Issue 35, 2021

Dissipative operation of pH-responsive DNA-based nanodevices

Abstract

We demonstrate here the use of 2-(4-chlorophenyl)-2-cyanopropanoic acid (CPA) and nitroacetic acid (NAA) as convenient chemical fuels to drive the dissipative operation of DNA-based nanodevices. Addition of either of the fuel acids to a water solution initially causes a rapid transient pH decrease, which is then followed by a slower pH increase. We have employed such low-to-high pH cycles to control in a dissipative way the operation of two model DNA-based nanodevices: a DNA nanoswitch undergoing time-programmable open–close–open cycles of motion, and a DNA-based receptor able to release-uptake a DNA cargo strand. The kinetics of the transient operation of both systems can be easily modulated by varying the concentration of the acid fuel added to the solution and both acid fuels show an efficient reversibility which further supports their versatility.

Graphical abstract: Dissipative operation of pH-responsive DNA-based nanodevices

Supplementary files

Article information

Article type
Edge Article
Submitted
24 Jun. 2021
Accepted
16 Jul. 2021
First published
19 Jul. 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 11735-11739

Dissipative operation of pH-responsive DNA-based nanodevices

D. Mariottini, D. Del Giudice, G. Ercolani, S. Di Stefano and F. Ricci, Chem. Sci., 2021, 12, 11735 DOI: 10.1039/D1SC03435A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements