Issue 12, 2024

Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice

Abstract

The aim of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on lipopolysaccharide (LPS)-induced intestinal barrier injury in mice. Our results demonstrated that the oral administration of Fx (50 and 200 mg per kg body weight per day) for consecutive 7 days significantly alleviated the severity of LPS-induced intestinal barrier injury in mice, as evidenced by attenuating body weight loss, improving intestinal permeability, and ameliorating intestinal morphological damage such as reduction in the ratio of the villus length to the crypt depth (V/C), intestinal epithelium distortion, goblet cell depletion, and low mucin 2 (MUC2) expression. Fx also significantly mitigated LPS-induced excessive apoptosis of intestinal epithelial cells (IECs) and curbed the decrease of tight junction proteins including claudin-1, occludin, and zonula occludens-1 in the ileum and colon. Additionally, Fx effectively alleviated LPS-induced extensive infiltration of macrophages and neutrophils into the intestinal mucosa, the overproduction of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1beta (IL-1β) and IL-6, and gasdermin D (GSDMD)-mediated pyroptosis of IECs. The underlying mechanisms might be associated with inhibiting the activation of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathways. Moreover, Fx also notably restrained intestinal reactive oxygen species (ROS), malondialdehyde and protein carbonylation levels in LPS-treated mice, and it might be mediated by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Overall, these findings indicated that Fx might be developed as a potential effective dietary supplement to prevent intestinal barrier injury.

Graphical abstract: Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb. 2024
Accepted
13 Mei 2024
First published
14 Mei 2024

Food Funct., 2024,15, 6359-6373

Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice

L. Du, C. Chen, Y. Yang, Y. Zheng, H. Li, Z. Wu, H. Wu, K. Miyashita and G. Su, Food Funct., 2024, 15, 6359 DOI: 10.1039/D4FO00611A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements