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Coupling anisotropic curvature and nematic
order: mechanisms of membrane
shape remodeling

Yoav Ravid,a Samo Penič,b Luka Mesarec,b Nir S. Gov, a Veronika Kralj-Iglič,c

Aleš Iglič *b and Mitja Drab *b

This study theoretically investigates how anisotropic curved membrane components (CMCs) control

vesicle morphology through curvature sensing, nematic alignment, topological defects and volume

constraints. By comparing arc- and saddle-shaped CMCs, we identify a rich spectrum of steady-state

phases. For fully CMC-covered vesicles, arc-shaped components drive a pearling-to-cylinder transition

as nematic interactions strengthen, while on partially CMC-covered vesicles the saddle-shaped CMCs

stabilize necks between the convex regions of bare membrane. We map the steady-state shapes of

vesicles partially covered by arc- and saddle-shaped CMCs, exposing how different vesicle shapes

depend on the interplay between nematic interactions and volume constraints, revealing several novel

phases. By investigating the in-plane nematic field, we find that topological defects consistently localize

to high-curvature regions, revealing how intrinsic and deviatoric curvature effects cooperate in

membrane remodeling. These findings establish a unified framework for understanding how proteins

and lipid domains with anisotropic intrinsic curvature shape cellular structures—from organelle

morphogenesis to global cell shape.

1. Introduction

Membranes are fundamental structures in cells that act as
barriers between compartments and facilitate essential biolo-
gical processes. These membranes dynamically change shape
to accommodate various cellular functions, influenced by inter-
actions with membrane proteins and lipids.1–6 Understanding
how these shape changes occur is crucial to understanding the
intricate workings of a cell. An integral part of lipid membranes
is curved membrane components (CMCs), aggregates of pro-
teins or lipid rafts7 that can move laterally along the membrane
surface, bend the membrane locally, and are sensitive to local
membrane curvature.

There is ample experimental evidence to suggest that CMCs
have different curvature preferences along different directions,
which means they are intrinsically anisotropic. A notable
example of anisotropic CMCs is the family of BAR domain
proteins.1,8 Amphiphysin 1, an N-BAR protein, concentrates in

membrane nanotubes and induces tubulation.9,10 Another
example is IRSp53, a protein that contains an I-BAR domain
and exhibits a strong preference for negatively curved mem-
branes and is found on the inner leaflet of membrane nano-
tubes pulled from giant unilamellar vesicles.3,11–13

The binding of BAR domains to lipid bilayers is mediated by
electrostatic interactions. The concave, positively charged sur-
face of BAR domains attracts negatively charged lipids, initiat-
ing membrane contact at the tips. As hydrophobic loops insert
into the bilayer, local bending occurs due to leaflet asymmetry.
Stronger electrostatic attraction at the BAR domain edges
promotes lipid demixing, enhancing curvature induction.14

The electric field strength increases with curvature radius,
which means that BAR proteins with more flat intrinsic curva-
ture exert greater electrostatic pull, ultimately molding the
membrane to match their shape.

Furthermore, the interplay between curvature and electro-
statics at protein–protein interfaces influences binding affinity
and residue composition. While charged and polar residues
dominate small interfaces due to pronounced electrostatic
effects, larger interfaces tend to bind more due to hydrophobic
interactions. Positively charged domains (e.g., BAR proteins,
antimicrobial peptides) preferentially bind to negatively
charged lipids, inducing local inward bending by attracting
the anionic membrane surface.15 In saddle (Gaussian)

a Department of Chemical and Biological Physics, Weizmann Institute of Science,

Rehovot 7610001, Israel
b Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,

1000 Ljubljana, Slovenia. E-mail: mitja.drab@fe.uni-lj.si, ales.iglic@fe.uni-lj.si
c Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of

Ljubljana, 1000 Ljubljana, Slovenia

Received 18th June 2025,
Accepted 2nd September 2025

DOI: 10.1039/d5sm00620a

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
W

ay
su

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
6/

11
/2

02
5 

7:
38

:1
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0001-7774-1139
https://orcid.org/0000-0002-7895-343X
https://orcid.org/0000-0002-2481-7598
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00620a&domain=pdf&date_stamp=2025-09-11
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00620a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM021044


