (11) compared
to measurements of He scattering from a 0.028 coverage of CO
molecules adsorbed on a Cu(001) surface with the scattering
plane aligned with the100 azimuthal direction. There is a fixed
source-detector angle of 1051 between the incident beam and

Fig. 2 Four different energy resolved helium atom scattering spectra on
Cu(001) taken along the100 azimuth with a CO coverage of 0.028. The
incident energy is 66.6 meV and the incident angles range from 56.31 to
761 as marked. Experimental points are marked as open circles while the
solid curves are the results of theory. In these plots, T means the frustrated
translational mode of the CO molecule and N a relative normalization
factor used to match the calculated curve to the measured intensities.
(Reprinted with permission from ref. 55, Copyright [1988] American
Physical Society.)
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the detector direction. The experimental measurements are
shown as open circles and the calculations are the solid curve.
The sharp delta-function peaks produced by eqn (11) have been
broadened to match the widths of the measured phonon peaks.
The number N shown in each panel is a relative normalization
factor used to match the calculated curve to the measured
intensities. The adsorbate mode that is being excited multiple
times in Fig. 2 is the frustrated translation of the CO molecule
(T). The molecule sits at an on-top position over a Cu atom with
the carbon atom next to the Cu. The frustrated translational
mode is a wagging motion with an energy of about 4 meV.
Because of the translational nature of this mode it is more
readily excited with larger parallel wave vectors K of the
incident He atoms. Thus in Fig. 2 when the incident angle is
small and closer to normal the number of phonon excitations is
small, but as the incident angle is increased to a near-glancing
configuration at yi = 761 more than ten excitations are visible.
Peaks appear at both energy gain (phonon annihilation) and
energy loss, and in this case when there are large numbers of
excitations the envelope of the quantum peaks is shifted
strongly to the energy loss side.

Fig. 2 once again provides an illustration of the evolution
from the quantum mechanical regime towards the classical
regime. As the number of excitations becomes larger, as in the
bottom panel, there is a clear envelope of the purely quantum
peaks. The classical regime is that in which the number of
phonons excited is so large that they can no longer be distin-
guished and what remains observable is this classical envelope.

3 Classical scattering theory

The history of a neutral particle colliding with a target under
conditions in which many vibrational quanta are excited goes
back to the early days of neutron scattering from solids.
A review dating from the middle of the last century57 gives
the following equation for the transition rate

wðkf ; ki;TÞ /
1

ð4pkBTDE0Þ1=2
exp �ðEf � Ei þ DE0Þ2

4kBTDE0

� �
; (12)

where Ef and Ei are the final and intial energies of the neutron
after making a collision with a target nucleus, Ef = h�2kf

2/2m and
similarly for Ei, with m the mass of the neutron. The recoil
energy is DE0 = (h�kf� h�ki)

2/2M where M is the mass of a nucleus
of the solid, under the assumption that all of the atoms in the
solid are the same.

A similar expression to eqn (12) has proved to be useful in
describing low energy ion scattering from metal surfaces, so it
is an interesting exercise to see how it can be derived as a
generalization of the well known problem of the collision of two
hard spheres. Consider a projectile particle of mass m whose
incident energy is Ei = pi

2/2m and a moving target particle of
mass M whose initial energy is ei = Pi

2/2M. Both energy and
momentum must be conserved in the collision so the transition
rate is of the form

w(pf, pi) p Fd(Ef � Ei + ef � ei) d(pf � pi + Pf � Pi), (13)

where F is a form factor describing the shape of the particles,
and for hard spheres F is simply a constant that can be taken to
be unity. If this system is to be compared to a surface scattering
experiment, then one must do the equivalent of summing over
all final states of the target and averaging over all its initial
states. The corresponding process here is to sum eqn (13) over
all final target momenta Pf and average over all initial momenta
Pi. If the distribution function of initial momenta Pi is a
Maxwell–Boltzmann distribution, for example as is the case
for the distribution of momenta in a gas at equilibrium at
temperature T or the similar distribution function of momenta
of an atom in a harmonic solid crystal, then the sum and
averaging result in precisely the same result as eqn (12) multi-
plied by the factor F. Below, we will discuss more general
approaches that lead to eqn (12) and also identify the factor F
with the squared transition matrix |Tfi|

2. In Section 5 we will
show an application of eqn (12) in which it nicely describes the
scattering spectra of low energy ions scattering from a metal
surface.

Brako and Newns developed a significant improvement to
eqn (12) in which the target particle was replaced by the surface
of a semi-infinite slab. Beginning with a purely quantum
mechanical starting point, similar to eqn (3) above they
included the correct conditions of conservation of momentum.
A large planar surface, due to its symmetry, imposes a con-
servation condition on the parallel momentum of the projectile.
For example, an ordered, periodic surface conserves parallel
momentum modulo a surface reciprocal lattice vector, Kf = Ki + G,
which is the diffraction condition, whereas the projectile
momentum parallel to the axis perpendicular to the surface is
not conserved due to the broken symmetry in that direction.
By ignoring the interaction potential between the atomic pro-
jectile and the surface Brako and Newns were able to evaluate
the scattering transition rate in the classical limit of excitation of
large numbers of phonons to obtain the following expression31,32

wðkf ; ki;TÞ /
1

ð4pkBTDE0Þ3=2
Tfij j2

� exp �ðEf � Ei þ DE0Þ2 þ �h22vR
2DK2

4kBTDE0

� �
;

(14)

where vR is a weighted average of phonon velocities parallel to the
surface, and DK is the surface-parallel component of the scattering
vector kf � ki. As stated above, Brako and Newns treated only the
excitation of multiple phonon quanta and did not include the
interaction potential between the projectile and surface, thus their
form factor was simply a constant, |Tfi|

2 = 1.
Much later the Brako–Newns solution was re-examined,

beginning with the quantum mechanical Fermi golden rule
transition rate of eqn (3), but including an interaction potential
between the projectile and the surface.52,58 This treatment was
based on only two approximations, the assumption of a rapid
collision compared to a typical phonon vibration period and
assuming decoupling of the phonon field from the interaction
potential. This approach led again to eqn (14), but with the
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form factor clearly identified. The transition matrix Tfi was
shown to be the transition matrix of the elastic part of the
interaction potential taken with respect to its own eigenstate
wavefunctions extended off the energy shell, i.e., the quantum
mechanical wavefunctions are those of the elastic part of the
potential, but for incident and final energies that include the
energy gains and losses transferred to the target surface via the
multiple phonon excitations. Such transition matrices have
been used since the very early days of quantum mechanics,
e.g., for a purely one-dimensional repulsive exponential
potential between the projectile and surface these are known
as the Mott–Jackson matrix elements59 or for a 1-D Morse
potential they are known as the Morse matrix elements.60

An important condition that any many-body scattering the-
ory should obey is detailed balancing. Detailed balancing is a
special relationship between a transition from state ki to state
kf and its inverse, a transition in which the two momenta are
reversed. It is a manifestation of quantum mechanics that
remains present in the classical limit. In a quantum mechan-
ical excitation of a single phonon of frequency o the probability
of phonon creation is proportional to n(o) + 1 while the
probability of annihilation of the same phonon is proportional
to n(o). Thus the probability of phonon creation between the
same two momentum states is larger than that for annihilation
by a factor of exp{h�o/kBT}. For the simultaneous excitation of
two or more phonons a similar relation holds. This implies that
for the classical regime of multiphonon excitation the transi-
tion rate w(kf, ki, T) is related to its inverse w(ki, kf, T) by the
following relation

wðkf ; ki;TÞ ¼ exp
Ei � Ef

kBT

� �
wðki; kf ;TÞ: (15)

It can be readily shown that the transition rates of both eqn (12)
and (14) obey the above condition of detailed balancing.

A fundamental aspect of surface morphology that has been
investigated with atom–surface scattering under classical con-
ditions is the surface corrugation. Effects of corrugation are
detected in the temperature dependence of the scattered spec-
tra, and for ordered surfaces with large corrugations the spectra
can exhibit rainbow patterns. Both of these aspects are dis-
cussed in connection with examples below in Sections 5 and 6.
Corrugation is usually expressed through a corrugation function
x(R) where R is the 2-D position vector parallel to the surface. The
corrugation function defines the classical turning point of the
incoming atom’s motion and is given by the following equation

z = x(R), (16)

where z is the component of the position vector perpendicular
to the surface. A very useful potential model in atom–surface
theory is the hard wall potential in which the surface is
represented by a strong repulsive wall with a corrugation given
by eqn (16). Obviously, the corrugation in the case of a
disordered surface will be rough, while the corrugation will
be an ordered periodic function for a crystalline surface.

The theory, from which the transition rate of eqn (14) was
developed, has been expanded to include surface corrugation,

both for the corrugation of an ordered crystalline surface or for
a rough corrugated surface.61,62 Starting from the fully quan-
tum mechanical transition rate of eqn (3), applying the eikonal
approximation to a potential with corrugation x(R) and then
taking the limit of large numbers of phonons excited leads to
the following expression

wðkf ; ki;TÞ /
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDE0kBT
p Tfij j2exp �

ðEf � Ei þ DE0Þ2
4DE0kBT

� �

�
ð
dR

ð
dR0e�iDK�ðR�R

0Þe�iDkz ½xðRÞ�xðR
0Þ�

� exp �DE0kBTðR� R0Þ2
2�h2vR2

� �
;

(17)

where the perpendicular component of the scattering vector is
Dkz = kfz � kiz = |kfz| + |kiz|. Eqn (17) is actually a semiclassical
expression in the sense that the double integral over the surface
accounts for quantum mechanical interference between parts
of the incident wavefunction scattering from different positions
on the surface. However, for large projectile energies, the
coherence length for quantum interference becomes negligibly
small, and for an ordered surface the double integral can be
replaced by integrals over a single unit cell, multiplied by the
number of unit cells which is simply a large constant. In the
special limiting case where the corrugation function x(R) is
taken to be a constant, in other words, for a smooth flat surface,
eqn (17) reduces to the result of eqn (14) for the smooth
surface model.

4 Classical stochastic scattering
theory

In this section, this scattering is going to be considered
theoretically from a different perspective. The dynamics is
entirely described by classical mechanics from the very begin-
ning by considering an interaction potential as well as a
corrugation function. The scattering will be studied within
the first order perturbation theory in the corrugation ampli-
tude. Only in-plane scattering and first order theory will be
discussed here in order to simplify the discussion and avoid
cumbersome final analytical expressions. Even at this level of
the theory, the physics is quite eloquent and provides the main
ingredients of the corresponding dynamics. The corresponding
3D theory40,41 and the second order perturbation theory have
also been developed.42–44

4.1 Elastic scattering

Let us consider the scattering of a particle with mass m and
momentum pz in the direction which is vertical to the surface
and momenta px and py in the directions parallel to the surface.
The corresponding Hamiltonian underlying the dynamics of
the particle can be written in general as

H ¼ px
2 þ py

2 þ pz
2

2m
þ Vðx; y; zÞ; (18)
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where a perfectly ordered crystal surface is assumed with the
interaction potential given by V(x, y, z) displaying a periodic
structure in the x, y plane. When the particle is sufficiently
distant from the surface, this interaction potential will vanish.

The momenta of the incident particle are denoted by pxi
, pyi

, pzi

and the initial vertical momentum is assumed to be negative
whereas the initial horizontal momenta are positive. The angle of
incidence yi relative to the direction vertical to the surface is then

tan yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pxi

2 þ pyi
2

p
pzi

; (19)

which is by definition negative, �p/2 r yi r 0. The azimuthal
angle of incidence, in the x � y plane is

tanfi ¼
pyi
pxi
; (20)

and by definition 0 r fi r p/2. The scattered particle is charac-
terized by the final momenta pxf

, pyf
, pzf

. The scattering angle yf

relative to the vertical to the surface (0 r yf r p/2) is given by

tan yf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pxf

2 þ pyf
2

p
pzf

; (21)

and the final azimuthal angle by

tanff ¼
pyf
pxf
; (22)

such that 0 r ff r 2p.
If a rectangular surface unit cell with lx and ly for the

horizontal directions is assumed, then one has that the final
momentum distribution can be written as

P pxf ; pyf ; pzf
� 	

¼ 1

lxly

ðlx
0

dx

ðly
0

dyd pxf � px x; yð Þ
� 	

� d pyf � py x; yð Þ
� 	

d pzf � pz x; yð Þ
� 	

;

(23)

where pj (x, y), with j = x, y, z, denote the momenta of the
particle when the collision with the surface is over. Similarly,
the angular distribution of the scattered particle is given by

P yf ;ffð Þ ¼
ð1
0

dpzf

ð1
�1

dpxf

ð1
�1

dpyfP pxf ; pyf ; pzf
� 	

� d yf � tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pxf

2 þ pyf
2

p
pzf

 ! !

� d ff � tan�1
pyf
pxf

� �� �
:

(24)

In order to simplify further the general theory, only in-plane
scattering will be presented here. Remember that in most
experimental setups only in-plane scattering events are mea-
sured. In-plane measurements are such that the initial and
final azimuthal angles are the same, and may be set equal to
zero and the initial and final momentum in the horizontal y

direction is by definition zero. The in-plane momentum dis-
tribution is then given by

P pxf ; pzf
� 	

¼
P pxf ; 0; pzf
� 	Ð1

0 dpzf
Ð1
�1dpxfP pxf ; 0; pzf

� 	: (25)

Trajectories initiated in the plane remain in the plane and one
must only consider a two dimensional momentum distribution
P(pxf

, pzf
) as in eqn (23) except for the y coordinate. Analogously,

the angular distribution P(yf) with �p/2 r yf r p/2 is obtained
as in eqn (24), except for azimuthal. However, one should
keep in mind that the experimental measurement in the
plane includes contributions from the full three dimensional
dynamics.

