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Decay of skeins of dislocations in cholesterics:
rewiring Conway's tangles into necklaces
of bangles

Jun-Yong Lee,® Mehdi Zeghal,” Patrick Judeinstein,© Maria Helena Godinho,
lvan Smalyukh @2 and Pawel Pieranski (2 *°

Knotted and linked skeins of vortices and disclinations generated, respectively, by symmetry-breaking
normal — superfluid and isotropic — nematic phase transitions are known to untie, by rewiring of their
crossings, into independent unknots that finally shrink and collapse until the defect-free ground state is
reached. We demonstrate that the decay of skeins of dislocations, generated by the isotropic —
cholesteric phase transition within a cylinder/cylinder gap, leads to stable necklace-like states made of
numerous minimal loops, called bangles, tethered to kinks of much larger loops called cargo. We
analyze the topological decay of skeins of dislocations in terms of the Conway—-Kauffman theory of
knots, showing that the necklace state results from rewiring of crossings triggered by collisions of tan-
gles with their numerator closure. We point out that, in general, for symmetry reasons, kinks on edge
dislocations are chiral. Their handedness, right or left, directly depends on the sign of kinks on which
they are localized. In cholesterics with intrinsic chirality, the energy of kinks bearing bangles depends on
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1 Introduction

1.1 Classification of knots and links, and immunity against
rewiring

In mathematics, the classification of knots and links," ™ made,
by definition, of one-dimensional closed lines embedded in a
three-dimensional space, is based on the implicit immunity of
their crossings against rewiring.

Knots tied on ropes, threads, fishing lines or strings are
obviously endowed with this immunity. For this reason, they
are often used as physical examples of the abstract topological
intricacies.

1.2 Decay of skeins of linear topological defects

In contrast, knotted and linked skeins of vortices, disclinations
or dislocations generated, respectively, by the symmetry-
breaking normal — superfluid, isotropic — nematic, and
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their handedness. For this reason, within necklaces, all bangles are tethered to kinks of the same sign.

isotropic — cholesteric phase transitions are subjected to
spontaneous rewiring of their crossings. The resulting decay
of the topological complexity attracted much attention and,
among others, the following generic questions were raised:>°
what is the terminal state of the decay, and what is the
topological pathway leading to it?

1.3 Aims of this paper

In the case of the superfluid vortices, the answer to these
questions were found through a numerical simulation by
Kleckner et al:® the decay of knotted and linked skeins of
vortices involves rewiring of the crossings, one after another,
and leads to a system of independent vortex loops (unknots)
that collapse until the defect-free ground state is reached.

The second case of the nematic disclinations is illustrated by
an experiment and discussed in more details in Section 2. We
will see that it is more complex than the case of the superfluid
vortices because two types of disclinations are generated during
the isotropic — nematic transition. We will show that, in spite
of this difference, the terminal state is also defect-free.

In Section 3, we focus on the decay of skeins of dislocations
generated by the isotropic — cholesteric phase transition and
demonstrate that, under the confinement in gaps of variable
thickness A(x,y), the decay is incomplete because it terminates at
the necklace state composed of minimal loops, dubbed bangles,
tethered to kinks of large loops called cargo. The topological
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path leading to the necklace state passes through the stage of
double-helix tangles>®” that ultimately are rewired into the
necklaces of bangles, such as the one depicted in Fig. 4. In
Section 4, we report on the detailed structure of bangles resolved by
means of fluorescence confocal microscopy. In Section 5.1, we will
provide a short introduction into the Conway-Kauffman theory of
rational knots, which turns out to be perfectly adequate for
interpretation of the tangle — necklace rewiring given in Section 6.

2 Decay of skeins of disclinations in
nematics

In the absence of obstacles such as colloidal inclusions® or
fibers,” the decay of skeins of disclinations generated by the
isotropic-nematic phase transition leads to the defect-free
ground state compatible with boundary conditions.

This behavior is illustrated here with an experiment per-
formed with the setup tailored initially for studies of disloca-
tions in cholesterics. As we will see below, this setup is also well
adapted for studies of skeins of disclinations in nematics.

2.1 Genesis of the skeins of disclinations by the isotropic-
nematic phase transition

2.1.1 Experimental setup. In this experiment, depicted in
Fig. 1, a droplet of pure 5CB is maintained by capillarity inside
a thin gap between cylindrical mica sheets. The geometry of the
sample shown in Fig. 1a is similar to the one used by Zappone
and Bartolino in their experiments on nucleation of dislocation
loops,’® as well as in the experiments with 5CB/CB15 choles-
teric mixtures discussed below (see Fig. 2 and 3). A more
detailed description of our setup can be found in ref. 11 and 12.
It consists of two plastic parts tailored for supporting the mica
sheets and bending them into cylindrical shapes with a well-
known radius of curvature, typically R = 50 pm. (The mica sheets
used in our experiments are ‘“Muscovite Mica Sheets V1 Quality”
from Electron Microscopy Sciences.)

The isotropic-nematic transition is driven by a thermal
quench from the isotropic phase (see Movie S1). Heating and
cooling of the sample is achieved by switching on and off a
stream of hot (~40 °C) nitrogen gas. Due to the very small
thicknesses of the mica sheets (~50 um) and the nematic
droplet (Amin & 100 um), the cooling rate due to the thermal
contact with ambient air is of the order of 5 °C s™".

2.1.2 The initial ground state. Due to the identical anchor-
ing directions, parallel to the x-axis, on both mica sheets, the
director field of the ground state, reached after a long-enough
relaxation, is uniform: ny(z) = [1,0,0]. The experiment starts by
heating the sample above the temperature Ty; of the nematic—
isotropic phase transition.

2.1.3 Excited states. The subsequent quench from the
isotropic phase into the nematic phase generates a
patchwork-like texture made of several coexisting states com-
patible with the anchoring conditions:

2nz\ . 2z
{cos (N,—T), sin (NiT)’ 0} ; (1)
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with N; = 0, +1/2, +1, £3/2, ..
separated by disclinations.

.. The adjacent patches are

2.2 Decay of skeins of disclinations into the defect-free
ground state

The density per unit area of the elastic distortion in these
patches of surface area S; grows with the square of their index N;:

K [2m\ 2
gN; :%(7) N,‘z. (2)

The subsequent evolution of the patchwork (see Fig. 1c-g) is
driven by the reduction of the total distortion energy

Easw~ Y Sngw + Y LT, (3)
i J

in which the second term involves the tension T; and the length
L; of the disclination j separating the adjacent patches.

Elimination of patches with higher indices leads to a collec-
tion of independent loops (see Fig. 1g) in which the lowest
excited states with N = +1/2 are separated from the surrounding
ground-state matrix (with N = 0) by singular disclinations of
rank m = 1/2. Let us note that the two N = +1/2 states can coexist
inside one disclination loop of rank m = 1/2. In this case they
are separated one from the other by disclinations of rank m = 1.
Due to the escape of the director field from the (x,y) plane into
the third dimension z (see Fig. 1k), these m = 1 disclinations are
non-singular.

During the final stage of the decay these unlinked disclina-
tion loops shrink and collapse. For the sake of simplicity, let us
suppose that a collapsing disclination loop is circular and its
radius is r. The distortion energy Egis: is then composed of
two terms:

nrPhgyy + 2Ty, (4)

X

Egist
in which
h

CKx1n (F) +E. (5)

C

T

is the energy per unit length of the disclination loop, R, is the
radius of the singular core, E. is the core’s energy per unit
length and C is a numerical constant.

The final collapse of such a circular loop is driven by a
centripetal force per unit length given by

1 OEgiq Tip
_% 81/’ ~ _hgl/Z — T (6)

The first term of this expression written explicitly as

TCZKQQ
7
2h )

Fpx = —

can be seen as the Peach-Koehler force acting on the disclina-
tion. Let us stress that, in contrast with the case of cholesterics
considered below, the sign of this force, inversely proportional
to the local thickness % = hy,, + 7%/(2R) (Where R is the radius of
curvature of the mica sheets), is negative (corresponding to the
centripetal direction) for all values of r.

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00703h

Open Access Article. Published on 17 Waysu 2025. Downloaded on 17/11/2025 3:32:23 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Soft Matter Paper

! 1 1 1 !

/
1

|
|
|
Isotropic :
Nematic :
|
L, 64s L, 254s 860 s t |
/ L / L I’ A - !
7/ 7/ »
A 77 A |

Fig. 1 Decay of a skein of disclinations generated in the gap between the mica sheets by the isotropic—nematic phase transition. (a) Geometry of the
experiment: droplet of 5CB confined by capillarity between cylindrical mica sheets. The sample is heated by a stream of a hot (x40 °C) nitrogen gas until
the nematic—isotropic transition occurs. The subsequent quench to the nematic phase is due to the spontaneous cooling at ambient temperature. (b)
Variation of the temperature with time. (c)—(g) Entanglement at t = 2, 8, 16, 64 and 256 s after its genesis. (h) At t = 860 s, the defect-free ground state is
recovered. (i) Cross section of the texture along the AB line defined in (g). The red circles indicate singularities of the m = 1/2 disclination. (j) Cross section
of the texture along the CD line defined in (g). The red circles indicate singularities of the m = 1/2 disclination. (k) Cross section of the m = 1 disclination
along the EF line defined in (g). The director field n(r) is non-singular here due to its escape into the third dimension z.
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The second term

T\
Fu=-=F, (®)
,
which can be seen as the Laplace force due to the tension
(energy per unit length) of the disclination, grows as 1/r. The
relative importance of the two terms depends on the ratio

Sl ©)

For this reason, the collapse of independent loops is driven
mostly by the Peach-Koehler force until the radius r becomes
small enough.

3 Decay of skeins of dislocations in
cholesterics
3.1 Distortion energy

When the chiral compound CB15 is added to the nematic
droplet of 5CB confined between the mica sheets, the expres-
sion (2) of the elastic energy density is modified as follows:

Kzz 2n 2 h 2
=—|—) ([ N——]) .
S (h Po
In a first approximation, the characteristic length p, called
pitch is inversely proportional to the concentration ccgys of

CB15. In the nematic phase, ccgis = 0% so that p, — oo, while
for ccpis = 0.86%, the pitch is finite: pg & 25 pm.

(10)

3.2 The ground state

The distortion energy expressed in eqn (10) vanishes not in one
homogeneous ground state like in nematics but in a set of
states satisfying the following condition:

hy = Npo. (11)
In other words, the distortion energy vanishes for discrete
values Ay of the gap thickness that allow for the accommoda-
tion of N undistorted cholesteric pitches p,.
In the case of the cylinder/cylinder gap of variable thickness
given by A(r) = Amin + 7*/(2R), this condition is satisfied only at
discrete values of the radius r given by

N = ZR(NP() — hmin)- (12)

For all other values of the thickness, the cholesteric helix is
necessarily either compressed or dilated.

Therefore, the ground state, corresponding to the minimum
of the total distortion energy, of a cholesteric confined inside
the cylinder/cylinder gap is composed of annular fields with the
index N separated by circular defects that can be seen either as
disclinations or dislocations."?

To be more explicit, let us discuss the results of an experi-
ment, realized with a relatively thin cylinder/cylinder gap, that
is depicted in Fig. 2 (see Video S2).

8208 | Soft Matter, 2025, 21, 8205-8218
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3.3 Thin gap: large cholesteric pitch

In this experiment, a very complex dense skein of linear defects
generated by the isotropic-cholesteric phase transition decays
into the much simpler texture shown in Fig. 2g and h.

3.3.1 Two types of dislocations

3.3.1.1 Non-singular dislocations with the Burgers vector b = p.
For readers familiar with solid-state physics, the frontier
between the N = 2 and N = 1 fields in Fig. 2h and i appears
analogous to a crystal dislocation with the Burgers vector b
equal to the full cholesteric pitch p.

If the director field n was constrained to stay in the (x,y)
plane (the polar angle 0 defined in Fig. 2a is set to ©/2), then the
order parameter of the cholesteric could be represented by the
complex function ¥ = e® like the order parameter of the
superfluid state. However, in cholesterics, the phase ¢ has a
physical meaning: it corresponds to the azimuthal angle
defined in Fig. 2a. With the condition 6 = n/2, the linear
topological defect between the adjacent N = 2 and N = 1 fields
would be analogous to the superfluid vortex because on the
circuit surrounding it (red dashed rectangle in Fig. 2i) the
phase ¢ varies by 2. If this analogy with the superfluid vortices
was fully true then the defect line in Fig. 2h would have a
singular core like the superfluid vortex.

Since the pioneering works of Kleman and Friedel °, and of
Toulouse and Kleman,' it has been well known that this
analogy is wrong: the core of dislocations with the Burgers
vector b = p, known also as thick or double," is non-singular
because the director field n can evolve not in two but in three
dimensions, as depicted in Fig. 2i.

113

3.3.1.2 Singular dislocations with the Burgers vector b = p/2. In
contrast, the dislocations with the Burgers vector b = p/2 known
as thin or simple,"® which separate the fields N =1, N = 1/2 and
N = 0 in Fig. 2h, are analogous to the m = 1/2 disclination in
nematics (see Fig. 1i above) so they must have singular
cores.'>!

3.3.2 Lehmann clusters. Remarkably, at the beginning of
the decay (see Fig. 2e and f) the b = p dislocations are frequently
associated in pairs called Lehmann clusters'® with the total
Burgers vector b = p — p = 0. These Lehmann clusters are
attached by one or two of their ends to the b = p/2 dislocations
(see Fig. 2f and g).

3.3.3 Bangles. During the subsequent decay, the size
(length) of the Lehmann clusters shrinks. Independent clusters
collapse, but those which are linked with other thick disloca-
tions (pointed by small blue arrows in Fig. 2f) stop shrinking
when they reach their minimal size. This mechanism leads to
generation of minimal loops called bangles (denoted by blue
arrows in Fig. 2g), that are tethered to large thick (b = p)
dislocation loops called cargo.

3.4 Thick gap: tangles and necklaces of bangles

Bangles are generated in abundance by the isotropic-choles-
teric phase transitions when the gap thickness Z,,;, is several
times larger than the cholesteric pitch p,.

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Decay of skeins of dislocations produced by the isotropic—cholesteric phase transition in a thin sample. (a) Geometry of the experiment: droplet
of a 5CB/CB15 cholesteric mixture confined by capillarity between cylindrical mica sheets. The sample is heated by a stream of hot (x40 °C) nitrogen gas
until the cholesteric—isotropic phase transition occurs. The subsequent quench to the cholesteric phase is due to the spontaneous cooling at ambient
temperature. (b) Variation of the temperature with time. (c) Isotropic phase of the 5CB/CB15 mixture. (d) Dense entanglement of dislocations produced
by the isotropic—cholesteric phase transition. (d)—(g) Decay of skeins containing the single (b = p/2) and double (b = p) dislocations. (f) A few bangles
tethered to the b = p dislocations are indicated by arrows. (g) Final state of the decay in the thick part of the cylinder/cylinder gap. The necklace state
involves only the b = p dislocations. (h) Final state of the decay in the thinnest part of the cylinder/cylinder gap. The b = p/2 dislocations present here do
not form tethered loops. (i) Cross section of the dislocation b = p along the line AB defined in (h). (j) Cross section of the dislocation b = p/2 along the line
CD defined in (h). (k) Cross section of the dislocation b = p/2 along the line EF defined in (h).
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In a typical experiment depicted in Fig. 3 (see Video S3), the
skein of dislocations resulting from the isotropic-cholesteric
phase transitions (see Fig. 3a) is more complex than the one
generated in the thin gap (see Fig. 2f) because, in addition to
dislocations with Burgers vectors b = p and b = p/2, it also
contains double-helix tangles t1 and t2 (discussed below), as
well as necklaces n1 and n2, corresponding to series of six and
two bangles, respectively, tethered to common cargo loops.

During the subsequent decay, all double-helix tangles are
rewired into necklaces so that the final pattern of dislocations
in Fig. 3e is composed of circular cargo loops bearing chains of
bangles.

3.5 Inchoate decay of skeins of dislocations in cholesterics

The first conclusion from the experiments reported above is
that the decay of skeins of dislocations, generated by the
isotropic-cholesteric phase transitions, is inchoate because it
leads, not to the defect-free state, but, on the contrary, to a state
composed of concentric coaxial thin or thick dislocation loops.
This target-like pattern is well known and has been discussed
in more detail previously.'""®

The second conclusion is that the thick dislocation loops
(b = p) belonging to the target-like pattern can bear much
smaller loops called bangles. For obvious reasons, systems of
large cargo loops bearing bangles are called necklaces.

4 The necklace state

4.1 The concept of the necklace state

The concept of the necklace state was introduced recently’>"”

in the context of experiments with cholesteric droplets confined

cholesteric
phase
isotropic
phase

X

, 22500 pm
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between cylindrical mica sheets and submitted to a dilation-
compression strain pulse (see Video S4).

4.2 Geometry of necklaces

An example of a necklace generated in this manner is shown in
Fig. 4b where five bangles are tethered to the cargo loop.

4.2.1 3D structure of necklaces. The three-dimensional
structure of this necklace, resolved using higher magnifica-
tions, is depicted schematically in Fig. 4d, which shows that all
bangles are tethered to kinks of height Az = +p of the cargo
loop. The positive sign is given to the kinks bearing bangles
after the clockwise orientation of the cargo loop, symbolized by
the conical arrow.

4.2.2 Structure of bangles tethered to kinks: FCPM
experiments

4.2.2.1 FCPM experiments. The detailed 3D structure of kinks
bearing bangles was resolved by means of fluorescence confocal
polarizing microscopy (FCPM) (see Fig. 5). We prepared a chiral
nematic host consisting of a low-birefringence nematic host (ZLI-
3412) doped with a right-handed chiral dopant (CB15, TCI),
yielding a chiral pitch of approximately 5 um. Additionally, a very
small amount of the anisotropic fluorescent dye N,N-bis(2,5-di-
tert-butylphenyl)-3,4,9,10-perylenedicarboximide = (BTBP)
added to this mixture for FCPM imaging. A wedge cell (see the
inset in Fig. 5g) was fabricated using a slide glass and a cover
glass. One side of the cell was separated using double-sided tape
to set the gap to 60 pm, while the opposite side was directly sealed
using epoxy adhesive to minimize the gap, resulting in a linearly
varying cell gap. Both substrates were pre-cleaned by sequential
sonication in DI water with detergent, ethanol, and isopropyl
alcohol for 15 min each, followed by drying at 75 °C for 15 min. To

was

100 um

Fig. 3 Generation of the necklace state by the isotropic — cholesteric phase transition in a thick cholesteric layer. (a) Isotropic — cholesteric phase
transition. (b) Dense skein of dislocations generated by the isotropic — cholesteric phase transition. (c) After 33 minutes of relaxation, double-helix
tangles t1 and t2 and necklaces nl and n2 can be distinguished. (d) Close-up views of the double-helix tangles t1 and t2 and necklaces nl and n2. (e) The
skein of dislocations after 1395 minutes of relaxation. (f) Close-up view of the two series of bangles inside the dashed rectangle in picture (e).
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Fig. 4 The necklace state. (a) Geometry of experiments with cholesteric droplets (5CB/CB15 mixtures) confined between cylindrical mica sheets. The
upper mica sheet can be moved in the x, y and z directions. (b) Microscopy image of a necklace composed of a circular dislocation called a cargo loop
bearing five small circular dislocations called minimal loops or bangles. N is the number of cholesteric pitches p &~ 5 um located between the mica
sheets. (c) Close-up image of a bangle tethered to a kink of the cargo loop. The radius of the bangle is about three times smaller than the cholesteric
pitch: r, ~ p/3. It varies with the concentration ccgs of the chiral compound CB15 in the nematic 5CB. Here, ccgis = 0.86% and p ~ 25 um. (d)
Perspective view of the necklace state. As all minimal loops are tethered exclusively on the +p kinks of the cargo loop, this configuration is chiral (for

details see Fig. 10).

establish the planar alignment, a 1 wt% aqueous solution of
polyvinyl alcohol (PVA) was spin-coated onto each substrate,
baked at 110 °C for 15 min, and subsequently rubbed. The
prepared CNLC mixture was then introduced into the cell via
capillary action. To generate the bangle structures associated with
the dislocation lines, the sample was first heated into the isotropic
phase and then rapidly cooled down to the chiral nematic phase
under ambient conditions. The internal structures of the disloca-
tion lines and bangle formations were observed using an inverted
optical microscope equipped with multifunctional imaging cap-
abilities (FV3000, Olympus), including both bright-field micro-
scopy and FCPM.

4.2.2.2 Structure of bangles. The optical micrograph in
Fig. 5a reveals an edge dislocation line with the Burgers vector
b = p bearing a bangle with a diameter of 2r,, & 4 pm, which is
smaller than the chiral pitch p ~ 5 um. Cross-sectional FCPM
images (Fig. 5b) clearly show vertical displacement of the
dislocation by one pitch across the bangle structure, which
means that the bangle is tethered to a kink of height p. To
visualize the polar orientation of the director, we sum the
fluorescence signals acquired under four linearly polarized
excitations (0°, 45°, 90° and 135°). In this approach, the in-xy-
plane alignment regions exhibit strong signals, while regions
with a “homeotropic” alignment (with the director along the
cell normal, i.e., the z-axis) show weaker signals. This imaging
provides an effective contrast map for detecting out-of-plane
tilts and identifying the position of the dislocation cores.

This journal is © The Royal Society of Chemistry 2025

Cross-sectional views of the intensity-summed FCPM images
(Fig. 5c and d) reveal details of the structures of the kink in the
dislocation line and of the bangle tethered to it. In-plane
intensity-summed FCPM cross-sections at different sample
depths (Fig. 5e) further indicate that the dislocation kink is
steeply inclined.

This observation is quantitatively supported by tracing posi-
tions of the dislocation core (Fig. 5g), where the vertical posi-
tion (AZy) is plotted against the relative lateral position (AXy).
The plot reveals a vertical shift of AZq ~ 4 pm corresponding to
an in-plane displacement AXy of only ~1.5 pm, confirming the
steep nature of the dislocation kink.

Finally, to visualize the overall 3D geometry of the disloca-
tion line and the associated bangle structure, low-intensity
regions corresponding to the dislocation cores were extracted
from the stacked intensity-summed FCPM images. The recon-
structed 3D construction (Fig. 5f) vividly illustrates the kinked
configuration of the dislocation line and the well-defined
bangle structure tethered to it.

4.2.3 Radius of the cargo loops. In equilibrium, the radius
ro of the large cargo loop defined in Fig. 4b is given by the
balance of the Peach-Koehler and Laplace forces acting on it.

4.2.3.1 The Peach-Koehler force. Let h be the local thickness
of the gap between the mica sheets. As, in general, this
thickness is neither equal to Np, nor to (N + 1)p, (where p, is
the equilibrium pitch of the cholesteric helix), the cholesteric
helix is respectively dilated and compressed in the external
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Fig. 5 Bangle tethered to a kink of a dislocation. (a) Bright-field image of the bangle structure. (b) Cross-sectional fluorescence confocal polarizing
microscopy (FCPM) images along the dotted lines (1) and (2) in (a), showing vertical deviation of the dislocation with pitch p. The polarization direction is
along the x-direction. (c) and (d) Cross-sectional FCPM images in planes (c) perpendicular and (d) parallel to the edge dislocation line far from the kink.
For each slice, fluorescence intensities acquired under four linearly polarized excitations (0°, 45°, 90°, and 135°) are summed. Hence, bright regions
correspond to in-plane alignment of the director, whereas dark regions indicate vertical alignment with the director, roughly along the z-axis. Images i-vi
correspond to cross-sections along the lines i—vi marked in (a). (e) In-plane intensity-summed FCPM images at different heights. (f) 3D reconstruction of
the dislocation kink and surrounding bangle based on experimental observations. (g) Plot of the relative height (AZy) versus the relative lateral positions
(AXq) of the dislocation. Both positions are extracted from the experimental images like the ones shown in (d). For the sake of clarity, the dihedral angle of
the wedge represented in the inset is exaggerated. (ZLI-3412/CB15 mixture with the cholesteric pitch p = 5 pm.)

(N + 1) and internal (N) fields separated by the cargo loop. The
energy density per unit area of the elastic distortion is given

by18,19
_ Kzz N2rn 2
v = hT (T _PO) (13)
inside the cargo loop and
Ky ((N 4 1)2n 2
foo =iz (W2 (14)
2 h
outside of it. The difference
Sex(h) = fxer — fn (15)

corresponds to the so-called Peach-Koehler force per unit
length perpendicular to the dislocation loop.

4.2.3.2 The Laplace force. The Laplace force due to the
intrinsic tension T, of the cargo loop is given by

Ta

fLaplace = (16)

cl
In an approximation where the Laplace force due to the
tension 7 of the dislocation is neglected, this radius of the
cargo dislocation is such that the Peach-Koehler force Fpk(A(r)),
defined in eqn (15), vanishes.'> Knowing the solution

ha = (N +1/2)p, (17)

8212 | Soft Matter, 2025, 21, 8205-8218

of the equation Fpk(h1) = 0, and the expression

h(r) ® hmin + 7*/(2Ry)

(18)

for the thickness of the cylinder/cylinder gap, one can calculate
the radius r, of the cargo loop:

el & [ZRm(th - hmin)]llz-

(19)

4.2.4 Radius of bangles. The bangle tethered to the kink of
the cargo loop can be seen as a circular edge dislocation of
radius r, tethered to a screw dislocation (see Fig. 6). In this
approximation, the radius r, of the bangle is fixed by the
balance between the Laplace centripetal force —T/r, due to
the tension T, of the edge dislocation and the centrifugal
repulsion force due to the elastic interaction between the edge
dislocation and the kink.

To understand the origin of this repulsive force, let us
approximate the kink by the double-twist cylinder (see ref. 20)
of radius rq., depicted in Fig. 6 (see Video S9). In the vicinity of
the z-axis, the director field is expressed in cylindrical

coordinates as
n(r,¢,z) = [0, cosd(r), sinb(r)], (20)

where 0(r) is the angle between the director n and the z-axis. 0(r)
varies from 0(0) = 0 to 0(rg..) = ©/2 (see Fig. 6).
Let us suppose in a first approximation that

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Bangle tethered to a kink of a cargo loop. As the kink is a quasi-
vertical segment of the cargo loop, it can be seen as a segment of a screw
dislocation with the Burgers vector b = p. Around the screw dislocation,
the director field n has symmetry of revolution: in cylindrical coordinates
(r.,z) itis independent of the azimuthal angle y: n = n(r,z). In the vicinity of
the z-axis, inside the cylinder of radius rqi, the director field has the
double-twist texture independent of z: n = (0,sin(gr),cos(gr)) with g = (/2)/
rate- The bangle itself can be seen as a circular edge dislocation of radius ry,.

0(r) = gr, (21)
with
2 2n
= = . 22
1 p Argec ( )

With the density of the distortion energy per unit volume

K» a0 1 . 2 Kiysin*0
f‘TTC“_Efﬁﬂ“m”w)+7fﬁf’
Kos Osin’ 0
== 2
r or ’ (23)

one can calculate the energy of the double-twist cylinder of
height p, as the following integral:
Tdtc

f2rrdr = pg
0 8

TEK22

Fae = ,,OJ BR2(C— (84 2n)p + 2], (24)
where C is a numerical constant depending on the ratio K,4/K55,
and p = qo/q = raw/(po/4) is proportional to the radius of the
double-twist cylinder defined by eqn (21) and (22).

Faio(p) has a minimum for p = 1 + 4/n”> ~ 1.4, i.e., for rgee =
0.35p,. This means that the radius of the double-twist cylinder
is larger than p/4.

The total energy of the system double-twist-cylinder + bangle

can be written as
Fatesb = Fate(Taee) + 2mrpTp. (25)

Assuming that the radius ry, of the bangle can be approxi-
mated as r, X raee T Po/4, one can calculate that the minimum

This journal is © The Royal Society of Chemistry 2025
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of the total energy Fiink+m1 Occurs for

_ po4+2n?—2T,

RIS (26)

'y

where T, = Ty,/Ky,. Knowing from experiments that r, & p,/3 we
can infer that Ty, ~ 5.3K,,.

5 Theory of tangles and their
occurrence in experiments

For the purpose of the forthcoming discussion in Section 6
regarding the tangle — necklace rewiring that occurs during
the decay of skeins of cholesteric dislocations, it is necessary to
provide a brief overview the Conway-Kauffman theory of knots
based on the concept of tangles.>?

5.1 Conway-Kauffman theory of rational knots based on the
concept of tangles

Within the Conway-Kauffman theory,>* the so-called rational
knots and links are represented as systems of connected
tangles. As an example, we show in Fig. 7a the tangle +12 with
twelve m-twists (crossings), which can be seen as a sum of 6
elementary tangles +2. By connection of the four extremities of
this tangle +12 (A with B, and C with D), one obtains a two-
component link made of the yellow and blue loops linked six
times. In the Conway-Kauffman theory,>* this operation is
called the numerator closure.

It is easy to check that the numerator closure of tangles with
an even number of crossings produces links, while with an odd
numbers of crossings, the numerator closure produces
torus knots.

numerator closure

.
C

&

FIC IO IO

A
a

T, et
S

numerator closure

Fig. 7 Chiral tangles. (a) The tangle scheme used in the Conway—-Kauff-
man theory of knots. Here the tangle (+12) with its numerator closure
(AB + CD) is part of a two-component link. (b) Microscopy image of a
levogyre double-helix entanglement of a pair of cholesteric dislocations. It
was generated by the isotropic — cholesteric phase transition. (c) Per-
spective schematic view of the levogyre double-helix shown in (b).
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5.2 Physical incarnation of the Conway-Kauffman tangles
and rational knots

The Conway-Kauffman representation of rational knots and
links®>® was of major importance for the analysis of DNA
recombination.*'

The second remarkable incarnation of the rational knots
and links was found by Tkalec et al.® who studied knots and
links tied from m = 1/2 disclinations in suspensions of colloidal
particles in nematics.

The double-helix tangles of cholesteric dislocations
observed previously,” as well as in experiments reported here
(see Fig. 3e and 7b), can be seen as the third incarnation of the
Conway-Kauffman concept of tangles.

5.3 Double-helix tangles made of cholesteric dislocations

The double-helix tangle shown in Fig. 7b was produced by the
isotropic — cholesteric phase transition inside a droplet of a
5CB/CB15 mixture contained by capillarity between two cylind-
rical mica sheets (see Fig. 4a). The schematic perspective view
in Fig. 7c shows that this double-helix tangle is levogyre and
contains 12 over/under crossings (n-twists). We determined the
levogyre handedness from the behavior of this tangle in a shear
deformation driven by shifts of the upper mica sheet in +y
directions (see Fig. 4a and 7c). The displacement of points A
and C, indicated by the double dashed arrow, is larger than
those of the points B and D. Points A and C are therefore closer

Y
t
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to the moving upper mica sheet than points B and D. Knowing
the direction of the tilt, the left handedness of the double-helix
was inferred from the visual aspect of the tangle.

5.4 Selective immunity of cholesteric dislocations against
rewiring
At first sight, the existence of this tangle (+12) is surprising,
because rewiring of any of its crossings would shorten the total
length of dislocations and thereby lower the excess free energy
of the elastic distortion. Why does this rewiring of dislocations
inside this tangle not occur? Are the cholesteric dislocations
immune to the rewiring?

The same questions were asked previously” while describing
a controlled generation of the double-helix entanglements
(levogyres and dextrogyres) by application of a tensile strain
to a cholesteric layer. The immunity against the rewiring of the
internal crossings in double-helix tangles was discussed briefly
in ref. 12. It was stressed there that the edge dislocations in
cholesteric layers confined between the mica sheets separate
fields with N and N + 1 cholesteric pitches. Therefore, they
should not be seen as one-dimensional lines but rather as
linear objects having two different sides (depicted with yellow
and red lines in Fig. 9d-f and 10) which are adjacent to the N
and N + 1 fields, respectively. In the experiments reported here,
the two types of side differ by their behavior during collisions.
Collision of the N-type (yellow) sides of two coplanar disloca-
tions appeared to be immune to the rewiring, and for this

Fig. 8 Tangle — necklace rewiring. (a)—(c) Microscopy images. (a) Transformation [4] — 2(2) generates the chain of two bangles. (b) Transformation of
the tangle (6) into a chain of three tangles (2) (bangles). (c) Transformation of the tangle (8) into a chain of two bangles. (d) Numerator closure of the
tangle (8) produces a link of two loops, AB and CD. The two loops are linked four times. The linking number is thus L = 4. (e) The Peach—Koehler force
given by egn (15) alters the shape of the yellow loop AB and leads to self-collisions inside the dashed circles. (f) Due to the rewirings detailed in Fig. 9
below, the loop AB belonging to the tangle (8) is split into a chain of four bangles tethered to the blue loop CD.
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reason the double-helix tangles’” could be wound up under
dilation strain. In contrast, as we will see below, collisions of
the (N + 1) type (red) sides of two coplanar dislocations lead to
the rewiring (Fig. 8d and f). A more detailed discussion of the
immunity against the rewiring is postponed to another paper.

6 Generation of the necklace state by
the tangle—necklace rewiring

Fig. 3 shows how the necklace state is generated by the
isotropic-cholesteric phase transition. As already stated in
Section 3.4, the pattern of dislocations resulting from the phase
transition (see Fig. 3e) is more complex than the one generated
by the strain pulse,'” because, in addition to dislocations with
Burgers vectors b = p, it also contains dislocations with Burgers
vectors b = p/2, indicated with white arrows in Fig. 3e.

