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oxidised cellulose nanoparticles remained stable for 200 days at room temperature. Deep eutectic-

based emulsions offer potential for non-aqueous reaction systems, chemical extraction, and controlled
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rsc.li/rsc-advances stabilised emulsions.

Introduction

Deep eutectic solvents (DESs) are a promising new type of non-
volatile solvent composed of hydrogen bond donors and
acceptors. They are a highly tuneable subclass of ionic liquid
(IL) but are often cheaper, easier to make, and more environ-
mentally friendly.**

DESs and the broader ionic liquid (IL) solvent class have
potential as reaction media and reactor systems.>*® Their
tuneable properties, including temperature stability and solva-
tion of drug and catalytic molecules make ILs and DESs pref-
erable to traditional oil/water emulsions.>*>** There have been
some reports of ionic liquid (IL) based emulsions (using IL as an
additive, or as the oil, or as the polar phase, or even IL in IL
emulsions).’*** There are also reports of DES in oil emulsions,
stabilised with conventional surfactants.'* However, to the
authors’ knowledge, the only report of a DES in water emulsion
comes from the commercial EMLA® cream (EMLA stands for
Eutectic Mixture of Local Anesthetics) which uses a eutectic
mixture of lidocaine and prilocaine, stabilised by a non-ionic
surfactant.”

The DES in water pickering emulsion reported here has an
advantage over these previously reported formulations because
it does not use expensive and potentially toxic surfactants. In
addition, as water is the major phase, it is more compatible with
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release. Pickering emulsions using polysaccharides are less toxic and more stable than surfactant-

applications that require low toxicity and low cost, than DES in
oil emulsions.

Menthol : dodecanoic acid (2 : 1) is a hydrophobic DES with
a melting point around 7 °C.* It has potential for extraction of
materials from water,"”*® separation of metals,'**® and extrac-
tion of pesticides from water.**

TEMPO-oxidised cellulose nanofibrils (OCNF) are negatively
charged nanoparticles that can form Pickering-type emul-
sions.””?*  Pickering emulsions stabilised by other
polysaccharide-based nanoparticles have also been re-
ported.**” However, until now, their use has been limited to
emulsions using model oils (such as hexadecane), or sunflower
oil.

Emulsions containing 30 vol% menthol : dodecanoic acid
were stabilised using either OCNF, or hydrophobically modified
OCNF (C8-OCNF). These emulsions, including their stability
over time were assessed using laser diffraction, visual observa-
tion, and small-angle X-ray scattering.

Experimental
Oxidised cellulose nanofibrils

Oxidised cellulose nanofibrils provided by Croda® as a ca.
8 wt% solids paste in water were prepared via TEMPO-mediated
oxidation as previously described.”®*® Previous work by this
group determined the degree of oxidation for this particular
batch of fibrils to be 25% i.e. number of carboxylate groups
compared to total anhydroglucose units.**** The fibrils have
a large aspect ratio (hundreds of nm in length and a cross
section of ~5 nm)** and a high negative surface charge (—60 mV
in { potential).>*-°

Residual salts and preservatives were removed from OCNF by
dialysis against deionised water (18.2 MQ cm) as previously
described.*> The OCNF was then freeze-dried and resuspended
to 1.5 wt% in deionised water before being dispersed by soni-
cation (Ultrasonic Processor, FB-505, Fisher - 550 W), at 30%
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amplitude with 1 s on 1 s off pulses, for ~1 h or until the
dispersion became transparent.

Hydrophobic modification

OCNTF fibrils were prepared as described above and dispersed at
~0.5 wt% in water via probe sonication. Octylamine (Arcos
Organic, +99%) was added in large excess (~10x) and the pH
corrected to 5 (with diluted hydrochloric acid solution, ca. 1 M).
An equimolar amount of EDC (1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride) (Sigma,
+99%)/NHS (N-hydroxysuccinimide) (Sigma, 98%) 1 : 1 solution
was added dropwise and the pH of the mixture maintained at
PH 5.

The reaction was left overnight and then 50 wt% propan-2-ol
(BDH Chemicals, 100%) in water was added to the reaction
mixture in a 2 to 1 ratio which causes the C8-OCNF to aggregate.
The mixture was centrifuged at 5000 RCF (relative centrifugal
force) for ten minutes and the precipitate (C8-OCNF) collected.
The precipitate was washed twice more with 50 wt% propan-2-ol
and centrifuged.

The precipitate was re-suspended in deionised water and
dialysed against deionised water for 24 h to remove the propan-
2-ol. The C8-OCNF was dialysed for a further 24 h against
deionised water with a pH of 3 to remove any ionically bound
amine. Further dialysis was performed against neutral deion-
ised water for 72 h with regular replacement of the water to
remove any remaining salts.

As with OCNF, the C8-OCNF was then freeze-dried and re-
dispersed to the desired wt% using sonication.