The simplest model of in-plane scattering for a frozen sur-
face can be obtained by Taylor expanding the interaction
potential V(x, z) around the equilibrium points of the surface
leading typically to two components, a potential of interaction
in the vertical direction %V(z) and a corrugation function x(x) in
the parallel direction

%V(z + h(x)) C %V(z) + %V0(z)x(x), (26)

by assuming that the corrugation amplitude is smaller than the
unit cell length. Initially the particle distance from the surface
is sufficiently large, such that the potential of interaction with
the surface vanishes. The particle is assumed to be initiated at
the time �t0 with initial vertical (negative) momentum pzi

and
(positive) horizontal momentum pxi

. The zero-th order motion
is decoupled, the vertical motion is governed by the vertical
Hamiltonian

Hz ¼
pz

2

2m
þ �VðzÞ: (27)

The horizontal motion is that of a free particle with constant
velocity vxi

= pxi
/m. The particle impacts the surface at time t = 0

and then leaves the interaction region by the time t0 which is
taken to be sufficiently large to assure that the scattering event
is over. Classical trajectories must be integrated over a time
(2t0) which is sufficiently long such that all scattered particles
will have exited the interaction region, say t0 - N.

One must estimate the final momenta after the scattering
process to obtain the final angular distribution. This is easily
achieved by first-order perturbation theory for which the small
parameter of the theory is the corrugation height. From Hamil-
ton’s equations for the horizontal motion one readily finds that

px t0ð Þ ¼ px �t0ð Þ þ dpx

¼ px �t0ð Þ �
ðt0
�t0

dt �V
0ðztÞx0 xtð Þ;

(28)

where zt gives the z-component of the classical trajectory. In the
horizontal direction the motion is to zero-th order that of a free
particle (parallel momentum conservation)

xt ¼ x�t0 þ
pxi
m

tþ t0ð Þ � �xþ pxi
m
t; (29)

where pxi
= px(�t0) is used. Within this perturbation theory, the

Jacobian of the transformation between the initial value of the
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horizontal coordinate x�t0
to its value upon the impact point %x

is unity.
The corrugation function x(x) is assumed to be periodic with

period l reflecting the periodicity of the surface. This function
in general can be Fourier expanded as

xðxÞ ¼
X1
j¼1

xcj cos
2pjx
l

� �
þ xsj sin

2pjx
l

� �
 �
: (30)

By using the symmetry of the zero-th order motion along the
vertical direction, one thus finds that

px t0ð Þ ’ pxi

� pzi

X1
j¼1
�Kjc sin

2pj
l

�x

� �
þ Kjs cos

2pj
l

�x

� �
 �
; (31)

with the following notation

Kjc ¼
2pj
lpzi

xcj

ðt0
�t0

dt �V
0ðztÞ cos joxtð Þ (32)

Kjs ¼
2pj
lpzi

xsj

ðt0
�t0

dt �V
0ðztÞ cos joxtð Þ; (33)

and the impact corrugation function H(%x) responsible for the
momentum shift can be written as

Hð�xÞ ¼
X1
j¼1
�Kjc sin

2pj
l

�x

� �
þ Kjs cos

2pj
l

�x

� �
 �
; (34)

which is formed by the points of impact, %x. Furthermore, the
horizontal frequency is defined as

ox ¼
2p
l

pxi
m
; (35)

and %V0(zt) is symmetric with respect to time.
Under these conditions, there is no energy transfer between

the particle and the surface, so that one can use energy
conservation to determine to leading order also the change in
the vertical momentum

pz t0ð Þ ¼ �pzi þ dpz ¼ �pzi þ
pxi
pzi

dpx: (36)

The momentum shifts determine directly the final momentum
and angular distribution. Thus, one finds

P pxf ; pzf
� 	

¼
pzi
�� ��
l

d pxi
2 þ pzi

2 � pxf
2 � pzf

2
� 	

�
ðl
0

d�xd pxf � pxi � dpx �xð Þ
� 	

:

(37)

The corresponding angular distribution is

P yfð Þ ¼
1

l

ðl
0

d�xd yf þ yi �Hð�xÞð Þ; (38)

and the so-called classic deflection function is given by the
argument of the Dirac d-function. For further insight, let us
consider the simple case of a single Fourier component, so that
x1c = x and K1c = K and all other coefficients vanish. One readily

obtains that the angular distribution is formally given by

P yf ;Kð Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � yf þ yið Þ2

q ; (39)

for the hard wall model where K = 4px/l is the rainbow angle
shift. In this limit, the angular distribution is symmetric about
the specular scattering angle. This distribution is independent
of the energy or the mass of the scattered particle. The same
observation is found for a pure repulsive potential.41

As commented above, the rainbow shift parameter is in
general determined not only by the corrugation amplitude
but also by the dynamics of the scattered particle, as may be
inferred through eqn (32) and (33). As an illustration, let us
consider a Morse interaction potential written as

%V(z) = V0[(exp(�az) � 1)2 � 1], (40)

with a well depth given by V0 and a the stiffness parameter. The
unperturbed trajectory of the Morse oscillator is known
analytically to be

exp aztð Þ ¼ �cos Fð Þ
sin2 Fð Þ

cosh Otð Þ þ cos Fð Þ½ �; (41)

with

O2 ¼ 2a2E
m

; (42)

and

cosF ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0

Ez þ V0

r
; (43)

where Ez = pzi

2/(2m) is the energy in the vertical direction. Then,
the rainbow shift parameter becomes

KMorse ¼
4px
l

p�O
sinh p�O

� 	 cosh �OF
� 	

; (44)

with

�O ¼ 2p
al

tan yij j: (45)

Keeping the angle of incidence fixed, the angle F decreases
from p to p/2 as the energy is increased, causing the rainbow
shift parameter to decrease accordingly. It is the presence of an
attractive well that causes the distance between the rainbow
angles to decrease with increasing energy. Although qualita-
tively, and shown later on, this effect may be found also in the
hard wall model, the change estimated by perturbation theory
is stronger. The well also introduces a further dependence on
the angle of incidence. Keeping the energy fixed but changing
the angle of incidence from vertical to grazing causes a
reduction of the vertical energy, such that F increases as the
deviation of the angle of incidence from the vertical increases.
This leads to an increase in the rainbow shift parameter
and maybe to its non-monotonic dependence on the angle of
incidence.
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4.2 Inelastic scattering

Energy exchange between the particle and the surface in this
type of scattering is going to be described here by the well-
known Caldeira–Leggett Hamiltonian.63,64 In this context, it is
assumed that the interaction with phonons may be modelled by
linear coupling terms to the bath surface modes for both the
vertical and horizontal coordinates. Both interactions are
modulated by a function of the vertical coordinate, which
vanishes when the vertical distance is sufficiently large. An
additional condition is translational invariance of the Hamil-
tonian, that is, since the surface is periodic along the horizontal
coordinate, the Hamiltonian must reflect this periodicity. Thus,
the 3D Hamiltonian governing the scattering event is

H ¼ px
2 þ py

2 þ pz
2

2m
þ �VðzÞ þ �V

0
zð Þx x; yð Þ

þ 1

2

XN
j¼1

pjz
2 þ ojz

2 xjz �
cjz

ffiffiffiffi
m
p

ojz
2

�V
0ðzÞ

� �2
" #

þ 1

2

XN
j¼1

pjx
2 þ ojx

2 xjx �
cjx

ffiffiffiffi
m
p

ojx
2

lx

2p
sin

2px
lx

� �
gxðzÞ

� �2
" #

þ 1

2

XN
j¼1

pjy
2 þ ojy

2 xjy
cjy

ffiffiffiffi
m
p

ojy
2

ly

2p
sin

2py
ly

� �
gyðzÞ

 !2
2
4

3
5;
(46)

where N is the number of oscillators, the horizontal and vertical
surface modes being characterized by the mass weighted
momenta and coordinates pji

, xji
, j = 1,. . .,N; and i = x, y, z

for the three components in the three cartesian directions.
Translational invariance of the model is assured since the term
coupling the horizontal motions to the respective phonon
baths is periodic in the horizontal coordinate. When the
particle is far from the surface it does not interact with the
phonons, so that the surface Hamiltonian (in mass weighted
coordinates and momenta) is

HB ¼
1

2

XN
j¼1;i¼x;y;z

pji
2 þ oji

2xji
2

� 	
: (47)

The classical equations of motion for linearly coupled harmo-
nic oscillators are generalized Langevin equations. Introducing
the spectral densities

JiðoÞ ¼
p
2

XN
j¼1

cji
2

oji

dðo� oji Þ; i ¼ x; y; z; (48)

and associated friction functions

ZiðtÞ ¼
2

p

ð1
0

do
JiðoÞ
o

cos otð Þ; i ¼ x; y; z; (49)

the corresponding equations for the horizontal motions take
the form

ffiffiffiffi
m
p

FxðtÞ cos
2pxt
lx

� �
gxðztÞ ¼ m€xt þ

@Vðxt; yt; ztÞ
@xt

þm cos
2pxt
lx

� �
gxðztÞ

�
ðt
�t0

dt 0Zxðt� t 0Þ

� d

dt 0
lx

2p
sin

2pxt 0
lx

� �
gxðzt 0 Þ


 �� �
;

(50)

and

ffiffiffiffi
m
p

FyðtÞ cos
2pyt
ly

� �
gyðztÞ ¼ m€yt þ

@Vðxt; yt; ztÞ
@yt

þm cos
2pyt
ly

� �
gyðztÞ

�
ðt
�t0

dt 0Zyðt� t 0Þ

� d

dt 0
ly

2p
sin

2pyt 0
ly

� �
gyðzt 0 Þ


 �� �
:

(51)

The generalized equation for the vertical motion is more
complicated, but is not needed explicitly. In the absence of
dissipation, the unperturbed vertical motion is taken to be an
even function of time such that the particle reaches the vertical
turning point at time t = 0. Trajectories are again initiated at the
time �t0. The projectile is initially sufficiently distant from the
surface, such that at the vicinity of z0 all the coupling functions
vanish and the motion is that of a free particle. The noise
functions

FiðtÞ ¼
XN
j¼1

cji xji cos oji tþ t0ð Þ
� 

þ pji
oji

sin oji tþ t0ð Þ
� � �

;

i ¼ x; y; z;

(52)

depend only on the initial conditions of the bath in the absence
of particle surface interaction. They obey the fluctuation–
dissipation relations

Fiðt1ÞFjðt2Þ
� �

¼ dij
m

b
Ziðt1 � t2Þ; i; j ¼ x; y; z; (53)

where the averaging is over the thermal distribution associated
with the classical bath Hamiltonian as given in eqn (47). When
considering the motion of a rare gas projectile whose inter-
action with the surface and the phonons does not include any
strong chemical interactions, it is reasonable to assume that
the system bath couplings are weak and Ohmic, that is,

Zi(t) = 2Zid(t), i = x, y, z, (54)

and the dynamics is in the Markovian regime (no memory),
leading to standard Langevin equations. The assumption of
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Ohmic friction (as in eqn (54)) implies that at low frequencies,
the spectral density J(o) B o. One may justify this choice when
considering phonon friction and the interaction of the scat-
tered particle with the atoms of the surface.

It is well known that when considering surface diffusion,65

the surface may be described in terms of purely harmonic
interactions, then the autocorrelation function of the force of
the surface atoms on the diffusing particle may be considered
to be Ohmic (that is, eqn (53) applies for constant friction). This
is especially so if the atomic frequencies of motion are lower
than the Debye frequency of the crystal.66 In principle, there is
some difference between the friction felt by a particle diffusing
on the surface and a particle scattered from it. The distance of
the particle from the surface changes in time. The frictional
forces are themselves functions of the vertical distance. In this
model, it is assumed that the friction may be factorized as a
product of a distance dependent function gi(z) and a friction
function g(t). This assumption allows one to relate the friction
coefficients used to describe the scattering event to the friction
coefficient used to describe surface diffusion. It is typically
small when compared to the frequency of motion of the
adsorbed particle, corroborating the rather small friction coef-
ficients needed to fit the experimental data for broadening of
rainbow scattering features due to surface temperature. The
frictional forces felt by both scattered and diffusing particles
are not necessarily limited to phonon friction. Especially for
metals one should also consider electronic interactions such as
electron–hole pair production. This process also leads to
exchange of energy of the scattered particle with the surface.
Fortunately, this energy loss mechanism may also be consid-
ered roughly in terms of an Ohmic frictional force.64,67,68 The
friction coefficients used in this Hamiltonian model may thus
be considered as coming from the additive sum of all sources of
particle surface interactions which lead to energy loss of the
particle.