8408 |  Soft Matter, 2025, 21, 8407–8428 This journal is © The Royal Society of Chemistry 2025

curvature, electrostatics can promote pore formation where
charged residues stabilize high-curvature edges via lipid demix-
ing and dipole rearrangements, so saddle-like anisotropic
CMCs can stabilize pores.16 Ionizable groups further modulate
this effect: protonation/deprotonation in response to curvature
changes (e.g., lysine at pore rims) can switch between stabiliz-
ing negative or saddle curvature. In this way, electrostatics not
only selects the curvature sign but also couples topological
changes to chemical state.

Coupling between the non-homogeneous lateral distribution
of membrane components and the local anisotropic membrane
curvature has also been recently indicated in the Golgi, where
some of the membrane components are concentrated on the
bulbous rims of the Golgi vesicles and where the difference
between the two principal membrane curvatures is very large.17

Similar phenomena have also been observed in photoreceptor
discs,18,19 endoplasmic reticulum shapes,20 and flattened endo-
vesicles of the erythrocyte membrane.21 These examples indicate
that the coupling between the non-homogeneous lateral distri-
bution of generally anisotropic membrane components may be a
general mechanism stabilizing highly curved membrane struc-
tures and demonstrate the importance of anisotropic membrane
components in driving cellular processes.5,7,10,22–31 Sometimes,
several types of curved-like proteins may be working in a
coordinated manner to induce membrane morphologies, and
tubulation can be studied in the context of a mixture of positive
and negative curvature proteins.32

Numerical simulations of membranes that are not bound by
constraints of axisymmetrical shapes have been a valuable tool
in understanding the coupling between membrane curvature
and curved membrane components (CMCs) that can drive
feedback loops by curvature sensing and clustering. In a
comprehensive review by Ramakrishnan et al., shape transfor-
mations of membranes with an in-plane nematic field were
explored for partial and full coverage fraction.33 Similarly, an
open source tool was developed to study the effects of nematic
interactions used for the analysis of real membranous
systems.34

However, studies of membrane deformation that include
anisotropic CMCs in combination with the constraint of fixed
volume remain poorly understood and to our knowledge,
lacking. Here, we expand upon our previous work35 and present
new numerical results obtained from Monte Carlo simulations

of triangulated, closed membrane shapes using anisotropic
CMCs which interact nematically. We explore how the sponta-
neous curvature of CMCs (arc-shaped or saddle-shaped), CMC
concentration, and strength of nematic ordering, together or in
the absence of constraints on volume, influence the overall
membrane shape. We first start with vesicles fully covered with
arc- and saddle-like CMCs and find that the steady-state shapes
are mostly cylindrical and globally saddle-shaped, respectively.
We find a pearling-to-cylinder transition that occurs at low
nematic interaction strength. When the vesicles are only half
covered by non-interacting arc-shaped CMCs, with constraints
of a constant volume, we find that there is an accelerated
tendency toward global prolate shapes in comparison with
empty vesicles, which can sustain an oblate phase up to larger
relative volumes. When nematic interaction is present, we
explore the phase diagram in the space of relative volume
and CMC interaction strength, and characterize a boomerang-
like phase that marks the transition from the oblate to the
prolate phase. For saddle-like CMCs, we find that full coverage
and volume constraints can lead to global saddle shapes with
the formation of singular membrane protrusions. When the
concentration of CMCs is decreased, the volume-binding
strength phase diagram features stomatocyte, oblate-like, and
protrusive phases. We find that at small saddle-like CMC
concentrations, these have a tendency to aggregate in the necks
between two convex parts of the membrane, which leads to the
overall elongation of the vesicles. We find that simple physical
interactions between anisotropic CMCs and their associated in-
plane nematic fields can drive diverse membrane transforma-
tions, such as tubule formation and pore creation.36

2. The model
2.1. Membrane–protein interactions

The theoretical framework is grounded in the derivation
of the membrane bending energy and anisotropic inclusion
interactions.37–40 The model describes the membrane as a 2D
anisotropic continuum surface covered with an arbitrary frac-
tion of CMCs. The elastic energy of a small membrane section
is lowest when its principal curvatures C1 and C2 align with the
intrinsic curvatures of the anisotropic CMCs, C1m and C2m, at
that location. The level of alignment can be quantified by

Fig. 1 (a) Example of an arc-shaped CMC with Hm = Dm = 0.25 (C1m = 0.5 and C2m = 0). (b) Example of a saddle-shaped CMC, with Hm = 0, Dm = 0.5. (c)
The mismatch between the principle curvatures of a membrane protein and the local curvature of the triangulated membrane. Here, n- is the orientation
of the CMC and t- is its perpendicular direction in the local tangent plane.
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comparing the orientations of the local membrane curvature
tensor C and the intrinsic membrane curvature tensor Cm.

C ¼
C1 0

0 C2

 !
; Cm ¼

C1m 0

0 C2m

 !
:

These two tensors—describing the directions of the membrane
and CMC principal curvatures, respectively—are generally
rotated relative to each other by an angle o in the tangent plane.
The mismatch tensor is defined as M = RCmR�1 � C, where R is
the rotation matrix that quantifies the angular disparity:38–40

R ¼
coso � sino

sino coso

 !
:

A CMC reorients in the tangent plane by o radians to match the
membrane curvature and minimize energy, reflecting the ener-
getic cost of deformation (see Fig. 1(b)). The approximate elastic
energy, E1, is expressed as a series expansion in the independent
invariants of the mismatch tensor M. Using the trace and
determinant of M as invariants yields the following expres-
sion:38–41

E1 ¼
ð
K1

2
ðTrMÞ2 þ K2DetM dA; (1)

integrated across the entire vesicle. Substituting the bending
moduli K1 and K2 gives:31,38–40

E1 ¼
ð
2K1 þ K2ð Þ H �Hmð Þ2�K2 D2 � 2DDm cos 2oþDm

2
� �

dA;

(2)

where D = (C1� C2)/2 is the curvature deviator, while Hm = (C1m +
C2m)/2 is the intrinsic mean curvature, and Dm = (C1m � C2m)/2
the intrinsic curvature deviator. The curvature deviator D can be
nondimensionalized as d = DR, where R is the radius of a sphere
with the same volume V and area A as the vesicle. In the case of
an isotropic membrane where Dm = 0, it becomes evident that
eqn (2) is equal to the Helfrich bending energy density42

described by Eb = kc
2(2H � C0)2 + kGK, where H = (C1 + C2)/2 is

the mean curvature, C0 is the spontaneous curvature, K = C1C2 is
the Gaussian curvature, and K1 = kc and K2 = kG, where kc and kG

are the bending and splay moduli, respectively.38,40,41 To com-
pute the principal curvatures at each vertex of a triangulated
membrane mesh, we adapt the method of Ramakrishnan et al.33

with several key modifications (see Appendix B.1). While our
method adopts the same CMC–CMC interaction model as
Kumar et al.,43 it differs fundamentally in the formulation of
membrane bending energy (eqn (1)).

2.2. Isotropic protein–protein binding

Two neighboring CMCs may bond to each other on the
membrane, thereby lowering the overall energy:

E2 ¼
�w i; j contain CMC

0 else

(
(3)

Here, the type and binding strength w are vertex properties that
reflect local aggregation. Throughout this paper, we refer to this

interaction as isotropic bonding. Such bonding is commonly
observed in surfactants and proteins, as it results from sponta-
neous self-assembly on the membrane driven by hydrophobic
and other intermolecular effects.44,45

2.3. Nematic protein–protein interactions

Anisotropic CMCs exhibit nematic interactions similar to those
observed in liquid crystals. The energy between neighboring CMCs
will be lower if their principal curvatures are aligned, which we
model using Frank’s free energy density for nematic liquid crystals:46

E2 ¼
ð

k0G
2
r �~nð Þ2þk

0
c

2
r �~t
� �2� �

rvdA (4)

Here, r represents the covariant derivative on the curved surface, -
n

denotes the orientation of the inclusion, and
-

t signifies its perpendi-
cular direction in the local tangent plane. The constants k0G and k0c
correspond to the elastic constants governing in-plane nematic
interactions. The variable rv takes a value of 1 if a CMC is present
on a vertex; otherwise, it is 0.

