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Toward SERS-based Point-of-Care approaches for Therapeutic 

Drug Monitoring: the case of Methotrexate.  

Stefano Fornasaro
a†

, Silvia Dalla Marta
a†

, Marco Rabusin
b
, Alois Bonifacio

a*
 and Valter Sergo

a* 

To date, in spite of their toxicity, the plasmatic concentration of most chemotherapeutic drugs is difficult to monitor in 

oncological patients, because their quantitative determination is expensive and time consuming. This contribution reports 

a first attempt for the direct quantitative determination of a chemotherapeutic drug in human serum samples by means of 

Surface Enhanced Raman Spectroscopy (SERS). In this study, SERS substrates constituted by Au nanoparticles deposited on 

paper by a simple dipping method have been used for rapid (few minutes) analysis of diluted human serum spiked with 

different concentrations of methotrexate, MTX. The drug concentrations were chosen in a range designed to cover typical 

therapeutic plasmatic values (from nanomolar to millimolar) in oncological patients, and the pertinent calibration was 

obtained by Partial Least-Squares Regression (PLSR). Stability selection was employed to evaluate the capability of the 

PLSR model to accurately predict and extract spectral variations correlated to MTX concentration. Such a quantitative 

determination is crucial for a frequent, and hence adherent, Therapeutic Drug Monitoring, TDM, of chemiotherapic drugs, 

given their heavy side effects. Its low cost, rapid response and the possibility of obtaining spectra with simple and compact 

instruments, make SERS particularly apt for implementing an effective TDM. The promising results obtained in the 

analytical validation indicate which steps are to be taken on the way toward  a clinical validation with real samples from 

oncological patients, for MTX as well as  for other chemotherapeutic drugs. 

Introduction  

Therapeutic drug monitoring (TDM) is highly recommended in 

clinical settings to provide individualised patient treatment, 

optimising the efficacy of drugs with a narrow therapeutic 

window while minimising side effects
1
. 

Methotrexate (MTX, 2,4-diamine-N,10-methylpteroyl glutamic 

acid) is a folate antagonist included in anti-neoplastic and anti-

rheumatic drugs. It is one of the most widely used anti-cancer 

agents, with indications and established protocols for a range 

of children’s and adult cancers
2
. 

Unlike other chemotherapeutic agents, MTX is used in a wide 

variety of doses. Intermediate- and lower-dose MTX regimens 

(e.g., 20 mg/m
2
) are used in maintenance chemotherapy and 

in the treatment of benign conditions such as psoriasis and 

rheumatoid arthritis
3
, while much higher dose regimens (e.g., 

1,000 mg/m
2
 to 33,000 mg/m

2
) via prolonged intravenous (IV) 

infusion are used for the treatment of some leukaemias and 

osteosarcomas
4
. The latter dose range is referred to as high-

dose MTX (HDMTX). 

The effective concentration range of MTX is limited to a 

relatively narrow therapeutic window, and dose adjustments 

during MTX therapy are routinely undertaken to address the 

high inter- and intra-patient variability in MTX 

pharmacokinetics
5
. Serum MTX concentrations can vary over 5 

orders of magnitude (10 nM to 1 mM) from one patient to 

another using a single fixed dose and in the same patient 

during treatment
4
. Pharmacokinetic variability is generally 

greater in paediatric patients than in adults. For HDMTX 

therapy, it is usually desirable to reach initial serum 

concentrations between 10 to 100 μM, maintained for 

prolonged periods (12 to 36 hours), which must drop to less 

than 200 nM after 72 hours. The plasma MTX concentration at 

48 hours after the start of HDMTX infusion should be <1 μM, 

as high-risk toxic, adverse effects are associated with 

concentrations >10 μM
6
.  

After HDMTX, monitoring MTX serum levels is thus crucial to 

reverse its side effects, such as myelosuppression, 

nephrotoxicity, hepatotoxicity, and death
6, 7

.  

MTX concentrations are routinely monitored, and rescue 

therapy is regulated on the basis of these measurements
8
. 