Moreover, during its decay, the skein of dislocations shown
in Fig. 3e contains the levogyre double-helix tangles labeled t1
and t2 coexisting with the necklace segments labeled n1 and
n2. During the subsequent decay, all double-helix tangles are
rewired into necklaces.

6.1 Double-helix tangle-necklace rewiring

Three experimental examples of the double-helix tangle —
necklace rewiring are shown with a better resolution in
Fig. 8a (see Video S5), Fig. 8b (see Video S6) and Fig. 8c (see
Video S7). In the first one in Fig. 8a, the tangle (+4) with four
crossings is transformed into the necklace made of two ban-
gles: (+4) — 2(+2). In the second one in Fig. 8b, the tangle (+6)
with six crossings is transformed into the necklace made of
three bangles: (6) — 3(+2). The last one in Fig. 8c corresponds
to the theoretical scheme depicted in Fig. 8d-f. In Conway’s
notation, it can be described as (+8) — 4(+2).

The double-helix tangle with eight crossings in Fig. 8d has
four extremities: A, B, C and D. They are connected in pairs: A is
connected with B (this connection is visible in Fig. 8c) and C is
assumed to be connected with D. With its numerator closure,’
this tangle +8 becomes part of a two-component link made of
two loops AB (yellow) and CD (blue) linked four times. The
linking number is thus L = 4.

The subsequent evolution of this two-component link is
depicted in the series of six images in Fig. 8c, as well as in
the three schemes shown in Fig. 8d-f.

As already noted above, dislocations with the Burgers vector
b = p separate fields with different numbers N of full cholesteric
pitches lodged between the mica surfaces. In particular, in
Fig. 8c and d, the number of cholesteric pitches is N + 1 inside
the loop AB and N outside of it. During the subsequent
evolution, the shape of the loop AB changes under the action
of the Peach-Koehler force discussed previously in Section
4.2.3.1.

6.1.1 Rewiring due to the action of the Peach-Koehler
force. For fpx > 0, the segment AB of the numerator closure
is pulled toward the double-helix tangle, as shown in Fig. 8d
and e, and collides with it. This collision leads to rewiring

This journal is © The Royal Society of Chemistry 2025
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events inside the dashed circles. By this means, the necklace
shown in Fig. 8f is formed. For better visibility, details of these
collisions are depicted at a higher magnification in Fig. 9 (see
Video S8).

7 Discussion

7.1 Conservation of the linking number during tangle-
necklace rewiring

To our knowledge, rewiring of tangles into necklaces has
neither been observed nor theoretically considered previously.
It does not involve, as expected, the crossings between the two
components of the (2L) link but only one of its two components
and results in its transformation into L loops, each linked once
with the second component. In the example of Fig. 8c-f, three
rewiring events inside the dotted circles split the yellow AB
component of the two-component link with the linking number
L = 4 into a five-component link made of four bangles linked
once each (L = 1) with the blue component CD.

In terms of the Conway notation,™ in all of the above
examples, the two-component links (2L) with L = 2, 3 and 4
made of 2-tangles with 2L horizontal twists are rewired into
necklaces made of L bangles tethered to cargo loops. Thus, the
tangle — necklace rewiring (2L) — L(2) conserves the linking
number L.

7.2 Chirality of kinks and necklaces

Our experiments have shown that, besides its geometrical
details, the necklace state generated in the 5CB/CB15 mixtures

~ Py
| Az : dy%ﬁ

Fig. 9 Detailed view of the tangle — necklace rewiring. (a) Perspective
view of the double-helix tangle shown in Fig. 8d. The crossings inside the
tangle are immune tot the rewiring, as explained in ref. 7. The crossing aff +
70 inside the dotted circle and the two other equivalent crossings undergo
the rewiring aff + y6 — oy + Bo. (b) The rewiring detailed in panels (d) and
(e) produces three loops tethered to the blue dislocation. (c) The same
after relaxation. (d)—(f) Detailed view of the aff + y0 — ay + S rewiring.
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has another, even more striking, feature: it is chiral, as stated in
Section 4.2 (see Fig. 4). The chirality of the necklace is a
consequence of the fact that in the 5CB/CB15 mixtures all
bangles are tethered only to the positive kinks of the cargo
loops (see Fig. 4d and 10b) and not to the negative ones (see
Fig. 4d and 10a).

The configuration of the bangle shown in Fig. 10b is
depicted with more details, in a perspective view, in Fig. 10c.
Its symmetry can be analyzed as follows. Let us walk on the
cargo loop in the x-direction indicated by blue arrows. This
direction is such that, during the walk, the fields with N+ 1 and
N pitches are located, respectively, on the left (red) and right
(yellow) sides. The green unit vector ny 41, orthogonal to the
direction of the walk, is directed from the right to the left side.
After the ascent of the kink during the walk of the length Ax
(turquoise arrow) in the x-direction, the level z increases by +p,
as indicated by the yellow arrow p. The triad of the mutually
orthogonal vectors (Ax,ny x.1,p) is right-handed.

The same analysis applied to the —p kink in Fig. 10a would
deliver the triad (Ax,ny ~+1,p) With the opposite left-handedness
because the vector —p would be pointing down.

In conclusion, kinks on edge dislocations, in all kinds of
layered systems, are chiral and their handedness, right or left,
is determined by their sign “+” or “—".

Let F,, be the energy of the kinks with the handedness h =
“right” or “left”. In non-chiral systems (such as Smectic A), F,
cannot depend on the handedness h. On the contrary, in
cholesterics which are chiral themselves, kinks with the

top view

side view

ot~
b [ P

Fig. 10 Chirality of kinks and necklaces. The bangles can be tethered to
kinks of the cargo loops in two different manners. (a) Bangle tethered to
the —p kink. (b) Bangle tethered to the +p kink. Only this configuration is
observed in our experiments with 5CB/CB15 cholesteric mixtures. (c) By
analogy with the right-handedness of the (x,y.z) reference frame, the triad
(Ax,ny n+1.P) Of three orthogonal vectors defines the right-handedness of
the system "kink + bangle”. Ax is the displacement in the x-direction along
the dislocation. nyn+1 iS @ unit vector orthogonal to the dislocation
directed from the field with N cholesteric pitches to the adjacent field
with N + 1 pitches. p is the displacement in the z-direction due to the
presence of the kink.
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opposite handedness can have different energies F,, and can
differ in their detailed structure, as has been found
previously.>*

For the same symmetry reasons, the energy of kinks bearing
bangles can also depend on their handedness. As our observa-
tion indicates that the bangles are tethered exclusively to kinks
with the positive handedness defined in Fig. 10c, we conclude
that this configuration has lower energy than the one with the
negative handedness, shown in Fig. 10a.

7.3 Stability of necklaces in the limit of the infinite pitch

The radius 7, of the cargo loop given by eqn (19) decreases
when A, grows and tends to zero when h,;, tends to Ay. For
hmin > hu, the cargo loop becomes unstable and collapses. Our
experiments have shown the collapse of the cargo loop driven
by an excessive increase of the gap thickness %,,;, leads to the
collapse of the necklace as a whole. Whereas, in contrast, as
long as Ay, is large enough, the cargo loop bearing bangles
remains stable.

The critical thickness of the order of Ay given by eqn (11) is
proportional to the equilibrium pitch p, so that it diverges in
the limit py — oo0. As, in this limit, the cholesteric phase
becomes equivalent to the nematic phase, we can infer that
entanglements of disclinations in nematics confined in the
cylinder/cylinder gap should always decay into the defect-less
state in agreement with the experiment described above in
Section 2.

7.4 Inchoate decay of skeins of nematic disclinations in the
presence of fibers or colloidal particles

Let us emphasize, however, that in the presence of spherical
inclusions or cylindrical fibers immersed in nematics, the
decay of skeins of disclinations is incomplete because it leads,
respectively, to knots or links tethered to inclusions® and to
disclination loops (unknots) tethered to fibers.”** These topo-
logically non-trivial systems of defects owe their survival to the
boundary conditions for orientation of molecules on surfaces
of the spherical, cylindrical and other topologically more-
complex inclusions. Thus the anchoring of the director field
brings about the interplay between topologies of confining and
inclusion-related surfaces and fields.*®

8 Conclusions
8.1 Necklaces as composite defects

The liquid crystal droplet maintained by capillarity between
curved mica surfaces still has the overall genus-zero topology of
a sphere. If the anchoring direction on mica surfaces was not
parallel but orthogonal to them, like it is on the surface of the
lateral meniscus, topological theorems®® would necessarily
imply the presence of a global topological charge of 1. In our
experiments, the boundary conditions at the drop’s meniscus
and mica surfaces are different and make the situation more
complex.

This journal is © The Royal Society of Chemistry 2025
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Energetically stable straight dislocation lines in dihedral
wedge confinement and more complex loops in thickness-
varying confinement between cylindrical mica sheets enrich
the system’s complexity much further, meaning that disloca-
tion defects are inherently present in our experimental system
due to the varying number N of the cholesteric quasi-layers. The
existence of long-term-stable bangles and tangles of disloca-
tions as a result of a relaxation (decay) after the disorder-order
isotropic-cholesteric transition is particularly interesting
because it is not necessarily the lowest-energy state that the
system could adopt while complying with surface boundary
conditions and thickness gradients. As an example, the lowest-
energy state for dislocations in a wedge confinement geometry
(Fig. 5) would correspond to the shortest edge dislocations in
the middle of the wedge cell,>* but we also find long-lived (thus,
at least metastable) kinks and bangles of such dislocation lines
(Fig. 5). The localized composite defects of necklaces are also
particularly interesting, potentially indicating that straining
cholesteric pitch by complex gradients of cholesteric layer
thickness can stabilize a host of localized defects that otherwise
would be destined to disappear. Furthermore, our study reveals
that the defect-generating disorder-to-order transition leads to
rather slowly-decaying defect networks.

8.2 Genesis of dislocations during the first-order isotropic-
cholesteric phase transition

In contrast with the cosmological Kibble-Zurek mechanism
invoked in ref. 24 and 25, dislocation defects in cholesterics are
forming as a result of the merging of cholesteric droplets
nucleated inside the isotropic phase with different orientations
of the helical axis. Moreover, various metadefects, such as the
double-helix tangles, can pre-exist within the individual dro-
plets like those studied earlier experimentally”® or by means of
numerical modeling.?” This, along with (meta)stability of ban-
gles and kinks, could be among the factors responsible for such
a slow decay of cholesteric defect networks.

8.3 Theoretical consequences

Our study demonstrates the need for theoretical explorations of
how chirality and the quasi-layered nature of cholesterics affect
the slow defect dynamics during phase transitions from the
disordered state to the long-range ordered confined liquid
crystal state.

Our study may provide insights for understanding similar
defect transformations in other condensed matter systems,
ranging from chiral magnetic colloids to solid-state noncen-
trosymmetric magnets,”®° and even more distant branches of
science and engineering. From the standpoint of technological
applications, the complex (meta)stable structures that we
observe could potentially be used to control solitonic beams of
light.?!

Remarkably, in chiral nematics, knots of non-singular dis-
clinations within topological solitons like heliknotons can be
related to topological invariants like Hopf indices and remain
stable due to the soliton stability.****

This journal is © The Royal Society of Chemistry 2025
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