A discrete form of this energy is employed to facilitate
implementation in the Monte-Carlo (MC) simulations. If we
assume a one-constant approximation k0G ¼ k0c

� �
; eqn (4) can be

rewritten in a way that makes the implementation suitable for
MC simulations (Lebwohl–Lasher model):47

E2 � �
ðXN
k¼1

Ek;kLL

X
i4 j

3

2
~ni �~nj
� �2�1

2

� �
rvdA: (5)

Here, ELL is the strength of the nematic interaction. The
sum

P
i4 j

is over all the nearest neighbor (i, j) vertices on the

triangulated grid, promoting alignment among the neighbor-
ing orientation vectors. Here, k is the summing index in a mesh
of N vertices. An even simpler form of this approximation for
the in-plane orientational field is the XY model on a surface:48

E2 � �w
ðX
i4 j

~ni �~nj
� �2

dA: (6)

Here, w represents the strength of the direct interaction
constant, and the summation runs over all protein–protein
pairs. The sum of E1 and E2 is minimized numerically, while
E2 is given by either isotropic (eqn (3)) or nematic binding
(eqn (6)). Isotropic interaction reflects the tendency of CMCs to
self-aggregate, while nematic interaction also describes the
tendency to align CMCs’ principal curvatures. All CMCs in this
work are either arc or saddle-shaped (see Fig. 1(a)).

The details of the Monte-Carlo procedure are given in
Appendix A and the details of the mesh generation and finding
the principal curvatures are given in in Appendix B.1.

2.4. Reduced volume

A volume constraint on the vesicle shapes can be implemented
by adding an energy term:

E3 ¼
kv

2
�v� 6

ffiffiffi
p
p

V

A1:5

� �2

(7)
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Here, the %v is the target reduced volume that can vary from 0 to 1.
A sphere has a reduced volume of 1. A and V are the area and the
volume of the vesicle, respectively. The volume modulus kv was
determined to be of the same order of magnitude as the bending
and bonding terms. The sum of E1, E2 and E3 is minimized
numerically.

2.5. Order parameter

We want to quantify the degree of order between neighboring
anisotropic CMCs. For this reason we can define the nematic
order of the inclusion at vertex i by

Si ¼
1

2
3 cos2 y� 1
� �

; (8)

where ymeasures the angle between directors (or principal curvature
C1m) of neighboring CMCs on the membrane. The more aligned the
neighboring CMCs are, the more this value approaches unity. In our
numerical approach it is calculated by a Python script: for every CMC
occupied vertex, it identifies neighboring vertices and uses 8 through
a dot product for the ones which are also occupied. An arithmetic
average of these is then calculated and recorded in a value Si. The
average nematic order across the entire membrane is then

hSi ¼ 1

N

XN
i¼1

Si: (9)

2.6. Mean cluster size and the gyration tensor

We can define a mean cluster size hNi for simulations where the
vesicles are not fully covered by CMCs. If we index all clusters so
that i has Ni vertices, hNi is calculated as:

hNi ¼

P
i

NiP
i

1
¼ Nvertex

Nclusters
: (10)

The mean cluster size is not a reliable way to differentiate
between phases. While all phases contain large clusters, their
structure and organization vary significantly. This measure is
heavily influenced by the total number of clusters, giving too
much weight to small, single-vertex clusters. As a result, it
introduces too much noise to effectively separate most phases.

To clearly distinguish phases in which CMCs form large
condensed clusters, we instead rely on morphological measures.
The shape of the vesicle is captured through the eigenvalues of
the gyration tensor, li

2. The gyration tensor49 is defined as the
average over all the vertices, with respect to the center of mass,
similar to the moment of inertia tensor for equal-mass vertices:

RGij
¼ rirj
� �

¼ 1

N

X
vertices

x2 xy xz

xy y2 yz

xz yz z2

0
BBB@

1
CCCA: (11)

This can be visualized by a unique ellipsoid which has the same
gyration tensor

xTRG
�1x ¼ x � e1ð Þ2

l12
þ x � e2ð Þ2

l22
þ x � e3ð Þ2

l32
¼ 3: (12)

The eigenvectors (ei) of the gyration tensor are the directions of
the semi-axes of the equivalent ellipsoid and the eigenvalues
are their length squared divided by 3, ordered by their size: l1

2 r
l2

2 r l3
2.

3. Materials and methods

The simulations were run using trisurf-ng.45,50 Briefly, trisurf-
ng simulates the vesicle as a triangulated, non-interacting mesh
in 3D, where each vertex in the network can either be bare or
occupied with a single CMC with an intrinsic curvature. The
CMCs are mobile on the membrane between consecutive
simulation steps, which is enabled through random vertex
translations and random edge flips at each simulation step
(for details, see Appendix A). A single CMC can therefore diffuse
freely over the membrane until its energy contribution to the
total energy of the system is minimized. All the parameters of
the simulation are included in the so-called tape file. In the
tape file, all the parameters are set prior to each simulation,
including the size of the mesh (given by the integer nshell,
where N = 5�nshell2 + 2 and N is the number of vertices in a
mesh, while the number of triangles is 2N), CMC fraction,
curvature and volume constraints. The fraction of CMCs on the
membrane is set at the beginning of the simulation and is kept
constant r = NCMC/N throughout. Each vertex is assigned one-
third of the area of its adjacent triangles; therefore, the CMC
vertex density is equivalent to its area density. All CMCs
are initially assigned to the membrane randomly. In a typical
simulation, nshell = 20 (N = 2002), mcsweeps = 105, iterations =
500 (MC steps) (see Appendix A). Simulations were run in
parallel, each on a separate core of a 20-core PC, with one
needing usually 16 hours to finish. The resulting VTU files were
viewed and prepared for figures publication in ParaView, but
further analysis and graph generation were done by separate
Python scripts. The bending rigidity of the simulated mem-
branes is 20kBT throughout. The curvature of the CMCs
throughout the paper is given in units of 1/lmin, which means
that the spontaneous curvature C1m = 0.25 corresponds to the
curvature of the sphere with radius 4lmin. Similarly, all energy
values throughout the paper are given in units of kBT, where kB

is the Boltzmann constant and T absolute temperature.
The simulations were run using trisurf-ng.45,50 Briefly, trisurf-

ng simulates the vesicle as a triangulated, non-interacting mesh in
3D, where each vertex in the network can either be bare or
occupied with a single CMC with an intrinsic curvature. The
CMCs are mobile on the membrane between consecutive simula-
tion steps, which is enabled through random vertex translations
and random edge flips at each simulation step (for details, see
Appendix A). A single CMC can therefore diffuse freely over the
membrane until its energy contribution to the total energy of the
system is minimized. All the parameters of the simulation are
included in an input file, including the size of the mesh (given by
the integer nshell, where N = 5�nshell2 + 2 and N is the number of
vertices in a mesh, while the number of triangles is 2N), CMC
fraction, curvature and volume constraints. The fraction of CMCs
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on the membrane is set at the beginning of the simulation and is
kept constant r = NCMC/N throughout. All CMCs are initially
assigned randomly over the membrane. In a typical simulation,
nshell = 20 (N = 2002), mcsweeps = 105, iterations = 500 (MC steps)
(see Appendix A). Simulations were run in parallel, each on a
separate core of a 20-core PC, with each one needing usually 16
hours to finish. The resulting VTU files were viewed and prepared
for publication using ParaView, but further analysis and graph
generation were done by separate Python scripts. The bending
rigidity of the simulated membranes was set to 20kBT throughout.
The curvature of the CMCs throughout the paper is given in units
of 1/lmin, which means that the spontaneous curvature C1m = 0.25
corresponds to the curvature of the sphere with radius 4lmin.
Similarly, all energy values throughout the paper are given in units
of kBT, where kB is the Boltzmann constant and T absolute
temperature.

4. Results
4.1. Fully occupied vesicles with no volume constraints

We first investigate the steady-state shapes of vesicles comple-
tely covered with CMCs (r = 1) without imposing volume
constraints. Although 100% CMC coverage is experimentally
impossible, calculating this theoretical limit is valuable for
understanding the maximum potential of shapes that are
nearly or fully covered by CMCs.