Several analytical methods have been reported for the TDM of 

MTX in biological fluids. Existing MTX assays include the 

Enzyme-Multiplied Immunoassay Technique (EMIT)
9
, enzyme 

inhibition assays
10

, the fluorescence polarisation immunoassay 

(FPIA)
11

, radioimmunoassay
12

, capillary zone electrophoresis
13

, 

and liquid chromatography coupled with tandem mass 

spectrometry (HPLC-MS/MS)
14-18

. Very recently, an approach 
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for indirect MTX determination, based on SPR and having an 

excellent performance, was presented by Zhao et al
19

. 

HPLC-MS/MS is considered the reference standard technique 

for MTX analyses in biological fluids, though it is less 

commonly employed than immunoassays in clinical settings, 

since it is time consuming, expensive and requires specialised 

operators. Moreover, many of these routine methods lack 

precision, sensitivity, and a broad dynamic range; they still 

require protein precipitation or clean-up steps by passage 

through a pre-treatment column.  

Because of its remarkable advantages such as rapidity, 

simplicity, relatively low costs, recent data on buffered 

aqueous MTX solutions suggested that the combination of 

Surface-Enhanced Raman Scattering (SERS) spectroscopy with 

multivariate statistical analysis could be a promising analytical 

tool for therapeutic drug monitoring of MTX
20, 21

. However, 

SERS approaches quantifying MTX directly in serum or other 

complex biofluids have not been reported yet. 

In this work, we report promising preliminary results related to 

the application SERS combined with chemometrics for rapid 

MTX quantification in a complex, real-life sample such as 

diluted human serum. To obtain a predictive model as stable 

and as realistic as possible, a stability selection approach is 

employed to evaluate the capability of the model to accurately 

predict and extract spectral variations correlated to MTX 

concentration. 

Experimental 

Chemicals and reagents 

All chemicals and solvents were of analytical reagent grade; 

they were purchased from Sigma-Aldrich (Milano, Italy) and 

used as received. Filter paper with 2 µm of pore size 

(qualitative filter paper, 410) was purchase from VWR 

International (Milano, Italy). Phosphate buffered saline 

solution (PBS) (pH 7.4) was prepared by dissolving a PBS tablet 

(Sigma-Aldrich) in Milli-Q water (200 mL). Serum samples used 

for method construction and validation were obtained from a 

healthy volunteer. All glassware used for gold nanoparticles 

(AuNPs) preparation was carefully cleaned with aqua regia and 

thoroughly rinsed with MilliQ water. For all cleaning 

procedures and preparation of solutions, MilliQ water was 

used. 

SERS substrates preparation and characterisation 

In-house built, solid SERS substrates were used in this study. 

Citrate-reduced gold nanoparticles (NP) were synthesised 

according to a protocol described by Turkevich et al., with 

slight modifications
22

. 10.6 mg of NaAuCl4 were dissolved in 25 

mL of Milli-Q water and heated to boiling. 750 μL of 1% 

sodium citrate were then rapidly added under vigorous 

magnetic stirring. The solution was kept boiling under stirring 

for 20 min. The AuNP colloidal solutions were stored in dark at 

room temperature (RT) and were stable at least for eight 

months
23

. During that time, neither aggregation was visible in 

the colloidal solutions, or any changing on their UV-visible 

spectra. 

The colloids were characterised by UV-visible absorption 

spectroscopy after each preparation using a Lambda 20bio 

UV–Vis spectrometer (Perkin-Elmer, Monza, Italy). AuNPs 

feature a surface plasmon band at 540 ± 2 nm. The colloids 

were also characterised by Transmission Electron Microscope 

(TEM, Philips EM 208). Both UV–Vis extinction spectra and 

TEM images of AuNPs for different preparations can be found 

in the electronic supplementary material. 

The solid SERS substrates were obtained using the dip-coating 

method
24-27

, loading the NPs on the filter paper. A piece of 1 

cm
2
 was placed on the bottom of a cylindrical glass vial (total 

capacity of 10 mL) containing 3 mL of Au colloidal solution, to 

which sodium citrate was added up to a final concentration of 

20 mM. The presence of the citrate leads to a colour change of 

the colloidal solution from red to grey-blue, indicating NP 

aggregation. The vials containing the filter paper were then 

stocked in dark at room temperature for one week; after this 

time, all the NPs were deposited on the vial bottom, covering 

the paper. The supernatant was extracted with a plastic 

syringe, paying attention not to touch or move the paper 

substrate. The substrates were then dried in the vials in air at 

room temperature and then stocked in Milli-Q water to avoid 

any loss of NP plasmonic activity. The repeatability of SERS 

measurements among different substrates has been checked 

using different analytes and the relative standard deviation 

over four different independent substrates was ≤15%. 

Sample preparation and SERS measurements 

MTX stock standard solution was prepared by dissolving 5.0 

mg of MTX hydrate (>98% HPLC, Sigma-Aldrich) powder in 0.2 

mL of 0.1 M sodium hydroxide and diluting to 10 mL in a 

volumetric flask with PBS solution. The MTX stock standard 

solution was then diluted to 100 μM in PBS, aliquoted for 

single use and stored at -20° C. Further dilutions were 

performed in 4% Bovine Serum Albumin (BSA)-PBS, a surrogate 

matrix frequently used to simulate plasma and serum, because 

its pH (7.4) and ionic strength (150 mM) are similar to those of 

the two biofluids. BSA was also added at a concentration of 40 

g/L to simulate the protein content of serum. Such dilutions 

were performed at room temperature before analysis and in a 

dark room, to avoid MTX photodegradation. A set of eleven 

calibration standards was prepared in a concentration range of 

0.1–20 μM for MTX. For the validation of the analytical 

method in a real-life matrix, calibration standards were 

prepared by spiking drug-free human serum with appropriate 

amounts of MTX stock solutions, keeping a constant 1:4, v/v 

ratio between serum and PBS. The final calibration range for 

MTX in diluted serum was 0.1–300 μM. The 5-fold dilution of 

serum standards upon spiking was chosen in analogy with the 

dilution procedures required for commercially available MTX 

immunoassays often used in clinical settings. 

Small drops of 5 μL of both MTX solutions and spiked serum 

samples were deposited on the nanostructured paper 

substrates and allowed to dry (15 min).  
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Instrumentation 

Normal Raman and SERS spectra were measured at room 

temperature (22 +- 0.5 °C) with an InVia Raman spectrometer 

(Renishaw plc, Wotton-under-Edge, UK) equipped with a Leica 

DMLM microscope (Leica Biosystems, Wetzlar, Germany) in a 

backscattering configuration. The excitation source was a high-

power (360 mW) diode laser (Toptica Photonics AG, Germany) 

with an emission at 785 nm; the laser light was focused onto 

the sample via an x10 objective lens (NA 0.25). The 

spectrograph was equipped with a 1,200 lines/mm grating and 

a thermoelectrically cooled charge coupled device (CCD) 

camera. The calibration of the instrument was checked prior to 

each measurement using the 520 cm
−1

 band of a silicon 

reference sample.  

To facilitate handling, each 8 mm × 8 mm paper substrate was 

adhered to a standard microscope slide (25 mm × 75 mm) 

immobilized onto the microscope stage.  

SERS spectra were recorded over a wavenumber range of 

300−1900 cm
−1

, using the “extended” acquisition mode of the 

InVia Raman microscope. All spectra were recorded using an 

accumulation of three scans (10 s exposure each, for a total of 

30 s) at 6 random locations on the substrate surface, with 18 

mW of laser power delivered to the sample. Instrument 

settings were optimised to maximise signal and minimise 

saturation or sample degradation arising from laser 

stimulation. In particular, the laser power density at the 

sample was decreased upon increasing the diameter of the 

laser spot using the “defocusing” option (90%) of the InVia 

Raman microscope. The system was controlled and data were 

collected by WiRE 3.2 software (Renishaw). 