In order to better illustrate the theory, one is restricted again
to in-plane inelastic scattering. The zero-th order motion for
the surface modes is that of uncoupled harmonic oscillators

xjxðtÞ ¼ xjx cos ojx tþ t0ð Þ
� 

þ pjx
ojx

sin ojx tþ t0ð Þ
� 

(55)

pjx
(t) = �xjx

ojx
sin[ojx

(t + t0)] + pjx
cos[ojx

(t + t0)]. (56)

One then uses first order perturbation theory with respect to
the corrugation as well as the coupling between the particle and
the surface modes, to find from eqn (50) three contributions to
the shift in the horizontal momentum

dpx � px(t0) � px(�t0) C �pzi
H(%x) + Dpx,1 + Dpx,2. (57)

The first term on the right hand side is the shift induced by the
corrugation and takes the same form as in the absence of
surface friction. The second term Dpx,1 is a frictional momen-
tum shift which, after an integration by parts, may be expressed
in terms of the friction coefficient and the vertical motion

coupling function as

Dpx;1 ¼ �Zx
px

2

ðt0
�t0

dtg2ðztÞ: (58)

The third term on the right hand side is a noise induced
momentum shift Dpx,2

Dpx;2 ¼
ffiffiffiffiffi
M
p

cos
2p
l

�x

� �XN
j¼1

cjxXjc�xjx þ sin
2p
l

�x

� �XN
j¼1

cjx
Xjs

ojx

�pjx

 !

� cos
2p
l

�x

� �
Dpx;2c þ sin

2p
l

�x

� �
Dpx;2s;

(59)

with %xjx
= xjx

(t = 0), %pjx
= pjx

(t = 0) and

Xjc ¼
ðt0
�t0

dtgðztÞ cos oxtð Þ cos ojx t
� 	

(60)

Xjs ¼ �
ðt0
�t0

dtgðztÞ sin oxtð Þ sin ojx t
� 	

: (61)

The energy loss to the bath may be divided into two parts, an
average energy loss and a fluctuational energy loss

DEB ¼
X
i¼x;z

DEBh iiþdEBi

� 	
; (62)

which are further subdivided into separate average and fluctua-
tional energy losses in the horizontal and vertical directions.
One may also use perturbation theory to obtain an estimate for
the average energy loss to the bath due to the motion in the x
direction. The equation of motion for the j-th bath mode is that
of a forced harmonic oscillator, which can be solved implicitly
in terms of the motion of the particle and the zero-th order
solution for the particle equations of motion is inserted. Then,
one considers the final energy of all of the bath modes after the
collision and compares it with the energy prior to the collision
to find that the average energy loss is

DEBh ix¼ De� cos
4p
l

�x

� �
Dex; (63)

where

De ¼ E sin2 yið ÞZx
ðt0
�t0

dt g2 ztð Þ þ
1

ox
2

dg ztð Þ
dt

� �2
" #

; (64)

and

Dex ¼ E sin2 yið ÞZx
ðt0
�t0

dt cos 2oxtð Þ g2 ztð Þ þ
1

ox
2

dg ztð Þ
dt

� �2
" #

:

(65)
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The fluctuational energy loss in the horizontal direction is

dEBx ¼
ffiffiffiffi
m
p l

2p
sin

2p
l

�x

� �XN
j¼1

cjxXjc�pjx þ cos
2p
l

�x

� �"

�
XN
j¼1

cjxXjsojx �xjx

#
� sin

2p
l

�x

� �
dEBxsþ cos

2p
l

�x

� �
dEBxc:

(66)

Eqn (63) expresses the fact that the energy loss for the hori-
zontal motion may depend significantly on the point of impact
of the scattered particle with the surface. As discussed in
Section 6, the periodic dependence of the energy loss on the
point of impact (%x) implies the existence of what is known as
energy loss rainbows. Energy loss rainbows will appear at least
in principle whenever the derivative of the energy loss with
respect to the impact parameter vanishes.

The average energy loss to the bath due to the vertical
motion is found in similar fashion, by considering the surface
modes coupled to the vertical motion (note that the dimension
of Zx is time�1 while that of Zz is time3/mass2)

DEBh iz¼ mZz

ðt0
�t0

dt
d �V
0ðztÞ
dt

 !2

� �pzDpz;1
m

; (67)

and the associated fluctuational energy loss is

dEBz ¼ �
ffiffiffiffi
m
p XN

j¼1

cjz
ojz

Zjs�pjz � �
pzDpz;2

m
; (68)

with

Zjs ¼
ðt0
�t0

dt
d �V
0
ztþt0
� 	
dt

sin ojz t
� 	

: (69)

The second moments of the fluctuational energy losses are
obtained by averaging over the initial conditions of the unper-
turbed bath. One finds that they are proportional to the average
energy losses

dEBi

2
� �

¼ 2

b
DEBh ii; i ¼ x; z: (70)

The shift in the final momentum in the vertical direction is
obtained via energy conservation as in the uncoupled case,
except that here one has to take into consideration the energy
losses to the phonon baths

pzdpz = mDEB + pxdpx. (71)

Finally, the expression for the angular distribution has the
same form as in the absence of dissipation, except that now one
has to include the averaging over the phonon baths. For this
purpose, one notes that

tan�1
px t0ð Þ
pz t0ð Þ

� �
’ �yi þ dyi; (72)

where to lowest order in the momentum shifts

dyi � �
dpx
pzi
� cos2 yið Þ

pzi
2

pxi
pzi

mDEB: (73)

The averaging over the bath variables involves a few Gaussian
integrations and one finds that the angular distribution is given
by the expression

PðyfÞ ¼
1

l

ðl
0

d�x
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pS2 �xð Þ
p

� exp � yf þ yi þHð�xÞ þ Dy1 �xð Þð Þ2

S2 �xð Þ

 !
;

(74)

where the angular shift is

Dy1 �xð Þ ¼ tan yið Þ
DEBh i
2E

� Zx
2

ðt0
�t0

dtg2ðztÞ
� �

; (75)

and the variance

S2 �xð Þ ¼ tan2 yið Þ
bE

DEBh i
E

þ Zx
bE cos2 yið Þ

ðt0
�t0

dtg2ðztÞ

� cos 2yið Þ þ cos
4p
l

�x

� �
cos 2oxtð Þ


 �
:

(76)

The coupling to the phonon bath smooths the distribution.
If the coupling is strong, the phonon coupling will dominate
and the distribution will be a single bell shaped Gaussian-like
peak. However, for sufficiently weak coupling, one will observe
a Gaussian-like broadening of the multiple rainbow peaks.

The angular shift Dy1(%x) is of special interest. It implies that
even in the absence of corrugation, one may observe rainbows
in the angular distribution which are induced by friction. These
have been referred to as friction induced rainbows,41 not
observed or reported yet in the literature. They result from
the fact that the energy transfer to the surface may depend on
the impact parameter. Such surface induced rainbows will be
observable only at very low surface temperature. From eqn (70),
one notes that as the temperature increases, the fluctuations
increase and they will mask the rainbow structure induced by
the energy loss.

Several limits are interesting to discuss. First, if there is no
coupling to the bath then the angular shift vanishes and one
regains the angular distribution in the absence of dissipation

P yfð Þ !
1

p
HðK2 � ðyf þ yiÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 � yf þ yið Þ2
q ; (77)

where H(x) is the Heaviside function. Second, in the absence of
corrugation, there is no energy loss in the horizontal direction
and the lattice length diverges. The shifted Gaussian angular
distribution (shifted to angles larger than specular due to the
energy loss in the vertical direction) is given by

PðyfÞ !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pS2 �xð Þ
p � exp � yf þ yi þ Dy1 �xð Þð Þ2

S2 �xð Þ

 !
; (78)

where the angular shift is always negative and the angular
distribution is centered about an angle that is greater than
the specular position (since the momentum in the horizontal
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direction is conserved while in the vertical direction has become
smaller in magnitude). Third, in the limit of zero temperature
(the so-called static limit), the variance vanishes and the angular
shift is not zero but the broadening due to the phonon bath also
vanishes

P yfð Þ !
1

p
HðK2 � ðyf þ yi þ Dy1Þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 � yf þ yi þ Dy1ð Þ2
q : (79)

And fourth, the next step is to calculate the final energy
distribution, or the so-called energy-loss distribution from the
joint probability distribution for finding the scattered atom at
the final scattering angle and final energy E. After a few Gaussian
integrations for the bath coordinates, one readily finds

P Efð Þ ¼
1

l

ðl
0

d�x
b

4p DEBh i

� �1=2

exp �b
4

ðEf � E þ DEBh iÞ2
DEBh i

� �
;

(80)

and this is a generalization of Brako’s result.36 Due to the
coupling of the horizontal mode to the phonon bath, the energy
loss does depend on the horizontal coordinate. One has to
average over the energy loss distribution found for each value
of the horizontal coordinate. The energy deflection function
depends linearly on the friction coefficient (in the weak damping
limit) but it is temperature independent since it gives the average
change in the energy loss. This function is expected to have
extrema which show up as divergences in the final energy
distribution. These peaks have been assigned to be energy-loss
rainbows. This means that the energy loss is a periodic function
due to the periodicity of the surface. The effect of the fluctua-
tions, and thus the temperature, is then to broaden the energy-
loss distribution. In the high horizontal frequency limit, this
dependence vanishes and one recovers Brako’s result.

5 Applications of classical theory
5.1 Low-energy ion scattering

As stated above, eqn (12) with the form factor |Tfi|
2 taken to be

a constant was originally used to explain multiple phonon
excitation in experiments of neutron scattering from solids.
An application to surface scattering was to analyze low energy
alkali ion scattering from metal surfaces.12,69

An extensive study of the scattering of Na+ ions from a clean
and ordered Cu(001) surface over a range of energies from 100
to 400 eV was published in 1994 by Cooper and coworkers.70

They identified three distinct peaks in their energy-resolved
scattered spectra and all three peaks showed significant energy
loss to the surface. The peak with the largest energy loss
was clearly identified as due to single scattering with one Cu
atom, and this energy loss could be more than half of the
incident energy depending on incident and final scattering
angles. The two other peaks were at somewhat smaller energy
loss and were identified as due to successive multiple colli-
sions, in which after the first collision the Na+ ion continued on
moving in the surface to collide with a second atom or with two
successive atoms.

Extensive measurements of the width of the single-collision
peak were made over a large range of the experimentally
controllable parameters, which were temperature T and inci-
dent energy Ei. These experiments showed that the peak width
behaved in a manner that did not agree with previous calcula-
tions based on the trajectory approximation. However, their
results agreed well with a more detailed evaluation of the width
developed by Burke, Jensen and Kohn.71 Cooper et al. attri-
buted the disagreement to the fact that the trajectory approxi-
mation does not include recoil of the target atom. The
trajectory approximation, which is widely used in high energy
ion scattering, assumes that the speed of the projectile does not
change during the collision, hence it does not include the
energy losses due to the recoiling target atoms. This is clearly
a poor approximation when the projectile is shown to lose half
or more of its initial energy upon colliding with the surface.
Thus the trajectory approximation misses an important funda-
mental effect. The theory of Burke et al., although limited to an
evaluation of the width of the single scattering peak, correctly
includes recoil and shows that there is a large and qualitative
difference when compared to the trajectory approximation.

Shortly after the publication of the work of Cooper et al. it
was shown that the hard sphere collision expression of eqn (12)
gives the same results for the width of the single scattering
peak as that of Burke et al., but in addition it is a more
complete theory since it predicts the entire scattering spectrum.
When compared to the data of Cooper et al. quite reasonable
results were obtained for the complete description of the
intensity and positions of single scattering peaks. It is also
worthwhile noting that this single scattering peak is sensitive to
small changes in mass of either the target or projectile atom.
A change of the mass of either Cu or Na by 1 amu results in,
respectively, a 1% or 3% shift in the calculated peak position,
showing that atom–surface scattering could be of interest to
questions of isotope separation. In fact, initial calculations
using the tabulated mass of 64 amu for Cu were significantly
improved after taking into account the natural isotope abundance
of Cu (69% mass 63 and 31% mass 65).

Fig. 3 shows a more recently measured series of energy-
resolved spectra using, instead of Na ions, K+ ions colliding
with a Cu(001) surface at incident and final polar angles of 451
with respect to the normal and an incident energy of 154 eV.72

Shown are seven different spectra taken at surface tempera-
tures ranging from 330 to 923 K. Here also three distinct energy
loss peaks are visible, with the peak at smallest final energy
due to single collisions and the other peaks due to successive
double and triple collisions with individual Cu atoms. The
experimental points are shown together with solid curves which
are calculations determined from eqn (12). The single collision
peak is calculated directly from eqn (12), while the multiple
collision peaks are calculated by adding convolutions of two
and three collisions. The paths of these multiple collision
trajectories were chosen to match similar collisions predicted
by a molecular dynamics simulation of the scattering. It is clear
that the single collision peak, and its temperature dependence,
is well explained by eqn (12) and the multiple collision peaks
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are also reasonably predicted. In this work further measure-
ments were made for the temperature T dependence of the
intensity and widths of all the peaks. The intensity of the single
scattering peak (most probable intensity) varied very nearly as

1
� ffiffiffiffi

T
p

and its full width at half maximum (FWHM) was very

closely linearly dependent on
ffiffiffiffi
T
p

as predicted by eqn (12). For
the multiple scattering peaks, the dependence of intensity and
FWHM is not simply predicted by eqn (12), but calculations
with the multiple collision convolutions of eqn (12) gave
reasonably good agreement with the measured behavior.

5.2 Scattering from metal surfaces

Fig. 4 gives an example of measurements of energy resolved
spectra, scattered intensity versus final energy, in this case for
0.08 eV Ar atoms scattering from a Ru(0001) surface.73 The
detector angle is 201, the incident polar angle is 401 and five
different surface temperatures are shown ranging from 140 to
850 K. Rare gas scattering from a number of different metal
surfaces such as Ni, Ir and Ru has been analyzed using the
smooth surface model of eqn (14). Here we would like to use
the case of Ar/Ru(0001) as an example to show what sort of
physical information can be extracted from such experiments.
Shown as solid curves are calculations of the smooth surface
model of eqn (14) and they match the data reasonably at all
temperatures.74,75 The experimental data were normalized to
have approximately the same maximum peak value for the single
observed broad peak at each temperature, so the intensities are
in arbitrary units. The dashed curves are the calculations nor-
malized only to a single point at 140 K in order to indicate the
calculated temperature dependence of the absolute intensities.