4.1.1. Arc-shaped CMCs promote the formation of elon-
gated cylindrical vesicles (Hm = Dm 4 0). The binding energy-
spontaneous curvature phase diagram for vesicles fully covered
with arc-shaped CMCs, without volume constraints, is shown in
Fig. 2. Direct nematic interaction energy w and intrinsic curva-
ture of CMCs increase along the x and y axes, respectively.
Generally, equilibrium shapes are cylindrical with the radius of
the cylinders determined by the curvature of the CMCs. In the

Fig. 2 (a) Vesicles fully covered (r = 1) with arc-shaped CMCs as function of the nematic interaction energy w and intrinsic mean curvature Hm.
Steady-state shapes are generally all cylinders (shapes (B) and (C)). The pearling steady-state shapes in (A) arise as a consequence of neighboring CMCs
assuming random orientations. Even in the absence of nematic interactions between neighboring CMCs, the membrane conforms to their spontaneous
curvature. The heat map gives the total energy of each shape per vertex (E1 + E2 from eqn (2) and (6)), which decreases with w. (b) A heat map of the
average nematic order hSi reveals that it increases with w, but is most pronounced when CMCs are less curved. The shapes characterized by junctions or
necks have a low degree of nematic order (the pearling phase), as seen in the close up of Fig. 5(A). Orange lines show the direction of the principal CMC
curvature C1m.
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case of no interaction w = 0 and low spontaneous curvature,
(bottom left corner of Fig. 2), all CMCs have random orienta-
tions, resulting in a sphere. The heat map of Fig. 2 shows the
energy density of each shape. When the neighbor interaction is
negligible (w = 0), the energy is predictably positive due to
membrane bending (the leftmost column of Fig. 2), while an
increase in w increases the nematic order and lowers the overall
energy.

Fig. 3 shows the convergence of the bending energy and
volume for three shapes of Fig. 2, as function of MC steps. We
see that convergence is achieved in all cases, but at different
rates. At Hm = 0.5 and w = 0, the vesicle forms a shape composed
of smaller spheres joined together to form a series of pearls
connected by thin necks, the pearling phase (Fig. 2(a)). In the
neck regions, Si is low. An gradual increase in w from zero leads
to fewer necks as the neighboring CMCs align to form adjoined
smaller cylinders with large nematic order hSi (Fig. 4). Fig. 5
shows close-ups of the steady-state shapes in Fig. 2 with the color
map indicating the local nematic order parameter Si (eqn (8))
and the average nematic order of the shapes hSi (eqn (9)).

The bottom row of Fig. 2(a) reveals that for spontaneous
curvature Hm = Dm = 0.25 and increasing w, the steady-state
shapes change from a sphere to a prolate state of different radii,
in a nonmonotonous manner. This process is analyzed in
greater detail in Fig. 6. Each prolate shape is approximately
an ellipsoid that is characterized by two axes along its symme-
trical planes. As the area is kept constant, an increase in w from
zero results in an elongation of the axis in one direction and a

narrowing in another (Fig. 6(a)–(c)). As w increases from zero, the
CMCs begin to align with each other, transforming the initial
spherical shape into an elongated prolate phase (Fig. 6(c)),
resulting in a decrease of bending energy and reduced volume
(Fig. 6(d) and (e)). The in-plane rotation accompanying this
change is reflected in the decrease in the average angle between
neighboring CMCs (Fig. 6(f)). hSi monotonically increases with
increasing w (Fig. 6(g)). Since the CMCs do not perfectly align
perpendicular to the axis of the tube, the tube has a radius that is
smaller than the spontaneous radius of curvature of the CMC. As
w increases, the CMCs align more perfectly with respect to each
other, and more perpendicular to the tube axis, which increases
in radius until it equals the radius of the CMC for large w.