Data pre-processing 

Special attention was paid to spectral data pre-processing 

[e.g., offset-Baseline Correction (BC), Area Normalisation (AN), 

and Multiplicative Scatter Correction (MSC)] for the purpose of 

outlier rejection, dimensionality reduction, and improvement 

in the robustness and accuracy of subsequent calibration 

models. First, the spectral region between 350 and 1700 cm
-1

 

was selected for analysis. Then, the pre-processing workflow 

consisted of five steps: (i) removal of cosmic rays; (ii) BC; (iii) 

smoothing interpolation to increase the signal to noise ratio 

and to reduce the number of data points per spectrum 

(reduction of the dimensionality of the data); (iv) AN or MSC; 

and (v) outlier detection/removal by Principal Component 

Analysis (PCA).  

All spectra pre-processing was performed within the R 

software environment for statistical computing and graphics
28

. 

In particular, data import and export, pre-processing, and 

visualisation were performed with the hyperSpec package
29

 for 

R; for BC, a fourth-order polynomial baseline was fit 

automatically to the whole spectral range and subtracted from 

each spectrum of the dataset using the modpolyfit function 

from the package baseline
30

; peak picking was performed 

using detectPeaks from the MALDIquant
31

 package. 

Anomalous spectra were automatically discarded by the pcout 

function from the package mvoutlier
32

. After the elimination of 

the outliers, the procedure was continually repeated until no 

more outliers were identified, in a self-consistent process. 

Eventually, a total of 6 spectra (over 99) were discarded as 

outliers (Figures S4-5). 

Data analysis 

All data analysis was performed within the R software 

environment for statistical computing and graphics
28

 building 

on the pls
33

 and glmnet
34

 packages. 

Partial Least Square Regression 

For multivariate calibration, we employed Partial Least Squares 

Regression (PLSR) models to establish a relationship between 

the MTX levels and spectral data
35

. PLSR is a multivariate 

statistical method widely used in spectroscopy that aims at 

building a model that relates the variations of the spectral data 

(X matrix) to a series of relevant targets (Y matrix) according to 

the linear equation Y = XB+E, where B is a matrix of regression 

coefficients and E is a matrix of residuals. PLSR reduces the 

data to a small number of latent variables, maximising the 

covariance between the spectral data and the property to be 

modelled (in this case, MTX concentration).  

The Repeated Double Cross-Validation (RDCV) strategy
36

 was 

adopted for the optimisation of the complexity of PLSR models 

and to independently estimate the model performance for test 

set objects that have not been used in any step of model 

creation or optimisation. The optimum number of latent 

variables was selected by RDCV with 100 repetitions, applying 

the one-standard-error-rule
37

. Model performance was judged 

on the basis of the Root Mean Square Error of Prediction 

(RMSEP).  

Stability selection 

Stability selection was exploited to assess the variability of the 

model coefficients, selecting those that remain consistently 

important after repeated subsampling of the data. Our settings 

were as follows: (i), some uninformative variables were 

automatically eliminated by Elastic Net (EN) estimation (α=0.5) 

to subgroup the candidate variables and obtain a parsimonious 

model while retaining as much relevant information as 

possible. This procedure presents significant advantages for 

model interpretation. According to a strategy proposed for 

biomarker identification
38

, the perturbation of the data was 

obtained (i) by leaving out 30% of the samples and considering 

only half of the variables at each iteration; (ii), the recursive 

PLSR calibration models were then built based on the strongly 

correlated variable obtained by the EN. Several PLSR models 

were calculated for prediction of the known concentration of 

MTX from the spectral data, varying the pre-processing 

methods and EN setup.  
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Figure 1 (A) Normal Raman spectrum of MTX powder; (B) SERS spectrum of MTX 10 μM 

in PBS, (C) SERS spectrum of MTX in 4% BSA-PBS, and (D) SERS spectrum of MTX diluted 

in human serum (1:4, v/v). The background signal of the substrate (grey line) is 

reported for comparison together with SERS spectra. The chemical structure of MTX is 

reported for reference in (A). All spectra were collected using an excitation at 785 nm. 

Results and discussion 

Comparison of SERS and Raman spectra of MTX samples 

Figure 1 shows the normal Raman spectrum of the MTX 

powder, along with the SERS spectra of 10 μM MTX in aqueous 

solutions and diluted human serum. For this preliminary study, 

we used diluted human serum instead of undiluted serum. This 

choice was made to limit the overall amount of biofluid 

needed, as well as because diluted samples were easier to 

work with than undiluted ones, which are rather viscous and 

tend to foam upon mixing. For these reasons, diluted serum is 

routinely used in analytical and clinical settings
39

. Moreover, 

we observed that dilution does not significantly influence SERS 

spectra as acquired using our substrates (Figure S3A, B). 