The phonon speed parameter was chosen to be vR = 3200 m s�1,
which compares closely to standard measured values for the
Rayleigh velocity which is 3608 m s�1 for the Ru(0001) [11%20]
direction and 3494 m s�1 for the [1%100] azimuth. The effective
mass, chosen to give the best fit to the data, is rather large.
Here, M = 2.3 times the mass of a single Ru atom, or 232.5 amu.
This value is larger than the values used in the analysis of rare
gases scattering from molten metal surfaces, to be discussed
below, where the effective mass turned out to be very close to
the mass of a single atom of the liquid metals.

Angular distributions for Ar scattering from a hydrogen
covered Ru surface were also measured. Fig. 5 shows angular
distributions taken at four different incident angles from 401 to
701 as marked for Ar/Ru(0001)–(1 � 1)H in the [11%20] direction.
The incident energy is Ei = 0.065 eV and T = 140 K. The solid
curves are the calculations using the same parameters as for
Fig. 4, which seems to indicate that the adsorbed layer of the
light mass hydrogen atoms has little effect on the scattering of
Ar atoms at this energy.

The agreement between experiment and theory shown in
Fig. 4 and 5 makes it clear that the smooth surface model
provides the essential physics necessary to explain the mea-
sured data, but indicates that the effective mass is considerably
larger than that of a single Ru atom. This large mass of
approximately 2.3 Ru atoms is interpreted as indicating that

Fig. 3 Energy-resolved intensity spectra for K+ ions incident on a Cu(001)
target plotted as a function of relative final energy. The incident energy is Ei

= 154 eV and the incident and final angles were both 451. The temperature
ranges from 330 to 923 K as marked. Experimental points are shown as
open circles and the solid curves are calculations. The peak at the smallest
final energy (greatest energy loss) is for single scattering, and the other two
peaks are due to double and triple successive collisions. (Reprinted with
permission from ref. 72, Copyright [2004] American Physical Society.)

Fig. 4 Energy-resolved spectra, scattered intensity versus final energy,
of Ar scattered from Ru(0001) with an incident energy of 0.08 eV and
temperatures ranging from 140 to 850 K as marked. The incident and final
polar angles are yi = 401 and yf = 201. Theoretical calculations are shown
as solid curves and the dashed curves indicate the calculated intensities
relative to that at T = 140 K. (Reprinted with permission from ref. 73,
Copyright [2002] Royal Chemistry Society.)
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the incoming Ar atoms do not collide with a single Ru atom,
but instead simultaneously interact with several surface atoms.
In a different and independent experiment a similarly large
effective mass for Ru(0001) has been reported for the scattering
of nitrogen molecules from Ru(0001) which indicates that the
size of the effective mass is a property of the target and not of
the projectile.76 Such a large effective mass has interesting
consequences, because it predicts that all rare gas scattering
at low energies, particularly for small masses such as He and
Ne, should be strongly reflective in the specular direction and
exhibit more quantum mechanical features than might other-
wise be expected. This prediction has, in fact, been verified
by subsequent measurements of He and Ne scattering from
Ru(0001).77

In order to understand the above statement it is of interest
to recall from Section 2 above that all quantum mechanical
features, such as diffraction, single phonon excitation and
diffuse elastic scattering, are associated with the Debye–Waller
factor of eqn (8), of which the most used approximation is
eqn (9). For neutron scattering from a target the mass M is
precisely defined as the mass of a single target nucleus. However,
in the case of atom–surface scattering M cannot be precisely
defined and must be regarded as an effective mass. This poses a
vexing problem, for example when an attempt is made to extract
the surface Debye temperature YD from a measurement of the
temperature dependence of the Debye–Waller factor. Since YD

appears in eqn (9) as the product MYD
2, if the value of the

effective mass is not known, then YD cannot be precisely
determined. Thus both the mass M and the Debye temperature
YD must be regarded as effective values if measured only in a
quantum mechanical experiment.

However, this problem is resolved by making measurements
on the same system, but at energies and temperatures large
enough to drive the system into the classical regime where 2W
is large and the Debye–Waller factor is small. Then all quantum

features are suppressed. This is because the theoretical treat-
ment that leads to predictions of quantum intensities such as
the diffraction of eqn (6) show that the effective mass M is
identical with that which appears in the smooth surface model
of eqn (14) in the recoil energy DE0 = h�2(kf � ki)

2/2M. Thus the
measurement in the classical regime can produce a value of M
which is independent of the Debye temperature and then can
be used in connection with eqn (9) to obtain a precise value of
YD from the temperature dependence of the Debye–Waller
factor.

The discussion above now makes it clear why the rather
large effective mass of Ru as measured in the Ar scattering
experiments is important. A large effective mass M leads to a
smaller overall value for 2W, and consequently a larger Debye–
Waller factor, as seen from eqn (9) and consequently increases
the intensity of all quantum features. Since it is expected that
this large effective mass is not a property of the projectile atom,
but a property of the Ru(0001) target surface, it is reasonable to
expect that the other common rare gas projectiles, namely Xe,
Kr, Ne and He, would also scatter with a large effective mass.
So, especially for He and Ne, enhanced quantum features
would be expected in low energy scattering. To put it in even
simpler terms, one would anticipate that for He and Ne
scattering the elastic (quantum) reflectivity would be enhanced
as compared to other metal targets at similar energies and
temperatures. As mentioned above, this special property of
Ru(0001) has indeed been verified.77 This enhanced reflectivity
could be of importance to the question of building a scanning
atomic projectile microscope that uses a reflective mirror to
concentrate the projectile beam.

Why Ru(0001) exhibits such a large effective mass in atom
surface scattering is not totally clear, but is probably related to
the hcp structure of the Ru crystal. The hcp(0001) surface
exhibits ab–ab stacking meaning that directly underneath each
surface Ru atom there is another Ru atom as a nearest neigh-
bor. This contrasts with the abc–abc stacking of an fcc metal,
where directly beneath a surface atom the next atom is two
layers below. Assuming that the special nature of hcp stacking
is indeed a factor in the large effective mass, then one would
expect that other hcp metals should be investigated. First on
the list would be osmium which not only has nearly twice the
mass of Ru but is also directly below Ru in the periodic table of
the elements.

5.3 Rare gas scattering from liquid metal surfaces

Experiments using rare gas atoms as probes of liquid metal
surfaces are a subject of great interest, not only for investigating
the structure and dynamics, but also as a sensitive measure of
alloying of mixtures of molten metals and how it differs at the
surface relative to bulk alloy content. Nathanson and coworkers
perfected the experimental methods for keeping the surfaces
clean for low melting point molten metals, and they carried out
a long series of experiments in which rare gases, primarily Ar,
were scattered off of molten Ga, In and Bi.78 They measured
energy resolved spectra as well as angular distributions, both in
the scattering plane and out of plane.

Fig. 5 Ar scattering from Ru(0001)–(1 � 1)H in the [11 %20] direction for
incident energy Ei = 0.065 eV and T = 140 K. Angular distributions for four
different incident angles ranging from 401 to 701 are shown as marked.
The solid curves are calculations. (Reprinted with permission from ref. 73,
Copyright [2002] Royal Chemistry Society.)
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The energy-resolved spectra, measured with time of flight
detectors, exhibited a broad single peak structure with a most
probable final intensity located somewhere around 60% of the
incident energy, and examples are shown in Fig. 6. The mea-
sured energy-resolved peaks did not resemble the equilibrium
Knudsen flux, sometimes known as the cosine law. The Knudsen
flux arises from a gas desorbing in equilibrium with the surface
temperature and is proportional to an equilibrium Maxwell–
Boltzmann distribution multiplied by the flux normal to a flat
surface, which is proportional to the normal component of
the velocity |v|f cos yf. Correctly normalized and written as a
differential reflection coefficient it is given by

dK

dEfdOf
¼ Ef cos yf

pðkBTÞ2
exp � Ef

kBT

� �
: (81)

The Knudsen flux associated with all temperatures measured
(for example, for Ga from 300 K up to 700 K) has a peak intensity
at a much lower energy and is much broader. This indicates
that the scattering was primarily due to direct collisions, with
perhaps only a small fraction of double collisions.

The in-plane angular distributions, such as those examples
shown in the left panels of Fig. 7, were measured with a fixed
incident angle and variable final polar angle. They consist of a
lobe, or a single broad peak with a FWHM of the order of 201

and a most probable final intensity at a polar angle somewhat
larger than the incident angle; i.e., the angular distributions
were somewhat supraspecular. The out-of-plane angular distri-
butions were also single broad peaks of about the same FWHM,
indicating that the probability of atoms scattered out-of-plane
was approximately the same as the in-plane probability. In other
words the scattered lobe is symmetric about the scattering plane
and slightly supraspecular.

Three examples of energy resolved spectra are shown in
Fig. 6. The in plane scattered intensity is plotted versus TOF for
Ar scattering from the three different molten metals at three
different temperatures as marked.79 The incident energy is
0.95 eV and the incident and final polar angles are fixed at
551, i.e., the detector is in the specular position. The experi-
mental data are shown as open circles. The single scattering
calculated from the smooth surface model of eqn (14) is shown
as a short-dashed curve. The single scattering curve is almost
sufficient to describe the data, having roughly the same FWHM
and peak position, although it does not have sufficient intensity
to describe the long low-energy (large TOF) tail of the data.
By adding a small fraction of double scattering, shown as a
long-dashed curve, the sum of single plus double scattering
(dash-dotted curve) matches the experimentally measured spectra
quite well. This double scattering is calculated as a convolution of
all possible double collisions with nearest metal atom neighbors
on the surface, with each collision calculated by eqn (14). The
Knudsen flux is also shown in Fig. 6 as a dotted curve expected
from the equilibrium Maxwell–Boltzmann distribution of a gas at
the same temperature as the metal. The Knudsen distribution is
significantly broader with a peak at a much lower final energy.
The large deviation of the experimentally measured scattered lobe
from a Knudsen flux definitely rules out the possibility of a
significant amount of trapping-desorption (the process in which
the incoming gas atom gets trapped in the physisorption well and
then is subsequently desorbed in equilibrium with the surface) in
these experiments.

Fig. 7 shows three examples of typical angular distributions,
both in plane and perpendicularly out of plane keeping the
final polar angle fixed as explained below. These are for Ar
scattering from molten Ga at three different temperatures as
marked. The incident energy is 0.95 eV and the incident angle
is 551. The left panels show the in plane angular distributions
and the out of plane scattering is in the right panels. They are
clearly broad single peak features and it is seen that the peak
position (most probable final angle) is about 51 larger than the
specular position at yf = 551, making the scattering slightly
supraspecular, but with a significant intensity scattered at
angles near to the surface normal direction and even non-
zero intensity scattered back into the quadrant of the incident
beam. The peak position does not vary much with surface
temperature, but there is a detectable increase in FWHM
with increasing T as would be expected from the differential
reflection coefficient of eqn (14). The calculations shown as solid
curves are carried out with the smooth surface model of eqn (14)
and good agreement with the experimental points is obtained
using only single collisions with the surface.80 The calculations

Fig. 6 Energy-resolved time-of-flight spectra for a 0.95 eV incident Ar
beam on the three molten metals Ga, In and Bi. The temperature is 436 K
for Ga and In and 553 K for Bi. The incident and final polar angles are 551.
The experimental points from ref. 78 are shown as open circles. The
theoretical curves are as follows: (i) short-dashed is single collisions only,
(ii) long dashed is the double collision contribution only, and (iii) the dash-
dotted curve is the sum of single plus double collisions. For comparison
the corresponding equilibrium desorption (Knudsen flux) is shown as a
dotted curve. (Reprinted with permission from ref. 79, Copyright [1997]
American Institute of Physics.)
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were carried out with the velocity parameter vR = 650 m s�1 and,
for the case of molten Ga, the effective surface mass was taken to
be 1.65 times that of a Ga atom. For all spectra for Ar scattering
from In and Bi the effective mass was that of a single In or Bi
atom. The need for a slightly larger mass for Ga was dictated by
the calculated position of the most probable energy of the energy-
resolved spectra which is quite sensitive to M. Physically, this
slightly increased effective mass is probably due to the fact that Ga
is known to retain some layered structure at temperatures even
above the melting point, implying stronger bonding in the liquid
state. Molten In and Bi do not exhibit such layering behavior.

A little extra explanation is required for the out-of-plane
angular distributions, shown in the right panels of Fig. 7. They
are taken with a special geometry; the final polar angle was
fixed at the most probable final angle and then the detector was
moved in a linear direction perpendicular to the scattering
plane. This makes for a scattering angle between the detector
and the scattering plane denoted by af in the figures. Measure-
ments were made for af on both sides of the scattering plane,
and for more than 201 on one side. The measurements are
symmetric with respect to the scattering plane and exhibit a
FWHM that is approximately the same as that measured in-
plane. The calculations using the single-collision differential
reflection coefficient of eqn (14) describe the data quite well.