The {-potential of C8-OCNF was measured using a Malvern
Zeta-sizer Nano ZSP® (Malvern, UK) in a folded capillary elec-
trode cell using ultrapure Milli-Q water as the dispersant. The
sample was equilibrated at 25 °C for 120 s prior to testing and
the results taken from an average of 3 measurements of 100
scans each.

Starch

Starch dispersions were prepared by dissolving 1.5 wt% soluble
starch (Sigma-Aldrich, S9765) in deionised water at 80 °C with
stirring for 45 minutes, then allowing it to return to room
temperature.

Deep eutectic solvent

Menthol (Alfa Aesar, 99%) and dodecanoic acid (Acros, 98%)
were combined in a 2 : 1 molar ratio and stirred at 50 °C until
a homogenous liquid was formed.

Emulsions

Aqueous dispersions were combined with the DES in a 70 : 30
volume ratio and then the samples were sonicated (Ultrasonic
Processor, FB-505, Fisher - 550 W), at 20% amplitude with 1 s
on 1 s off pulses, for 2 minutes. For polysaccharide-stabilised
emulsions, the aqueous phase contained either starch (Sigma,
Soluble S9765), OCNF or C8-OCNF at 1.5 wt%. For the
surfactant-stabilised emulsions, the aqueous phase contained

37024 | RSC Adv, 2020, 10, 37023-37027

View Article Online

Paper

either 1 wt% Tween20 (8 mM) (Sigma) or 100 mM AOT (Acros,
96%) (4.5 wt%).

Characterisation

Droplet measurements were made using a Mastersizer 3000E
laser diffraction particle size analyser (Malvern, UK). Samples
were added dropwise to the dispersion unit until the obscura-
tion was within the acceptable range (7-20%). Five repeat
measurements were made for each time point to ensure sample
stability. Droplet size is reported as Sauter diameter D[3,2] for
easy comparison.

SAXS measurements were performed on an Anton-Paar
SAXSpoint 2.0 provided by the Material and Chemical Charac-
terisation Facility (MC?)** equipped with a copper source (Cu
Ko, 2 = 1.542 A) and a 2D EIGER R series Hybrid Photon
Counting (HPC) detector. The sample detector distance was
556.9 mm covering a g range of about 0.008-0.4 A~'. The
emulsions were loaded into 1 mm quartz capillaries and
measured at 25 °C (£0.1 °C Peltier unit). Data was collected in
one frame, with 900 s exposure, then processed. Fitting was
performed using SASView (Version 4.2.1, see http://
www.sasview.org/ for more information). The model for ellip-
tical cylinders was used from SASView 4.2.1 without modifica-
tion.** Fitting parameters are given in the ESL]

Viscosity of 1.5 wt% OCNF or C8-OCNF in water was
measured using a stress-controlled Discovery Hybrid Rheom-
eter, Model HR-3 (TA Instruments) with a sand-blasted 40 mm
parallel plate geometry with a gap of ~800 um. Flow sweeps
were performed at shear rates from 0.01 to 100 s~ with ten
points per decade, at 25 °C (Peltier unit, £0.1 °C).

Results and discussion

Emulsions made with OCNF remained visually stable for more
than 200 days at room temperature with no evidence of aggre-
gation or creaming (Fig. 1). Emulsions made with C8-OCNF
creamed after 23 days, but the creamed layer remained stable
(see Fig. S11). Creaming is due to the lower density of the DES
droplets, compared to the bulk water.

Visual observations were supported by laser diffraction
measurements of droplet size. As shown in Fig. 2, droplets
stabilised by OCNF remained stable in excess of 200 days with
only a minor increase in droplet size. Droplets stabilized with
C8-OCNF were smaller and appeared to be more stable, with
almost no change even after 100 days.

The hydrophobic chains on C8-OCNF will allow greater
interaction with the hydrophobic DES, compared to unmodified

>

Fig. 1 DES in water emulsion (30 : 70 volume ratio) stabilised by
1.5 wt% OCNF after more than 200 days at room temperature.

This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Average droplet size of DES in water (30 : 70 volume ratio)
emulsions stabilised with either 1.5 wt% OCNF or C8-OCNF, error bars
based on standard deviation of repeat measurements.

OCNF, and reduce the energy necessary to create a new inter-
face, thus improving homogenization. This could allow tighter
packing around the droplets, leading to smaller, more stable
droplets. Similar effects have been observed for cellulose
nanocrystal-stabilised emulsions using standard oils.**?¢

While larger droplets may be expected to cream faster due to
having a lower density, this was not the case here. The differ-
ence in creaming between OCNF and C8-OCNF is due to the
higher viscosity of the continuous phase of OCNF- over C8-
OCNF-stabilised emulsions which works to prevent creaming
(Fig. S21).** Increased viscosity comes from the higher surface
charge of OCNF compared to C8-OCNF, which increases the
excluded volume.