The characteristic Raman bands of MTX were consistent with 

those previously reported for this drug
20, 40-42

. Compared to the 

normal Raman, SERS bands of the MTX solution in PBS had 

slightly different positions, relative intensities and widths, as 

often observed for SERS spectra. Such differences are 

explained by invoking surface selection rules (for changes in 

relative intensities) and direct interaction of some molecule 

moieties with the metal surface (for shifts of band 

frequencies). Moreover, an underlying background due to 

traces of amorphous carbon in SERS spectra can be inferred 

from a generally increased intensity around 1360 and 1560 cm
-

1
, due to two broad bands (also called “cathedral bands”) 

originating from stretching modes of sp
2
 carbons

43-46
. Such 

bands are often observed when employing solid SERS 

substrates, because of a minimal photodegradation as a 

consequence of laser illumination. However, amorphous 

carbon has a very high Raman cross-section, so that even small 

quantities will yield a detectable background. In our 

measurements, the presence of amorphous carbon is kept to a 

minimum by ensuring a low laser power density (see 

Methods), and thus it is not interfering with MTX detection. 

Also worth mentioning is the definite background signal given 

by the SERS substrates themselves, reported in light grey in 

figure 1 along with SERS spectra. This background is largely 

due to the SERS signal of citrate ions
47

, originally present as 

stabilizing adsorbates on the surface of colloidal Au NPs used 

to prepare the SERS substrates. Being constant, this substrate 

background can be assumed not to interfere with MTX 

detection.  

Despite some differences, several bands in SERS spectra were 

observed at Raman shifts very close to those of the normal 

Raman spectrum of MTX, so that in some cases a direct 

correlation between Raman and SERS modes is 

straightforward. This is the case for the normal Raman bands 

at 699, 763, 961, 1204 and 1598 cm
-1

, whose correspondence 

to their SERS counterparts is evident, for all three SERS spectra 

reported. A detailed and complete assignment of the SERS 

bands of MTX to vibrational modes, as well as a detailed 

description of the MTX-metal interaction, is out of the scope of 

this paper, and it would require carrying out an ab-initio 

computational study at the level of Density Functional Theory 

(DFT). The reader interested in a tentative assignment of the 

SERS bands is referred to
40-42

. As this paper is concerned with 

MTX detection in diluted serum, it is noteworthy that the SERS 

bands appearing at 491, 694, 965, 996, 1512 and 1596 cm
-1

 in 

the spectrum of the MTX in PBS solution (B), can be easily 

retrieved in both SERS spectra of MTX in presence of albumin 

(C) and in diluted serum (D). In other words, MTX can be 

detected with SERS even in a complex medium such as diluted 

serum. It is interesting to note that the presence of albumin 

appears to affect the MTX SERS signal, both in terms of 

absolute intensity [(C) spectrum is less intense than (B)] as well 

as in terms of slight band shifts. This is not unexpected, since 

MTX is known to bind to albumin, so that only about 50% of 

the drug is found as “free” molecule in serum, while the other 

50% is tightly bound to the protein. Indeed, the absolute 

intensity of the MTX in presence of albumin, as well as that of 

MTX in serum, is approximately 40% of the absolute intensity 

counts observed for the drug in PBS, i.e. without the protein. 

Considering that the enhancement due to SERS dramatically 

decrease with the distance from the metal surface, so that 

only MTX molecules directly adsorbed onto the SERS substrate 

will significantly contribute to the signal, this decrease in SERS 
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Table 1 Details of several models for prediction of MTX levels in surrogate matrix (4% BSA-PBS) and diluted human serum (HS), using different pre-processing methods. BC offset-

Baseline Correction; AN Area Normalization; MSC Multiplicative Scatter Correction; N number of wavelengths in the model; RMSEP units are in μM. LVs, Latent Variables in the 

double cross-validated models.  