Mentioned above was the question of using rare gas scatter-
ing to measure alloys of molten metals and surface segrega-
tion of such alloys. In the course of their work on molten
metals Nathanson et al. investigated alloy mixtures of bismuth

and gallium.49,81 They examined the scattering of Ar and Xe
beams from Ga–Bi alloys containing small fractions of Bi
(Ga with 0.02 and 0.2 atomic percent of Bi) with measurements
carried out at surface temperatures ranging from just above the
melting point of Ga to nearly 900 K. The measurements were
then compared with the results at similar temperatures for pure
Ga and Bi. These experiments are of interest because liquid
metals exhibit selective surface segregation of the alloy compo-
nents and this segregation behavior can vary strongly with
temperature. They also have distinct wetting properties, including
wetting transitions.82–86 The surface segregation was monitored
using Auger electron spectroscopy, and it was confirmed that at
low temperatures the alloy surfaces were almost entirely Bi
while at the highest temperatures the surface was dominated by
Ga atoms.

Rare gas scattering is quite sensitive to the surface mass and
this suggests that such experiments could be used to measure
the atomic composition of the outermost layers of the molten
alloys. This was confirmed with calculations using the smooth
surface model of eqn (14) together with contributions due
to double collisions which were calculated with convolution
products of eqn (14).11 The TOF energy-resolved measurements
were shown to be very sensitive to the ratio of Bi to Ga at the
surface, and these measurements combined with the calculation
were at least equally good at predicting the degree of surface
segregation as the Auger measurements.

5.4 Rainbows and large corrugations

In Section 3 above a theory was developed for describing semi-
classical and classical scattering from surfaces that have corru-
gation. If the surface is ordered and has a large corrugation
amplitude then the phenomenon of rainbow scattering can
become apparent in the scattered angular distribution spectra.
Rainbows are most easily visualized by considering a beam
of light reflecting from a mirror surface which is periodically
corrugated. Strong reflection in the specular direction is
expected from the areas that are nearly flat, i.e., the tops of
the peaks and the bottoms of the troughs. However, reflection
is also strong from the areas of the corrugation where there are
inflection points, and in the directions ‘‘specular’’ to the locally
nearly planar inflection regions there is also strong reflection,
and this is the rainbow scattering. In fact, the simple descrip-
tion above applies to simple rainbows, and the situation can be
much more complicated under circumstances where the light
can make multiple reflections from the surface.26

For atom–surface scattering under classical conditions purely
elastic reflection does not exist, as energy is transferred to
and from the surface with every collision. Thus, the ‘‘classic’’
description of a simple rainbow reflection of the above para-
graph is modified by the energy transfer. There are two princi-
ple modifications: first the sharp mirror beam reflection in the
specular and rainbow directions is broadened by the energy
transfer, and second, both are shifted in angular position.
By the latter, it is meant that the peak position of the specular
or rainbow may be at a greater or smaller angle than the
corresponding simple mirror reflection. This shift may be to

Fig. 7 In plane angular distributions (left panels) and out-of-plane angular
distributions (right panels) for Ar scattering from molten Ga with an
incident angle of 551 and incident energy of 0.95 eV for three different
values of temperature: (a) and (d) 308 K, (b) and (e) 436 K, and (c) and (f)
586 K. Data from ref. 78 are open circles and calculations are the solid
curves. (Reprinted with permission from ref. 79, Copyright [1997] American
Institute of Physics.)
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larger angles or to smaller angles depending upon whether net
energy is transferred to or from the surface by the incoming
atomic beam.

An example of rainbow scattering appears in Fig. 8 for the
case of Ar scattering from LiF(001). Shown is a series of three
angular distributions for Ar, with an energy of 525 meV,
scattering from LiF(001) in the [100] direction.87 These angular
distributions were taken with a fixed angle of 901 between the
incident beam and detector direction, thus yi changes simulta-
neously with yf. Observed in Fig. 8 is a clear double-peaked
structure in the angular distribution spectra, which is particu-
larly evident at the lowest temperature of 300 K. This is a typical
manifestation of surface rainbow scattering in which, for purely
elastic scattering, a strong peak is seen in roughly the direction
specular to the surface plane, and then a secondary rainbow
peak is seen close to the direction specular to the inflection
points (or points of maximum slope) of the surface corrugation
function. In Fig. 8, the largest peak appears at approximately yf

= 401, which is at a smaller angle than the specular position of
451, and this shift in position is due to the effects of inelastic
energy losses to the phonons. The surface corrugation of
LiF(001) in the [100] direction resembles a 1-D ‘‘corn row’’
pattern with a small but much reduced corrugation along the
rows. Thus one expects a single rainbow and that is the peak
observed at approximately yf = 551. As the temperature is
increased the double-peaked structure becomes less distinct,

due to excitations of even greater numbers of phonons,
approaching a very broad and asymmetric single peak at the
largest temperature of 573 K.

The calculations shown as solid curves in Fig. 8 were carried
out using eqn (17) with a 1-D corrugation function of eqn (16)
given by88

xðRÞ ¼ xðxÞ ¼ hb cos
2px
b

� �
; (82)

where the dimension x is in the direction perpendicular to the
rows of corrugation. The lattice parameter of bulk LiF is a = 4.02
Å, which makes b = a/2 in the [100] direction, thus calculations
based on eqn (17) depend on three parameters. These are the
dimensionless corrugation parameter h, the effective mass M,
and the velocity parameter vR. Although the corrugation of
eqn (82) is assumed to be one-dimensional, the scattering
theory of eqn (17) is fully three-dimensional and energy
exchange and scattering involves all three directions, but only
the in plane intensity is shown in Fig. 8. The velocity parameter
was taken to be 2000 m s�1 which is roughly comparable to the
Rayleigh phonon speed, the effective mass of the LiF is chosen
to be the mass of 13 LiF molecules, and the corrugation
parameter is h = 0.024. The calculations are most sensitive to
the corrugation parameter h and the value 0.024 was fitted to
best match the data at the lowest temperature. The calculations
explain how the two peaks seem to merge towards a single
broad and asymmetric peak as the temperature increases. This
example demonstrates that the corrugated surface model of
eqn (17) is useful for explaining rainbow scattering and in the
process provides important quantitative information about the
corrugation function and its height h.

5.5 Determining average surface corrugation

The energy landscape of atom–surface scattering is usually
defined as the interaction potential energy evaluated at the
classical turning point plotted as a function of coordinate
directions parallel to the surface. Knowledge of the energy
landscape is essential in determining the interactions of atoms
or molecules with a surface and is an important first step in
predicting results of scattering spectra, predicting chemical
reactions and in studying catalysis. In the classical multi-
phonon excitation regime, atom scattering can provide impor-
tant physical information on the energy landscape, even in the
case of rough surfaces.61,89

In Section 5.4 above the analysis of rainbow scattering of Ar
from LiF(001) shown in Fig. 8 indicates how information about
the energy landscape is obtained from ordered surfaces, namely
it revealed the corrugation function. However, even for rough
surfaces such as molten metals relatively simple measurements
analyzed by the corrugated surface model of eqn (17) can
provide important information about the landscape. As an
example, Fig. 9 shows a set of experimental measurements of
the temperature dependence of the most probable intensity
(peak intensity) in the energy-resolved scattering spectra of an
incident Ar beam scattering from molten In. The incident
energy is 0.43 eV and the incident and detector angles are at

Fig. 8 Angular distributions for Ar scattering from LiF(001) in the [100]
direction at three different temperatures from 300 to 573 K as marked. The
incident energy is 0.525 eV. There is a fixed angle of 901 between the
incident beam and detector direction. The experimental data are shown as
open circles and the solid curves are calculations using eqn (17) with a
corrugation parameter h = 0.024. (Reprinted with permission from ref. 88,
Copyright [2015] Elsevier.)
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the specular position with yi = yf = 551.78 The temperatures
range from just above the melting temperature of In up to well
over 500 K and the peak intensity exhibits a monotonic
decrease with increasing T as shown by the experimental
points. Such a straightforward measurement produces an accu-
rate estimate of the average corrugation height of the energy
landscape of the In surface.

For an understanding of the way in which such a simple
measurement can extract information about the corrugation it
is useful to compare eqn (12) and (14). The smooth surface
model of eqn (14), which has been shown above to give reason-
able predictions of experimental scattering spectra, has a peak
intensity dependence that decreases as 1/T3/2 as is made clear
from the prefactor multiplying the exponential. This is to be
contrasted with eqn (12) which can be thought of as represent-
ing scattering from a highly corrugated surface, since it
describes scattering from isolated surface atoms. Its multi-
plicative prefactor shows that the peak intensity of eqn (12)

decreases more slowly as 1
� ffiffiffiffi

T
p

. These two temperature behaviors
are plotted in Fig. 9 as dotted and dashed curves, respectively, and
they represent the extreme behaviors expected. In other words, a
surface with corrugation intermediate between that of a perfectly
smooth surface or a highly rough surface essentially consisting of
isolated atoms would exhibit a peak intensity decrease that is
intermediate between these two extreme behaviors. It is clear from
Fig. 9 that the experimental points exhibit this intermediate
behavior.

The calculations using eqn (17) are shown as a solid curve
passing through the experimental points. Under the classical
conditions of this experiment the quantum coherence width
is small and there is negligible quantum interference arising
from waves reflected from different parts of the surface.
Consequently, the integrals in eqn (17) can be limited to a

single typical scattering cell of the surface. This cell does not
necessarily need to correspond to a unit cell of an ordered
surface, nor does it need to have a particular shape, but rather
needs to be a calculational cell large enough to accommodate
the roughness expected. For the calculations shown in Fig. 9
describing the interaction of an incoming Ar atom with liquid
In a 2-D sinusoidal function is chosen

xðRÞ ¼ ha cos
2pR
a

� �
; (83)

where a is the average interatomic spacing in the bulk liquid, R
is the two-dimensional displacement parallel to the surface
and R is its magnitude which ranges from zero to a/2. This
corresponds to a corrugation profile for a typical surface atom
with a trough-to-crest height of 2ha, or a root mean square

elevation of ha
� ffiffiffi

2
p

.
With the corrugation function of eqn (83) and parameters

vR = 450 m s�1 and mass M equal to that of a single In atom the
solid curve passing through the data in Fig. 9 is the result of the
calculation.61 A least-squares fit of the calculations to the data
points gives h = 0.29, which for the In interatomic distance of
a = 3.14 Å gives a corrugation amplitude ha = 0.91 Å for a typical
In atom at the liquid surface. The rms deviation of the fit is
0.0047, which corresponds to a standard deviation uncertainty
in the amplitude h of less than 3%.

Further calculations have determined that the value of the
average landscape corrugation is not strongly dependent on the
specific nature of the corrugation function. Almost the same
results for the corrugation amplitude are obtained if the 2-D
sinusoidal corrugation function of eqn (83) is replaced by a 2-D
Gaussian or some similar ‘‘bump’’ on the surface. The differ-
ential reflection coefficient of eqn (17) with the corrugation of
eqn (83) explains not only the peak intensity experimental data
shown in Fig. 9, but it also gives good agreement with all the
scattering spectra measured for the Ar/In molten metal system
discussed above in Section 5.3. These consist of the energy-
resolved TOF spectra, in-plane angular distributions, and out-
of-plane angular distributions. The corrugated surface model of
eqn (17) is clearly capable of describing the complete scattering
spectra and extracting important information such as the
average corrugation height from experimental measurements.

5.6 Trapping-desorption versus direct scattering

A very old empirical concept that has been used in the field of
gas–surface interactions is the assumption that when a beam of
atoms is directed toward a target surface a fraction is directly
scattered after a single collision while the remainder is trapped
at the surface and comes approximately into equilibrium and
eventually desorbes with the equilibrium distribution at the
temperature of the surface. This equilibrium distribution is the
Knudsen flux, or the cosine scattering law. Such an assumption
was used by J. C. Maxwell in 1879 because it enabled a solution
to a big problem, namely that an isolated gas of elastic
scatterers will not by itself come to equilibrium.90

Fig. 9 Peak maximum temperature dependence of a 0.43 eV beam of Ar
incident on a molten In surface with incident and final polar angles of 551.
The dashed curve is the expected result for a highly corrugated surface
from eqn (12) and the dotted curve is the result for a smooth, uncorrugated
surface from eqn (14). The calculation for a corrugated surface using
eqn (17) is shown as a solid curve. The data points, shown as open circles,
are from Nathanson et al.78 (Reprinted with permission from ref. 61,
Copyright [2012] American Physical Society.)
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Modern experiments carried out under high vacuum and
clean conditions have demonstrated that scattering of beams of
rare gas atoms from metal surfaces can exhibit a strong peak of
direct scattering and a broader low-energy peak that looks like
the tail of the equilibrium Knudsen distribution.91 The direct
scattering is assumed to consist of mostly single collision
events with some additional contributions coming from
double, triple and other small numbers of multiple collisions
and interactions in the physisorption well. Good explanations
of this behavior have been provided with molecular dynamics
calculations using realistic interaction potentials.92 Recently, a
model has been developed that contains the basic physics of
the scattering process, with a rather straightforward interaction
potential, and is also simple enough that it clearly demon-
strates both direct scattering effects, the trapping-desorption
component as well as illustrating the necessary conditions for
the approach to equilibrium.

Fig. 10 shows an example of experimental data exhibiting
direct scattering in combination with a trapping-desorption
component. This is for Ar atom with an incident energy of
0.365 eV scattering from Au(111) covered with a single layer of
1-decanethiol at a temperature of 135 K.93 Three different data
sets are shown as TOF plots for three different combinations of
incident and final angles. In each case there is a distinct peak at
high energy or small TOF and then a much broader shoulder
and long tail at low energy or large TOF. The high energy peak
is the direct scattering and the broad low-energy feature is the
trapping-desorption component. The theoretical calculations
using an iterative approach as explained below in connec-
tion with eqn (84) are the solid and dashed-dotted curves.