Previous emulsion research demonstrated that cellulose
nanofibrils with higher charge provided greater stability than
lower charged fibrils.>® The method of hydrophobisation used
here necessitates the replacement of some of the negative
carboxylate groups with hydrophobic chains, thus reducing the
¢ potential from —60 mV to —43 mV. This would reduce
repulsion between fibrils, and allow movement of droplets,
ultimately leading to creaming.

In comparison, emulsions stabilised with soluble starch
polymers, rather than cellulose particles, which have an even
smaller { potential (—14 + 1 mV)*” creamed on day 2. By day 23
there was precipitation and clumping and the mean droplet size
was over 20 pm (Fig. S31).

Small angle X-ray scattering (SAXS) was used to investigate
the structure of these emulsions. Fig. 3 shows the scattering
patterns for OCNF and C8-OCNF in water and for the DES in
water emulsions.

The scattering pattern of OCNF in water can be fit with an
elliptical cylinder model with a minor radius of 12.4 £+ 2 A and
a major radius of 58 & 9 A, in line with previous research.*> The
same model can be used to fit the majority of the data for the
emulsion sample, with a minor radius (13.4 + 2 A) and a major
radius (66 & 9 A) that are within the error for OCNF fibrils in

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 SAXS patterns of 1.5 wt% OCNF (filled circles) or C8-OCNF
(filled squares) in water, and the DES in water emulsions stabilised by
either 1.5 wt% OCNF (open circles) or C8-OCNF (open squares). Model
fits are shown as black lines (parameters given in ESIF).

water, suggesting that the OCNF fibrils are dominating the SAXS
signal.

The scattering pattern for C8-OCNF in water can be fit with
the same parameters as OCNF except that the length is signif-
icantly shorter (300 + 20 compared to >1000 A). Given the
benign nature of the modification procedure, this apparent
change in length is most likely a result of fibril flocs. The length
reported by SAXS is actually the distance between intersection
points rather than an actual shortening of the fibrils (see
Fig. S5%). Similar aggregation has been observed for nano-
crystalline cellulose upon addition of salt to screen repulsive
charges.*® As with OCNF, the SAXS data from the emulsion
stabilised by C8-OCNF can be fit with a similar model.

As shown in Fig. 3, the scattering from both emulsion
samples have an upturn at low g which cannot be fitted with the
elliptical cylinder model. This is probably from the emulsion
droplets. Based on the laser diffraction data, these droplets are
far outside of the probed range of this SAXS instrument and so
cannot be fitted. The upturn appears to happen at higher g for
the C8-OCNF stabilised emulsions, indicative of smaller drop-
lets, which is consistent with the laser diffraction results. Also,
due to the smaller surface charge, C8-OCNF is prone to self-
aggregation, which could also contribute to the low-q signal.

The SAXS results demonstrate that for both OCNF and C8-
OCNF the cellulose nanofibril structure is unchanged in the
presence of the hydrophobic DES, compared to in water
dispersions.

For the purposes of completeness, DES in water emulsions
were also made with more traditional surfactants (dioctyl
sodium sulfosuccinate (AOT) or Tween20). This produced
emulsions with even smaller droplets (~0.2-0.6 pm) that
remained stable for more than 60 days (see ESI}). However, the
emulsion stabilised with AOT broke down by day 100, with
separate oil and water layers. The emulsion stabilised with

RSC Adv, 2020, 10, 37023-37027 | 37025
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Tween20 creamed within two weeks but otherwise remained
visually stable throughout the observation period (see ESIL{).

While the surfactant-stabilised emulsion appeared some-
what stable, the cellulose-stabilised pickering emulsions are of
greater interest, not only due to prolonged stability (compared
to AOT-stabilised) but also due to bioavailability and renew-
ability of this stabiliser. Furthermore, particle-stabilised pick-
ering emulsions are superior to surfactant-stabilised emulsions
e.g. in terms of stability (e.g. of very large droplets, a wide range
of oil/water ratios, and against Ostwald ripening) and the
capacity for phase inversion.*

Particles can enhance emulsion stability not only by coating
droplets like surfactants but also by forming a three dimen-
sional network which immobilises droplets.**** The OCNF
offers the added benefit of being a rheological modifier on its
own.*”»** Thus, stabilization and rheological control can be
achieved using the same additive.

Preliminary research by our group suggests that other poly-
saccharide nanoparticles (e.g. cellulose nanocrystals) are also
capable of stabilising DES in water emulsions.

Future research will focus on using other hydrophobic DESs,
or even making DES in DES emulsions, as well as exploring
applications of DES-based emulsions.

Conclusions

This research presents for the first time a DES in water emulsion
stabilised by polysaccharides. DES in water emulsions offer new
possibilities e.g. for chemical extraction and separation,
controlled release (e.g. of drugs), as reactor systems, and for
template-based synthesis e.g. of metal organic frameworks.
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