  
4% BSA-PBS (n=59) HS (n=93) 

Pre-processing Model N #LVs R
2
 RMSEP N #LVs R

2
 RMSEP 

None 
PLS 2701 4 0.939 1.49 2701 3 0.524 37.21 

EN-PLS 154 2 0.9474 1.35 138 2 0.5568 40.41 

BC 
PLS 2701 3 0.953 1.28 2701 2 0.5206 36.95 

EN-PLS 94 2 0.9584 1.08 145 2 0.6387 31.57 

MSC 
PLS 2701 3 0.9342 1.41 2701 1 0.5187 37.3 

EN-PLS 89 2 0.9428 1.39 110 1 0.6416 32.16 

AN 
PLS 2701 3 0.9475 1.25 2701 2 0.5277 36.74 

EN-PLS 591 2 0.957 1.15 1195 2 0.5492 34.93 

BC + AN 
PLS 2701 2 0.9575 1.18 2701 1 0.521 37.5 

EN-PLS 243 1 0.9613 1.19 597 1 0.6181 33.76 

BC+MSC 
PLS 2701 2 0.9596 1.11 2701 1 0.5187 37.38 

EN-PLS 88 1 0.9555 1.19 126 1 0.661 32.51 

 

intensity can be readily explained assuming that albumin-

bound MTX are prevented from adsorbing onto the metal, 

while free MTX must compete for the surface with albumins 

themselves. 

In the case of human serum, the complexity and variability in 

the matrix composition pose an even harder challenge for 

calibration and analysis. Serum has several thousands of 

components, with more than 4000 metabolites
48

, some of 

which have a high affinity for gold surfaces, as proven by the 

intense SERS signal given by serum when using Au metal 

colloids
49

. To be observed, MTX must compete with all the 

serum constituents for adsorption. However, serum MTX 

concentration can be high, relatively to most metabolites, and, 

while the presence of albumin appears to affect the overall 

intensity, MTX affinity for Au appears competitive enough to 

keep its SERS signal well detectable. This affinity can be 

partially explained by looking at its chemical structure: 

heterocyclic nitrogens, carboxylate groups as well as primary 

amine groups present in MTX are capable of a strong 

interaction with gold
50

. Such strong MTX-Au interaction is 

responsible of the intense MTX SERS signal, and it makes 

possible the detection of this drug even in diluted serum. 

Indeed, other authors have previously reported quantification 

of aqueous solutions of MTX based on SERS spectra. Hidi et al. 

used the SERS band around 965 cm
-1

 for quantitative detection 

by relating the Lorentz fitted peak area directly to the MTX 

concentration in KOH solution
20

. However, because of the 

increased complexity and lower S/N ratio of our SERS spectra 

obtained in presence of albumin or in diluted serum, the 

correlation of any individual band area with the MTX 

concentration was rather low and an univariate regression 

approach resulted in poor prediction of the MTX content 

(Figure S6). Nonetheless, the spectral signature of MTX is 

specific, and many Raman shifts (to be considered as variables 

for chemometrics purposes) were correlated to the MTX 

concentration. These features made possible selective 

measurements of MTX by combining spectral information 

across a wide range of wavenumbers. As stated, in this study,  

 

we focused on the wide region between 350 and 1700 cm-
1
 to 

build a multivariate calibration model that incorporates much 

of the available spectral information. 

Multivariate calibration 

Assessment of the analytical performances  

Multivariate calibration aims to establish a model that relates 

the variations of the spectral data to a series of known 

concentrations. PLSR modelling is particularly suited in 

multivariate calibration models for strongly correlated and 

multi-collinear spectral data, where the number of variables 

exceeds the sample size
51

. PLSR iteratively maximises the 

covariance between the spectral matrix and the reference data 

and produces highly interpretable Latent Variables (LVs) that 

describe diminishing quantities of spectral variance in the 

context of the reference data. The construction of an entirely 

accurate PLSR model required the careful selection of a 

number of latent variables (LVs). PLSR models were calculated 

using spectra with and without pre-processing with the 

application of different techniques. An overview of their 

influence on the model's ability to predict the MTX 

concentration from the SERS spectra is reported in Table 1. In 

general, the best models have as few components as possible 

and provide the lowest prediction error for the number of 

components used. Interestingly, pre-processing does not 

appear to dramatically affect models performance in terms of 

RMSEP.  