The dashed curve is a Knudsen distribution at the corres-
ponding temperature and it agrees well only with the long
low-energy tail of the data.

As an introduction to the process of building a theoretical
model that can describe trapping-desorption, it is of interest
to describe the essential features that such a model should
contain. When a beam of incoming atoms interacts with a
surface that is not too corrugated, a fraction will be directly
scattered after a single collision, while the remainder will be
trapped in the physisorption potential well. Large corrugations
would lead also to the process of multiple collisions with
different parts of the corrugation, but as will be shown such
processes are not essential to describe the approach to equili-
brium. Of the trapped fraction, some will lose sufficient energy
to be actually trapped in the well with negative total energy,
while others, even though they have positive total energy, will
scatter at angles sufficiently close to grazing, so that they will
have negative energy associated with motion normal to the
surface and will be deflected back towards the surface by the
attractive van der Waals part of the well. In the past this positive
energy part of the trapped particles has sometimes been called
the chattering fraction. For the case of quantum mechanical
scattering, such events are called resonant scattering into the
physisorption well, and also sometimes called selective adsorp-
tion. The trapped portion of the incident beam particles will
continue to have interactions with the surface, and with each
subsequent collision some will receive enough energy and will
be projected sufficiently close to the surface normal that they
escape, while the rest will remain trapped. Eventually, in
a closed system, all initially trapped particles will ultimately
leave the surface. However, at low temperatures and with deep
potential wells this can require a substantial amount of time.

Perhaps the simplest model that contains all three compo-
nents of the scattering, i.e., direct, positive energy chattering-
trapping and negative energy trapping, is an interaction
potential that consists of a hard repulsive wall with an attractive
square well in front. Let the hard respulsive wall have the
scattering properties of the differential reflection coefficient
of eqn (12), while the square well representing the physisorp-
tion potential remains rigid.94,95 The square well at first glance
may appear very rudimentary. However, for the classical scat-
tering regime it correctly includes the two main features
produced by any attractive physisorption well, and these are
an increase in the energy associated with normal motion in the
well and the associated refraction of the incident beam towards
more normal directions to the surface. It should also be noted
that the leading term in a van der Waals potential has a rigid
attractive part that does not contribute to inelastic scattering.
The leading van der Waals term in front of a semi-infinite
surface varies as �C3/z3 and this behavior is the result of a
pairwise sum over all atomic cores in the semi-infinite solid.
Even though each of these cores vibrates, this sum averages the
vibrational displacements over all cores so that the leading
term does not vibrate. Only the parts of the potential that
vibrate can contribute to energy transfer in a collision. Thus,
the use of a square well with a rigid attractive part is a

Fig. 10 Intensity versus TOF for 365 meV Ar scattering from a
1-decanethiol monolayer on Au(111) with a temperature of 135 K. The
incident and detector polar angles are (a) yi = 451 and yf = 501, (b) yi = 301
and yf = 501, and (c) yi = 301 and yf = 801. The solid curves are calculations
with mass ratio m = 0.56 and well depth D = 35. The trapping-desorption
fraction of the calculations are shown as dash-dotted curves and the
dashed curves are the Knudsen distribution. (Reprinted with permission
from ref. 94, Copyright [2008] American Physical Society).
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reasonable choice, at least for classical atom–surface scattering.
Additionally, the width of the square well does not enter.

An iterative method, based on the qualitative description in
the above paragraph has been developed in which the incoming
gas atom enters the square well, gains energy and is refracted
towards the surface, then collides with the wall where it
exchanges energy. This initial energy transfer is given by the
differential reflection labeled as dR0(pf, pi)/dEfdOf which is
taken to be that of eqn (12). At this initial collision, a portion
of the incoming particles is scattered back into the continuum,
and these constitute a part of the direct scattering, often the
biggest part, while the remaining particles are trapped in the
physisorption well. Those trapped particles are followed as they
bounce off the attractive square well and continue to have
collisions with the surface, and at each iteration the negative
energy fraction, the chattering fraction, and the additional
fraction which is desorbed are recalculated. In this way, the
distribution of the slowly diminishing trapped fraction as well
as the energy and angular distribution of the desorbed particles
are followed and added to the distribution of particles already
having left the surface. It is also clear that using this iterative
differential reflection coefficient an average trapping time can
be calculated. By following the initial direct scattering and the
sum of all of the subsequently desorbed particles, the approach
to the final distribution of the trapping-desorption fraction is
monitored.

The multiple scattering events occuring with the trapped
particles are taken to be convolutions of single scattering colli-
sions with the repulsive wall, and the total differential reflec-
tion coefficient after n such collision iterations is written as

dRnðpf ; piÞ
dEfdOf

¼ dR0ðpf ; piÞ
dEfdOf

þ
ð
dEbdOb

dR0ðpf ; pbÞ
dEfdOf

dR0ðpb; piÞ
dEbdOb

þ
ð
dEbdOb

dR0ðpf ; pbÞ
dEfdOf

dR1ðpb; piÞ
dEbdOb

þ . . .

þ
ð
dEbdOb

dR0ðpf ; pbÞ
dEfdOf

dRn�1ðpb; piÞ
dEbdOb

;

(84)

where the intermediate integrations in the higher order terms
are carried out only over those energies and angles belonging to
particles that remain trapped in the bound states. The itera-
tions are carried out to a large enough number n for which
there is a very small fraction of the incident beam remaining
trapped.

The solid curves in Fig. 10 show the results of calculations
using the scheme of eqn (84). The total iteration number was
typically more than n = 500, until less than 1% of the initially
captured particles remained trapped in the potential well. The
upper panel with yi = 451 and yf = 501 and the lower panel with
yi = 301 and yf = 801 give a clear distinction between the rather
sharp peak at a short time of flight (high energy) and a broader
shoulder at larger times. The appearance of such a distinct
direct scattering peak is due to the fact that the incident energy

is significantly larger than the depth of the potential well. The
solid curves in Fig. 10 are calculations carried out with an
effective mass ratio m = m/M = 0.56 obtained by fitting mainly
to the high-energy direct scattering peak. The well depth of
D = 35 meV was obtained by fitting largely to the low-energy tail.
The dash-dotted curve shows the total contribution from all
higher order multiple collisions in eqn (84), i.e., all except for
the initial zero-th order direct collision. The behavior of the
data is predicted by the calculations rather well, and the
dashed-dotted curves show clearly the separation between
the direct and trapping-desorption fractions. The value of
D = 35 meV is in agreement with that of the potential energy
function for this system developed in ref. 93 in which the
physisorption well depth was determined to vary from 33 to
67 meV depending on the relative position within the surface
unit cell over the self-assembled layer. The effective mass ratio
corresponds to a surface mass of M = 71 amu, somewhat
smaller than the 174.3 amu mass of the 1-decanethiol mole-
cule, and is slightly smaller than the value m = 0.62 obtained in
ref. 93 by a fitting based on the Baule equations for hard sphere
scattering. The results are sensitive to the effective mass. For
example calculations with m = 0.62 give a direct scattering
peak positioned at a TOF time nearly 10 ms shorter which is
equivalent to 15 meV larger in energy.

The remaining calculation shown in Fig. 10 as a dashed
curve is the Knudsen flux which agrees well with the long low-
energy tail of the distribution at large TOF. It is clear from the
agreement at larger TOF times with the Knudsen curve that the
biggest part of the trapping-desorption fraction emerges very
nearly at thermal energies. However, the dash-dotted curve
showing the trapping-desorption fraction itself has a multiple-
peaked structure with a small sub-peak appearing at nearly the
same final energy as the direct single-scattering contribution.
This small, high-energy sub-peak arises from the first few
collisions as the initially adsorbed particles continue to travel
in the potential well. These first few collisions have a high
probability of ejecting particles back into the continuum with
relatively little loss of energy, i.e., energy comparable to that of
the direct scattering fraction. This demonstrates that the direct
scattering peak is composed not entirely of the results of the
initial collision, but that some particles that are initially weakly
trapped will also contribute to the direct scattering peak.

5.7 Approach to an equilibrium Knudsen distribution

In this section we wish to discuss and determine conditions in
which an equilibrium Knudsen flux is to be expected in gas
surface interactions. The treatment will be based on the scat-
tering model of Section 5.6 and its eqn (84) above. Thus it
becomes important to recognize that the model of eqn (84)
applied to a repulsive wall with a square attractive potential well
is realistic enough to explain real measured systems, such as
the Ar scattering spectra of Fig. 10. Here we give examples of
situations in which an incident beam gives rise to a scattered
(or desorbed) distribution that approaches an equilibrium
distribution. This treatment also gives an indication of the
applicability of the Maxwell assumption.90
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An example calculation of the evolution of the energy distri-
bution as a function of the number n of iterations in eqn (84)
surface is shown in Fig. 11. In this case Ar atoms with a
translational energy of 1 meV are directed towards the surface
at an incident angle of 451. The square well depth is 80 meV
and the surface temperature is 303 K. The lowest, dotted curve
shows the scattered energy distribution after the first iteration,
which is the second collision with the surface. The corres-
ponding trapping fraction is P1 = 0.954, indicating that 95.4%
of the incident particles remain trapped in the potential well.
The other curves, as marked on Fig. 11, show the evolution of
the continuum scattered distribution after the number of
iterations is increased to 5, 50, and 500. After 500 iterations
there is still roughly one-third of the incident particles remain-
ing trapped. After 2124 iterations the trapped fraction drops
below an arbitrary threshold of 1% of the incident particles and
the energy distribution at all final scattered angles becomes
very nearly the expected equilibrium Knudsen flux, which is
shown as a curve of open circles.

Fig. 12 shows the development of the angular distribution
for the same conditions as in Fig. 11. As a function of iteration
number the progression towards the equilibrium cos yf distri-
bution is evident although the expected behavior is achieved
more slowly than that of the energy distribution exhibited
in Fig. 11. The Knudsen flux is, of course, independent of
azimuthal angle f and the calculations of Fig. 11 and 12 very
quickly become independent of f with increasing iteration
number n.

Typical average desorption times were also calculated, and
the method used here was to use the distribution fraction for
the trapped fraction to calculate root mean square speeds. For
the conditions of Fig. 11 and 12 it is found that the root mean

square desorption time (or time trapped in the physisorption
well) is about 2.5 � 10�9 s.

This work on the approach of surface scattering to equili-
brium conditions is interesting for a number of reasons. Not
the least important is that it shows that a relatively simple
model of the interaction potential can lead to equilibrium
under the right types of incident beam conditions. Namely, it
shows that the interaction potential model must contain two
essential ingredients, a physisorption well depth and allowance
for transfer of mechanical energy between the projectile and
the surface atoms. The most important part of the theory is to
use a mechanism for energy transfer that is based on reason-
ably correct statistical mechanics. In this case we used the
transition rate for thermalized two-body collisions of eqn (12)
which is known to obey the law of detailed balancing of
eqn (15). The Maxwell assumption is confirmed, i.e., the
assumption that part of the beam is directly scattered and the
remainder resembles an equilibrium distribution, but that
assumption is obeyed well only when the adsorption well depth
is large and the incident gas energies are comparable to or
smaller than the well depth.94,95

6 Applications of classical stochastic
scattering theory

In this section, it will be shown how the classical stochastic
theory works for some selected scattering systems by consider-
ing only in-plane scattering and first order perturbation theory.

The first scattering system to analyze is the scattering of Ar
on LiF(100). In principle, it would be seemingly unjustified
to use an asymmetric corrugation of the surface. However as
noted by Tully33 when considering the washboard model, ‘‘the
probability P2(x) of striking the surface at position x is not
uniform. There is a larger probability of striking a region where
the surface slopes toward the incoming beam than where the

Fig. 11 Scattered intensity versus final energy for low incident energy Ar
scattering from a tungsten surface with physisorption well depth 80 meV
and temperature 303 K. The approach to an equilibrium Knudsen distribu-
tion is shown as a function of number of collisions n after becoming
initially trapped in the well. Five curves of the intensity scattered away from
the surface after the iteration numbers n = 1, 5, 50, 500 and 2124 are
shown. The quantity Pn is the fraction of Ar particles remaining in the
physisorption well after n collisions with the surface. A Knudsen equili-
brium flux is shown as open circles. (Reprinted with permission from
ref. 94, Copyright [2008] American Physical Society.)

Fig. 12 The evolution of the final distribution in polar angle yf for the same
Ar/W system as in Fig. 11. The Knudsen cosine distribution is shown as
open circles. (Reprinted with permission from ref. 94, Copyright [2008]
American Physical Society.)
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surface slopes away’’. If the corrugation function is x(x) then
the probability is33

P2 xð Þ ¼ 1

l
1� dx xð Þ

dx
tan yið Þ


 �
: (85)

If one considers the simple sinusoidal corrugation function

xðxÞ ¼ x sin
2px
l

� �
; (86)

then the effective corrugation xeff(x) ‘‘seen’’ by the incident
particle is a product of the probability of arriving at the point x
and the actual corrugation at that point

xeff ¼
x
l
sin

2px
l

� �
� px2

l2
tan yið Þ sin

4px
l

� �
; (87)

showing explicitly how the asymmetry may be modelled in
terms of an added higher order sinusoidal term in the corruga-
tion. One also notes that the second order term goes as x2 while
the perturbation theory is correct only to order x. Thus, the
vertical potential encountered by the particle depends on the
impact parameter. Within the first order perturbation of this
theory, the vertical potential felt by the particle is independent
of the impact parameter, hence the asymmetry does not appear
naturally within it. However, it may be modelled according to
eqn (87). This then creates an effective classical deflection
function which is asymmetric leading to an asymmetry in the
angular distribution.

Kondo et al.96 reported the experimental angular distribu-
tions of Ar atoms scattered from an LiF(001) surface (in the
[100] direction) as a function of incident energy. Their experi-
mental setup is such that the width of the incident beam is
typically around 11. As mentioned above, in these experiments
the angle between the incident beam and the detector is fixed at
901 and the angle of incidence is varied. At the measured
energies they find an asymmetric double peaked angular dis-
tribution, typical of rainbow scattering. They also find that the
rainbow angles decrease with increasing incident energy. They
fit their experimental results to the washboard model, albeit by
using a different rainbow angle for each energy separately.
Their rainbow angle parameter decreases with increasing
energy from a value of 10.41 at 315 meV to 7.01 at 705 meV
incident energy. They consider this to be a counterintuitive
lessening of corrugation with increasing energy.

In Fig. 13 a good fit to the experimental data is plotted when
the corrugation function is assumed to be

xðxÞ ¼ xs1 sin
2px
l

� �
þ xs2 sin

4px
l

� �
: (88)

The parameters used are the atomic mass of Ar m = 39.948 amu,
the well depth V0 = 88 meV as reported elsewhere97 and the
lattice length l = 4 Å as measured by Ekinci and Toennies.98 The
Morse stiffness parameter was set as al = 3, the corrugation
heights were xs1 = 0.20125 a.u. and xs2 = 0.054 a.u. The reduced
friction coefficients were �Zz = �Zx = 0.00338 where

�Zx = Zx/o0, (89)

and

�Zz = m2o0
3Zz, (90)

and o0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2V0=mÞ

p
is the harmonic frequency of the Morse

potential. The magnitude of the reduced friction parameters
shows that the friction is weak. Five parameters are used to fit
the experimental data, as all other parameters were obtained
from experimental knowledge, and the surface temperature was
taken to be 300 K. The fits by using this theory are slightly
better than those reported by Kondo et al. using the washboard
model. The fitting procedure is not carried out for each distri-
bution separately and the theory seems to account correctly for
the energy dependence of the rainbow angles. The distributions
are not symmetric and therefore the second order corrugation
term was added. The decrease of the rainbow angles with
energy is a result of the dynamics and does not imply that
the corrugation becomes smaller with increasing energy, as
suggested by Kondo et al.

Amirav et al.99 showed that the angular distribution for the
scattering of Ar on Ag(100) evolves from a slightly asymmetric
angular distribution at an angle of incidence of �301, to a
symmetric double peaked distribution at �451 and to a single
bell shaped distribution at 601. If one assumes that these
results were obtained at room temperature (the surface tem-
perature is not reported in that work), the 2D calculations were

Fig. 13 Experimental and theoretical angular distributions for the in plane
scattering of Ar on a LiF(100) surface at T = 300 K. The scattered intensity is
shown as a function of the final scattering angle, keeping a fixed 901 angle
between the incident and scattered beam. The solid circles are the
experimental results of Kondo et al.96 The theoretical plots are based on
the classical perturbation theory, using a Morse oscillator potential for the
vertical motion with well depth of 88 meV and stiffness parameter al = 3,
where the lattice length is l = 4 Å. The reduced friction parameters eqn (89)
and (90) used are �Zz = �Zx = 0.00338, the corrugation heights are xs1 =
0.20125 a.u. and xs2 = 0.054 a.u. The plots from bottom to top show the
distributions for the energies 315, 435, 525, 620 and 705 meV, respectively.
(Reprinted with permission from ref. 37, Copyright [2009] American
Physical Society.).
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carried out for l = 2.8 Å,100 V0 = 70 meV,101 a = 1.0714 Å�1,
M = 39.948 amu, xs1 = �0.1057 Å, xs2 = 0.0106 Å, �Zx = 0.00139
and �Zz = 0.000908, and incident energy of 2500 meV. The width
of the incident beam was reported as going from 5% to 8% and
therefore should be accounted for in the theoretical results.102

One simple way to do this is by adding a constant width of
0.085 radians. On the (a) panel of Fig. 14 the theoretical results
(broadened with a fixed width of 0.085 radians) are compared
with the measured results of Amirav et al.99 displaying a
quantitative agreement. The asymmetry here is smaller than
the asymmetry found in the Ar–LiF(100) system but the trend is
similar. The rainbow scattering appears at low incident scatter-
ing angle and disappears as the scattering angle is increased as
observed more clearly on the (b) panel of Fig. 14 where it is
plotted the normalized angular distributions without the added
broadening. At the incidence angle of �451, one still sees the
rainbow scattering, however, the asymmetry is almost gone.
Increasing the angle of incidence to �601 wipes out the rain-
bows and one remains with a single peaked distribution.

A nice illustration where the asymmetry is more pronounced
is the scattering of Kr from Ag(100). For this system the
following parameters are used, namely, V0 = 100 meV,101 l =
2.8 Å,100 a = 2.143 Å�1, M = 83.8 amu, xs1 = �0.0450 Å, xs2 =
0.0476 Å, �Zx = 0.000603 and �Zz = 0.000431 and incident energy of
6600 meV with T = 297 K. The resulting angular distributions
are broadened by a constant factor of 0.09 radians. On the (a)
panel of Fig. 15, a comparison between experimental and
theoretical results are plotted. The fit is not as good as in the
previous case, especially at the �451 angle of incidence. The
normalized theoretical distributions without an extra broad-
ening are shown on the (b) panel of Fig. 15. It is observed that
the asymmetry is so strong that a three peaked distribution is
predicted when the incident angle is �301 and that the rainbow
scattering may still be observed when the incident angle is
�601. The distance between the two central rainbows decreases
with increasing scattering angle, as does the asymmetry.

On the other hand, the scattering of Ar atoms from a
hydrogen saturated tungsten W(100) surface was measured by
Schweizer et al.103 The wealth of experimental data allows one
to follow the fitting of the theoretical parameters step by step,
demonstrating that the fits are not accidental and should
provide a reasonable description of the scattering dynamics.
There are six free parameters in the corrugated Morse model,
namely the well depth V0, the stiffness parameter a, the
corrugation parameters xs1 and xs2 and the Ohmic friction
coefficients Zx and Zz. The lattice length l = 4.6 Å is taken from
ref. 103 and the mass of Ar is m = 39 amu. The observed
asymmetry in the angular distributions is not very strong. This
implies that the second order corrugation height will be small
as compared with the first order corrugation height which is
x2/x1 { 1. To zero-th order one should then consider the
incident energy and angle dependence of the first order rain-
bow shift function. Experimentally, at the angle of incidence of
�301 and a surface temperature of T = 90 K, the distance
between the rainbow angles decreases from a value of B231 at
the incident energy E = 65 meV to B111 at E = 220 meV. At the
same time, the decay of the rainbow shift function increases
exponentially with the magnitude of the reduced frequency, �O,
so that it cannot be too large. There is though a third piece of
information. Schweizer et al. reported that at the �601 angle of
incidence, the rainbow structure disappears, implying that the
value of the rainbow shift function at this angle must be
smaller than its value at �301. Since the magnitude of �O is
determined by the product al (where a is the Morse potential
stiffness parameter) these observations lead to the conclusion
that the product al C 2. With some fine tuning one can then
determine that al = 2 is optimal.

The same information helps in determining the Morse
potential well depth V0. As mentioned, the experiment shows
that the rainbow function decreases rather quickly with energy.
This implies that the angle F must change rather rapidly with
energy, as it is F which determines the energy dependence of
the rainbow shift function. The well depth must thus be of
the same order of magnitude as the energy at which the
rainbow function changes rapidly, which in turn sets the value

Fig. 14 Angular distributions for the scattering of Ar on an Ag(100) surface
seen in panel (a). The solid lines correspond to angular distributions
obtained from the Morse potential model at an angle of incidence of
�30, �45 and �60 degrees, respectively. The normalized distributions
were multiplied by a constant factor of 1.54, 1.02 and 0.92 respectively to
facilitate the comparison with the unnormalized experimental data. Solid
circles are the respective experimental angular distributions adapted from
Amirav et al. Normalized theoretical distributions for the scattering of Ar on
Ag(100) without the added broadening shown in panel (b). (Reprinted with
permission from ref. 37, Copyright [2009] American Physical Society.)
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of V0 C 50 meV. In practice, it was found that the best fit to the
data was obtained using V0 = 60 meV. This is somewhat smaller
than the value of 100 meV employed by Schweizer et al. in their
theoretical analysis. The actual measured magnitude of the
distance between the rainbow peaks sets the magnitude of the
primary corrugation parameter around xs1 = 0.1 a.u., which is
approximately double the corrugation height used by Schweizer
et al. in their analysis. In practice, the value xs1 = 0.099 a.u.38

was employed.
Three fitting parameters are varied, namely, the friction

coefficients and the second order corrugation height xs2. It is
also noted from ref. 103 that the experimentally measured
average energy lost to the surface is B7 meV at the �301 angle
of incidence and surface temperature T = 90 K. This sets the
limits for the sum of the two friction coefficients. Their ratio is
obtained by noting that under all conditions, the center of the
measured angular distribution is approximately specular. This
implies that the friction induced shift function must be small
at all incidence energies. This then led to the reduced values
of the friction coefficients �Zx = 0.00267 and �Zz = 0.00228.

The second order corrugation parameter is responsible for
the asymmetry of the angular distribution and may be deter-
mined by the asymmetry of the measured angular distribution
at the �301 angle of incidence. The optimized value was xs2 =
�0.007 a.u. which is indeed much smaller than the first order
corrugation height.

Results for the angular distributions for yi = �301 and the
different incidence energies are presented in Fig. 16. The solid
circles are the experimental results,103 the solid lines are the
theoretical fits as obtained with the parameter set described
above. The incident energies are from bottom to top 65 meV,
130 meV and 220 meV respectively (the distributions are dis-
placed by 0.06 for the sake of clarity). Note that for the 65 meV
case plotted in the figure are two different experimental dis-
tributions, the asterisks are adapted from the experiment.103

The two experimental distributions are not identical, one has a
larger rainbow peak for sub-specular angles, while the second
one has the larger rainbow peak at super-specular angles. This
provides a rough indication of the experimental error in the
angular distributions. In all fits the differences between them
and the experimental results are not substantially larger than
the differences between the two experimental distributions,
implying that given uncertainty in the published data these
are satisfactory fits.

Schweizer et al. also reported the surface temperature
dependence of the angular distributions measured at yi = �301,
E = 65 meV and T = 90, 140, 190 and 250 K. The classical stochastic
theory is compared with the experimental results in Fig. 17.

Fig. 15 Angular distributions for the scattering of Kr on an Ag(100) surface
seen in panel (a). Solid lines correspond to the theoretical distributions
based on the Morse potential model at the incidence angles of �30, �45
and �60 degrees and, solid circles, the corresponding experimental ones.
The normalized distributions were multiplied as before by a constant
factor of 1.3, 1.35 and 1.78, respectively. Normalized theoretical distribu-
tions for the scattering of Kr on Ag(100) but without the added broadening
used for the comparison to the experimental results shown in panel (b).
(Reprinted with permission from ref. 37, Copyright [2009] American
Physical Society.)

Fig. 16 Energy dependence of the angular distribution of Ar scattered on
a hydrogen covered W(100) surface for a �301 angle of incidence and
surface temperature of 90 K. Solid circles and asterisks are the experi-
mental results adapted from Fig. 8 of ref. 103. The plots from bottom to
top are for the incidence energies of 65, 130 and 220 meV, respectively.
They have been shifted by a factor of 0.06 for the sake of clarity. From
bottom to top, the normalized theoretical distributions have been multi-
plied by the constant factors of 1, 1.1 and 1.25 so as to compare with the
(un-normalized) experimental results. (Reprinted with permission from
ref. 38, Copyright [2010] American Physical Society.)
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The central feature of the four distributions (displaced from
each other by 0.03) is that the rainbow peaks are broadened as
the temperature is increased. This is predicted from this theory
since the variance of the distribution (S2) increases linearly
with the temperature. This broadening smears out the rainbows
and their asymmetry, the rainbow peaks become less significant as
the temperature is increased.

Perhaps the most puzzling aspect of the Ar–2H–W(100)
system was the drastic change of the angular distribution with
the angle of incidence. It was shown that when the angle of
incidence is increased to �601 the rainbow feature seems to
disappear. One is left with a rather broad bell shaped distribu-
tion which is quasi-specular. This decrease in the distance
between the rainbow angles then leads to the single lobe peaks
shown in Fig. 18 where calculations are compared with the
experimental distributions. Note especially that when E = 65 meV,
the theoretical angular distribution is quite flat about the maxi-
mum, the width is due to the two rainbow angles which are
smeared by the coupling to the phonons. If one would lower the
surface temperature, it is predicted that the angular distribution
even at this large angle of incidence would again become bimodal,
reflecting the rainbow scattering. The theoretical full widths at
half maximum of the theoretical angular distributions shown in
this figure are 341 and 211 for the low and high energies
respectively, these should be compared with the respective experi-
mental values reported of 361 � 31 and 251 � 21, respectively.

It should be mentioned that ab initio quantum chemistry
computations verified that the fitted Morse potential parameters

are in qualitative agreement with a computed Ar–W interaction
potential.38

Finally, another interesting aspect of the 1D scattering is
that the final energy of a scattered particle will typically depend
on the impact parameter according to the so-called energy
deflection function, hEf(x)i. This function, in analogy with the
classical deflection function, displays extrema as a function
of the impact parameter leading to peaks in the final energy
distribution. These peaks are due to friction and this function
reflects somehow the corrugation dependent energy loss to
the surface, which comes about from the interactions with
the surface which have been called energy loss rainbows.41 The
same is expected for 2D scattering.

The final average energy may be rewritten as a sum of two
terms, the initial incident energy and the average energy lost to
the surface hDE(x)i. Using the Hamiltonian model as given
in eqn (46) one has that the final energy distribution may be
written as

P Efð Þ ¼
1

lx

ðlx
0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pkBT DE xð Þh i
p

� exp � Ef � Ei þ DE xð Þh ið Þ2

4kBT DE xð Þh i

 !
;

(91)

and the average energy loss function hDE(x)i may also be
termed as the energy loss deflection function; it is the average
energy lost to the surface at impact parameters x.

If this analysis is carried out for the scattering of Ar from the
LiF surface with the same parameters previously used, one

Fig. 17 Temperature dependence of the angular distribution of Ar scat-
tered on a 2H–W(100) surface for a �301 angle of incidence and 65 meV
incidence energy. Solid circles are the experimental results adapted from
Fig. 10 of ref. 103. The plots from bottom to top are for the surface
temperatures of 90, 140, 190 and 250 K, respectively. They have been
shifted by a factor of 0.03 for the sake of clarity. From bottom to top, the
normalized theoretical distributions have been multiplied by the constant
factors of 1, 1.1, 1.14 and 1.25, respectively, so as to compare with the (un-
normalized) experimental results. (Reprinted with permission from ref. 38,
Copyright [2010] American Physical Society.)

Fig. 18 Energy dependence of the angular distribution of Ar scattered on
a 2H–W(100) surface for a �601 angle of incidence and surface tempera-
ture of 90 K. Solid circles are the experimental results adapted from Fig. 14
of ref. 103. The plots are for the incidence energies of 65 and 110 meV, the
broader plot is at the lower energy. The normalized theoretical distribu-
tions at 65 and 110 meV have been multiplied by the respective constant
factors of 0.93 and 1.35 so as to compare with the (un-normalized)
experimental results. (Reprinted with permission from ref. 38, Copyright
[2010] American Physical Society.)
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finds numerically (by computing the numerically exact trajec-
tories) the energy deflection functions (for an incident Ar
energy of 3000 meV) shown in Fig. 19. From the extrema one
would expect four peaks at an angle of incidence of �151, but
only two rainbows energies are anticipated at �601. The result-
ing energy loss distributions are shown in Fig. 20. They were
computed using both direct numerical simulation (symbols in
Fig. 20) and the analytical expression for the energy distribu-
tion of eqn (91) (solid curves). The energy loss distributions are
calculated at the incidence angles of 01, �151, �451, and �601
and at three different surface temperatures of 0.5, 30, and 90 K.
From this figure one notices that as the temperature and
incident angle increase, the rainbow structure is broadened
and eventually disappears.

Interestingly enough, energy loss rainbows are different
from angular rainbows. Energy loss rainbows are caused by
friction whereas angular rainbows are destroyed by friction.
Energy loss rainbows may result from different parts of the
corrugation potential, so that they may complement informa-
tion on the corrugation potential obtained from angular rain-
bows. The observation of energy loss rainbows should be
possible if the distance between the peaks is larger than the

variance of the energy distribution 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT DEh i

p
(where hDEi

is the overall average energy loss). Thus, lowering the surface
temperature, changing the angle of incidence towards the
vertical and increasing the incidence energy will enhance the
probability of observing the energy loss rainbows. The latter
condition is based on the observation that the distance between
the energy loss rainbows increases linearly with increasing
incidence energy while the width increases only as the square
root of the energy loss.

It is not yet clear whether energy loss rainbows have been
observed experimentally or have not been recognized as such.
The energy loss distribution of Ne scattered from a Self
Assembled Monolayer (SAM) of 1-decanethiol on Au(111) has
been measured by Sibener and coworkers48,104 as discussed
above and shown in Fig. 10. For a 451 angle of incidence and Ne
incident energies of 250 and 550 meV, they observed a bimodal
energy distribution which disappeared when the angle of
incidence was increased to 601 and the energy lowered to 65.3
meV. Bimodal energy distributions have also been observed in
scattering from liquids, however, typically, the low energy peak
is considered to be a thermal trapping-desorption peak and has
nothing to do with energy loss rainbows. However, Isa et al.48

attributed the bimodal peak observed in the Ne scattering from
SAMs to Ne colliding with different parts of the adsorbed
molecule at different lateral distances. The different lateral
distances may give rise to energy loss rainbows and one may
obtain a good fit of the experimental energy loss data based on
the energy loss rainbow analysis.39

7 Conclusions

Reviewed in this Perspective are two different approaches to
treating atom–surface scattering interactions in the limit where
classical physics is applicable. For atomic projectiles with
incident energies of a few eV or less the predominant means
of energy exchange with a surface is via multiple excitations of
phonons. A brief description of the transition from the quan-
tum mechanical regime of elastic (zero energy transfer) and
single-phonon excitations to the classical domain of large
numbers of phonon excitations is discussed. The somewhat
ill-defined transition to the regime where classical physics is
applicable is most readily expressed in terms of the Debye–
Waller factor, appearing in eqn (6) and (10), which governs the
attenuation of all quantum features in the scattered spectra,
and these include diffraction peaks, diffuse elastic peaks,
resonance signals, and single phonon peaks. The dimension-
less exponent of the Debye–Waller factor 2W(kf, ki), which

Fig. 19 Energy loss to the bath displayed as a function of the impact
parameter calculated at a temperature of 0 K for a model of Ar scattered
from a LiF surface. The solid (black) line, dashed (red) line, dotted (green)
line and dot-dashed (blue) line correspond to incident angles of 01, �151,
�451, and �601, respectively. Note the multiple extrema of the energy loss
deflection functions. (Reprinted with permission from ref. 39, Copyright
[2010] American Physical Society.)

Fig. 20 Theoretical final energy distributions for the scattering of Ar on
LiF at incidence angles of 01, �151, �451, and �601 displayed in panels
a–d. The (green) dots, (red) circles, and (blue) squares correspond to the
numerical distributions calculated at temperatures of 0.5, 30, and 90 K,
respectively. The associated solid curves represent the analytic distribu-
tions calculated from eqn (91). (Reprinted with permission from ref. 39,
Copyright [2010] American Physical Society.)
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appears in eqn (8), is recognized as being a reasonable estimate
of the total number of phonons created and annihilated in
a given atom–surface collision. Thus, when the number of
phonons excited becomes large all quantum peaks and features
in the scattered spectra are suppressed and what remains are
broader features. The condition for 2W(kf, ki) to become large is
that the product of mass ratio (ratio of projectile mass to
effective mass of the surface), incident energy and surface
temperature becomes large.

In spite of the loss of more detailed information contained
in features that can be observed under quantum mechanical
conditions, there is nevertheless much information concerning
the projectile–surface interaction that can be gleaned from
measurements made in the classical multiphonon regime. This
includes determination of the number of target atomic cores
that are involved in the collision, the surface corrugation
amplitude, and rainbow features arising from a corrugated
surface. Discussions of rainbow features figure prominently
in both theoretical approaches presented here.

The first approach discussed here is based on theory devel-
oped in the 1980s by Brako and Newns.30–32 They, in turn, had
extended work developed several decades prior for describing
multiple phonon excitations in neutron scattering, and their
advance was to include the law of conservation of momentum.
In a collision with a large, flat surface it is best to express
momentum conservation in quantum mechanical terms;
momentum is not conserved in the direction perpendicular to
the surface (because the surface breaks the symmetry in that
direction), but parallel momentum is conserved modulo a
reciprocal lattice vector. The Brako–Newns theory did not
include an interaction potential between the projectile atom
and the surface, thus it could not describe surface corrugation
or roughness, and hence cannot explain rainbow scattering
features. The extensions reviewed here involve inclusion of an
atom–surface potential and surface corrugation.

Several representative examples are presented in which
comparisons of classical theory with experimental measurements
reveal the size of the surface mass involved in the collision, give
estimates of surface corrugation amplitudes and explain rainbow
features. In addition the theory can explain trapping and
desorption features observed in the experimental spectra and
can explain how a gas interacting with a surface makes its
approach to equilibrium at the surface temperature.

The second approach termed here as classical stochastic
theory starts from a detailed description of the classical
dynamics of elastic and inelastic scattering. For the inelastic
case, this analysis is carried out within the Langevin formalism
(stochastic approach) by beginning with the well-known
Caldeira–Leggett Hamiltoninan. Although this theory has been
developed for 2D and 3D scattering as well as within first and
second order perturbation approximations in terms of the
corrugation amplitude (it is supposed that the unit cell length
is greater than the corrugation amplitude in each horizontal
direction), only in-plane scattering and first order perturbation
theory have been presented here. In order to further develop
the corresponding theory an interaction potential together with

a static corrugation are important ingredients that must be
taken into account. The energy loss or energy dissipation is due
to friction (Ohmic friction is assumed) and also depends on the
surface temperature by means of a noise term (white noise).
A new fitting parameter in this theory is the friction coefficient
which is related to the spectral density of the thermal bath
which is expressed in terms of harmonic oscillators simulating
the phonon modes. In order to provide final analytical expres-
sions for angular and energy loss distributions, a corrugated
Morse potential (where the corrugation is placed in the repul-
sive part of the Morse potential) has been widely considered in
its applications. Obviously, this theory is general enough to
allow any interaction potential. Even more, a van der Waals tail
could also be implemented for a better characterization of the
scattering. Whereas at first order of perturbation the theoretical
results can be solved analytically, the second order results
require numerical calculations. Furthermore, this theory is a
good starting point for any semiclassical and hybrid classical-
quantum method in order to reach the classical-quantum
transition. Some preliminary work in this direction can be
found elsewhere.35,43,44 This more general approach led to a
classical stochastic theory of surface sticking which has been
applied thus far to only one set of experimental data.44

In this work, some selected applications have been pre-
sented in order to illustrate how each theory works and what
type of results and discussion arise for each system analyzed.
Clearly, in both cases, information about the surface structure
and/or the gas–surface interaction is extracted. For example,
both theories agree that the distance between the rainbow
angles depends on the corrugation height of the surface as well
as the incident energy. For the second approach, the energy
dependence of the rainbow angles was partially accounted for
by introduction of a shallow well preceding the hard wall so that
the energy dependence could be used to provide an estimate of
the physisorption well depth. The surface temperature broadens
but does not necessarily destroy the rainbow features in the final
angular distribution. This implies that the interaction of the
particle with the surface is weak. The friction coefficients are
weak, hence one may again employ classical perturbation theory
to describe the dynamics of the particle surface interaction. The
measured temperature dependence of the angular distribution
with its rainbow peaks, together with energy loss measurements
could thus be inverted in order to obtain an estimate of the
particle surface interaction in terms of friction coefficients for the
motion in the vertical and horizontal directions. One of the
interesting outcomes is a deeper understanding of the intert-
wining between energy loss and the angular dependence of the
scattering. There is a direct relationship between the location of
the maximum (or maxima) of the angular distribution and the
extent of energy loss to the horizontal and vertical directions. The
first order perturbation theory does have its limitations; it cannot
be applied to multiple scattering (multiple bounces of the incom-
ing particle along the surface) and is invalid at grazing angles of
incidence.

An important common feature of both theories presented here
is that, under appropriate limiting conditions, they both lead to
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forms of the Brako–Newns expressions. This analysis also predicts
an interesting type of rainbows called energy loss rainbows and
friction induced rainbows although it remains somewhat unclear
if such features have yet been identified experimentally.

Another topic of interest is the scattering of particles from
liquid surfaces. Nathanson and coworkers have probed energy
transfer, sticking, reactivity and more.105–107 Sibener and cow-
orkers have analyzed the properties of clean, adsorbate deco-
rated and thin-film covered interfaces.108–113 Although as a first
guess one might expect that the disorder of a liquid surface
would lead to a smearing out of rainbow features, as perhaps
seen in a number of studies105–107,114 this may not be always the
case. Even in liquids, one may expect ordered patterns on a length
scale which is considerably larger than a single lattice length of a
crystal and these might induce rainbow scattering features.
Similarly, randomly distributed adsorbates would tend to destroy
rainbow scattering features, but at least in the presence of low
coverage, one might expect rainbow features to survive. Their
broadening at low surface temperature could reflect features of
the dilute surface coverage. There is a need for more theoretical
work on scattering from these more complex surfaces.

Although the stochastic approach seems to be satisfactory,
there remains room for improvements and extensions. The
leading order perturbation theory is insufficient for describing
asymmetry in final angular distributions of atom surface scat-
tering. Perhaps one of the most important issues is to carry out
ab initio and DFT calculations of the atom–surface interaction
potential and combine them with on-the-fly classical molecular
dynamics simulations. Rainbow features, energy loss rainbows
and other qualitative features of rainbow scattering should be
verified through such computations. At present they emanate
from model potentials whose validity is not well established in
terms of the true potential of interaction of the particle with the
surface. On-the-fly computations would justify the character-
ization of the scattering dynamics in terms of only a few
relevant physical parameters, as obtained from the present
Morse potential Langevin dynamics based models.
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