Quantification of MTX levels in surrogate matrix 

The EN-selected model shown in Figure 2 provided an MTX 

concentration prediction of R
2
=0.9584, RMSEP=1.08. Only two 

LVs were needed for the model; this number is reasonable 

given the number of solution components and the spectral 

variance resulting from variations in the background spectra. 
 

Stability Selection 

The EN-selected model for MTX in the surrogate matrix (Figure 

2A) achieved the lowest error using only 94 wavelengths and 2 
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LV. It should be noted that the wavelength selection was not 

based on an explicit minimisation of prediction error, the 

criterion used in virtually all other variable selection methods. 

In fact, in cases with a low number of samples, this approach is 

usually not very reliable, increasing the risk of overfitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Diagnostic plots from Repeated Double Cross Validation (RDCV) for SERS 
data collected in (A) 4% BSA-PBS, and (B) diluted human serum. The results from 
the 100 repetitions in RDCV are reported in blue (for 4% BSA-PBS they are very 
close together and therefore mostly hidden); the means of 91 predictions are 
reported in light blue. 

Stability selection, in contrast, using an approach inspired by 

random forests
52

, does not explicitly seek to minimise 

prediction error but only identifies the variables that are 

consistently important. The central idea is that real differences 

should be present consistently in the dataset and therefore 

should be found even under perturbation of the data by 

subsampling
38, 53

. The EN approach is based on a relatively new 

version of penalised least squares. It employs a shrinkage with 

a penalty that is a compromise between the Ridge regression 

penalty (α=0) and the Least Absolute Shrinkage and Selection 

Operator (LASSO) regression penalty (α=1)
54

. Stability selection 

made the data more succinct and provided a good 

interpretation of the model, revealing an explicit relationship 

between the MTX levels and the spectral variables. As the 

Regression Coefficients (RC) are descriptors of the spectral 

features that were used to build the model, we also aimed at 

assessing the accuracy with which the algorithm can faithfully 

use the known spectral profiles of MTX. In Figure 3A, a direct 

comparison between the RC of the PLSR model and a MTX 

SERS spectrum is shown, highlighting the frequency with which 

different Raman shifts are chosen by the EN algorithm. This 

figure allows the data analyst to check that the variation of 

MTX levels, rather than the spectral variance of the matrix, 

plays a relevant role in the PLSR model construction. If so, both 

EN-selected Raman shifts (coloured in red in Figure 3) and high 

values for RC should coincide as much as possible with SERS 

bands of MTX. This is clearly the case for the EN-PLS model for 

MTX in surrogate matrix (Figure 3A).  

Quantification of MTX in human serum 

The PLSR modelling process was repeated for the calibration of 

MTX concentration in diluted human serum, using the stability 

selection and pre-processing steps proposed in the 

Assessment of Analytical Performance section. Among blood 

sample types (whole blood, plasma, and serum), serum was 

selected in our study because i) it retains most substances 

present in blood while not being subject to blood cell 

interference, ii) it does not contain anticoagulants which might 

interfere with the spectroscopic signal due to the drug
49

. 

Actual measurements were performed on diluted serum 

samples, as detailed in the experimental section, for the 

reasons previously mentioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Average spectra (black line) overlaid with EN selected. The blue dotted line 

shows a plot of the regression coefficient (RC) following PLSR. The RC has been offset 

for clarity. 
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The EN-selected multivariate calibration achieved the lowest 

error, using only 120 wavelengths and 1 LV, yielding an RMSEP 

of 31.78 μM, with an R
2
 of 0.6387.  

Based on these values, it can be seen that the model produces 

a poorer prediction than the one built for the surrogate matrix. 

This is somewhat expected, considering the increased 

complexity of real serum with comparison to a buffered 

albumin solution. Considering that in this preliminary study we 

used serum samples from a single donor, inter-individual 

variations in serum composition can be ruled-out as a reason 

for the increased dispersion observed for data obtained from 

diluted serum with respect to those from buffered albumin 

solution. As serum itself does not yield intense SERS bands 

(see Figure S3A, B), intra-individual changes in composition, as 

well as the usual experimental errors involved in sample 

preparation and spiking, might be indirect sources of variation 

in SERS data by modulating the interaction of MTX with the 

metal surface. Inspection of the MTX RC in Figure 3B shows 

that the bands of the MTX SERS spectrum are faithfully 

reproduced and dominate the MTX RC. The correlation 

between EN-selected Raman shifts and MTX SERS bands is less 

straightforward. The different distribution of the EN-selected 

Raman shifts in the serum spectra is justified by the complexity 

of the biological matrix; the occurrence of so many 

components with the ensuing spectral complexity clearly 

affects the stability selection
54

. 

Relevant implications 

MTX requires careful diagnostic monitoring because of severe 

host side effects. Its concentration in plasma or serum is 

commonly screened with various techniques, and the dosage 

is regulated to the optimal therapeutic region by taking into 

account the patient characteristics
5
. Although there is an 

urgent demand for a faster and cheaper alternative to HPLC-

MS/MS MTX assays, a sensitive and reliable SERS methodology 

for TDM of MTX is still a challenge. To our knowledge, 

however, SERS-based MTX quantification, or even detection, in 

diluted or undiluted human serum has not yet been reported. 

The methodology presented in this work clearly demonstrates 

that SERS in combination with multivariate data analysis has 

the capability for the quantitative detection of MTX in human 

serum. Furthermore, multivariate calibration in conjunction 

with stability selection, as demonstrated here, produces less 

complex and more accurate models because of the targeted 

inclusion of frequency bands specific to the analyte in 

question. As expected, in a comparison between the 

calibration and prediction errors listed in Table 1, 4% BSA-PBS 

spectra usually outperform the analogous models generated 

from diluted serum spectra. Scatter is noticeably greater, 

leading to a large standard deviation in response. 

Quantification using SERS has been since long recognized as a 

challenging task
55

, mainly because of poor repeatability and 

reproducibility, two flaws which were often reported for 

colloidal SERS substrates. The use of standard additions
56

 or 

internal standards
57-59

 has been proposed by some authors to 

tackle these problems, but it is evident that the availability of 

repeatable and reproducible inexpensive SERS substrates 

would be a main solution. The paper-based SERS substrates 

used in this study proved to be capable of quantification, as 

clearly shown in the case of MTX in a surrogate matrix.  

When the method is applied to diluted serum measurements, 

the observed prediction error for MTX (31.78 μg/g) is still 

significantly higher than what is observed for established 

reference HPLC-MS/MS methods
16

, and thus an increase in 

precision of the SERS method is still necessary. Considering the 

difficulty of achieving quantification in a complex matrix using 

SERS, however, results reported in this study still represent a 

significant step forward. 

Moreover, it is important to note that the SERS substrate used 

in this study was not specifically adapted to target MTX. A gold 

surface might be functionalised to promote a selective 

adsorption of the analyte of interest while maintaining the 

integrity and activity of the compound
60

, at the same time 

preventing the competition for the adsorption sites with the 

other serum components. Various strategies can be suggested 

to increase the affinity of the substrates for the drugs, 

including molecular recognition approaches such as MIP 

(molecularly imprinted polymers)
17

 and artificial peptides. 

Such approaches are currently under investigation by our 

group, so that in the future the accuracy and precision of MTX 

quantification can be further improved. Furthermore, a 

functionalization of the SERS substrates would broaden the 

applicability of our SERS/EN-PLSR method, paving the way to 

its use with those chemotherapeutic drugs lacking the strong 

affinity for Au surfaces shown by MTX. 

Conclusions 

The present work clearly shows that, by using repeatable 

substrates and an adequate data analysis, the quantification of 

drugs by SERS in complex biological matrices, diluted serum in 

our case, is possible. 

Also, our data provide an estimate of the difference in the 

quantification performance to be expected in real serum with 

respect to model solutions. The increased chemical complexity 

of serum with respect to model solutions, translates in a 

decrease of one order of magnitude in the precision (RSMEP) 

of the drug quantification.  
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