4.1.2. Saddle-like CMCs promote global saddle shapes
(Hm = 0, Dm 4 0). Saddle-like CMCs are inherently frustrated
on the convex surface of the vesicle. For these CMCs, Hm = 0 and
Dm 4 0. The shape of the saddle of the CMCs is determined by
the curvature of the hyperbolic paraboloid which is in turn
defined by the deviatoric component Dm; a flat saddle corre-
sponds to Dm = 0, while curved saddles have non-zero values
Dm. Independently varying Dm and w leads to the phase diagram
shown in Fig. 7. For non-interacting CMCs, w = 0, vesicles
remain spherical, as in the case of arc-shaped CMCs, due to
their random orientations. By contrast to arc-shaped CMCs,
there is no spontaneous budding even as the spontaneous
curvature increases. As w increases, the vesicles deform from
the spherical shape. In the case of Dm = 0.75, the vesicle
develops globally flattened regions of the membrane with

Fig. 3 Convergence of total energy and reduced volume (eqn (2) and (6)) the evolution of inset shapes labeled (A), (B) and (C) (in Fig. 2) are shown in red
and green, respectively. Convergence is achieved within 500 MC steps, which was taken as a default number of MC steps for each simulation.

Fig. 4 (a) For vesicles that are fully covered with arc-shaped CMCs, an increase in nematic strength w from 0 to 0.8 results in an evolution of the steady-
state shapes from pearls to cylinders. The average nematic order hSi (eqn (9)) is given below each shape. (b) The pearls-to-cylinders transition is
accompanied by a steady decrease of not only bending, but also total energy. The parameters are the same as in panel (A) of Fig. 2(a).
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increasing w (see bottom row of Fig. 7). In the case of most
curved saddles (Dm = 1.2), the vesicle features a bow-tie phase.
(see top row of Fig. 7). The heat map shows that the energy
density decreases with the increase of w, consistent with
observations for arc-shaped CMCs (Fig. 2). Fig. 8 shows
the local nematic order for the steady-state shapes in
Fig. 7(b), with saddle-like CMCs and an increasing interaction
w. Larger hSi leads to more localized nematic defects, shown
in blue.

4.2. Partly covered vesicles with volume constraints

We next investigate the steady-state shapes of vesicles that are
only partially covered with CMCs, while also imposing a fixed
volume constraint. The CMC and bare regions of the
membrane are shown in blue and gray, respectively.

4.2.1. Phase diagram for vesicles half covered with arc-
shaped CMCs (Hm = Dm = 0.25). First we explore the phase
diagram of steady-state equilibrium shapes for r = 0.5, Hm =
Dm = 0.25 in the v–w plane (Fig. 9). We identify several phases:
oblate, prolate, and capped, with the boomerang and dumb-
bell phases as subsets of the prolate phase, and the mixed
phase as a subset of the oblate phase (see Fig. 9(a)). The phases
can be roughly discerned by the eigenvalues li

2 of the gyration
tensor (eqn (11)), shown in Fig. 9(b)–(d). The first eigenvalue l1

2

measures the thinness and is low for oblate shapes. The second
eigenvalue l2

2 is large for the oblate shapes (and roughly equal
to the largest eigenvalue l2

2 E l3
2), but is minimized for

elongated prolate shapes (and roughly equal to the largest
eigenvalue l2

2 E l1
2). The third eigenvalue l3

2 is largest for
shapes that are elongated along one principal axis and char-
acterizes the prolate phase. Since the separation between
boomerang, dumb-bell and prolate phase is more qualitative
than quantitative, as they are all marked by an elongated axis,
the heatmap for l3

2 shows highest values for all three. Fig. 9(e)
shows the average cluster size hNi (eqn (10)). The oblate phase
is characterized by CMC clustering on the rim to form discs (as
in the case of isotropic inclusions51). An increase in v results in
the rim of CMCs not closing up entirely, while still keeping
their approximate oblate shape. Prolate shapes are limited to
values of w r 1 and contain two sub-phases: the boomerang
and the dumb-bell. The oblate phase transitions into the mixed
phase approximately above v = 0.65, and the prolate below w =
1.5. The mixed phase is characterized by two effects: stronger

CMC clustering due to high w and reduced flatness due to large
v. The average nematic order hSi (eqn (9)) is shown in Fig. 9(f).
Predictably, hSi increases with increasing CMC alignment and
w. The capped phase is located at high v and w. Here, the
clusters form separate patches, sometimes with a pronounced
‘‘cap’’ at the tips of shape protrusions. The patch separation
results in a lower hNi, but better nematic order of CMCs with
higher hSi, both discernible on the heatmaps in Fig. 9(e) and (f).
Below w = 1 the average cluster size is r100 (Fig. 9e) and the
CMC distribution is dominated by mixing entropy and smaller
hNi. A comparison of shapes with the same interaction w but no
volume constraint is shown on the right of Fig. 9. At w = 0 and 1,
the shape is roughly spherical, then changes to the mixed and
capped phases at w = 2 and w = 3, respectively.

4.2.2. Arc-shaped CMCs (Hm = Dm = 0.25) accelerate the
oblate–prolate shape transition in comparison to bare-
membrane vesicles. We plot the v–E diagram of vesicles at
steady-state (Fig. 10(a)), that contain no CMCs, in agreement
with existing literature.52 Starting from v = 0.3 and increasing v
the steady-state shapes follow a familiar pattern of the stoma-
tocyte, oblate and prolate phases (Fig. 10(a)). The phases are
discerned from the eigenvalues of the gyration tensor li

2. There
is overlap where the oblate and prolate phases coexist, roughly
in the range v = 0.6–0.8. However, in this region, E is lower for
prolates, which extend to v = 1. We next examine how the
steady-state vesicle shapes change when they are half covered
with arc-shaped CMCs (r = 0.5), and how the v–E phase diagram
compares to the bare membrane vesicles. The results are shown
in Fig. 10(b). We now find that the oblate phase has been
pushed to exist only below v E 0.5, while the prolate phase is
now extending over a larger range of reduced volume (com-
pared to Fig. 10(a)).

The smaller regime of oblate stability is driven by the lower
mixing entropy of the CMCs on the oblate compared to the
prolate shape. The oblate phase has two flat sides where the
arc-shaped CMCs face a bending energy penalty, which is
reduced when the CMCs accumulate on the curved rim. This
is not the case for prolates, which have more uniform curva-
ture. We can observe the effect of mixing entropy by plotting the
distribution of CMCs as function of distance from the center of
mass (COM) of the vesicle (Fig. 11). When w is increased, the
CMC distribution is more pronounced on the rim of the oblate
shapes, lowering their entropy (see SI 8.3.4).

Fig. 5 A closer look at CMC alignment and the local nematic order (eqn (8)), shown as a heat map for the shapes labeled (A), (B) and (C) shown in Fig. 2.
The average nematic order hSi (eqn (9)) is given below each shape.
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4.2.3. Phase diagram for vesicles half covered with saddle-
like CMCs (Hm = 0, Dm = 0.98). We plot the v–w phase space
for the steady-state shapes of vesicles that are half-covered by
saddle-like CMCs with Hm = 0 and Dm = 0.98 (Fig. 12). The
CMC and bare regions of the membrane are shown in red

and gray, respectively. Saddle CMCs with negative Gaussian
curvature are inherently frustrated on convex membranes.
The phase diagram features a high degree of metastability,
resulting in approximate phases that often coexist for the
same v and w. This is also evident in the heatmaps of li

2,

Fig. 6 (a) Steady-state equilibrium shapes that are fully covered (r = 1, Hm = Dm = 0.25) by arc-shaped CMCs result in prolate phases for w 4 0. For a
prolate, the major and minor axes can be determined. At w = 0, the neighboring CMCs do not interact and have no effect on the orientations of their
neighbors, resulting in a spherical shape with both major and minor axes having the same length (b) and (c). Increasing w forces the neighboring CMCs to
align with each other, which leads to elongation of the vesicles (b) and (c). The bending energy per vertex has a minimum at w = 1, before starting to
increase due to stronger bonding (d). The elongation of the vesicles is most pronounced when w = 1.5 and v = 0.56 (e). The average angle between
neighboring vertices decreases as function of w (f), while the inclusion average order increases with w (g). When w is larger than 1.5, the vesicles become
less elongated and tend towards the spherical shape for large values of w (c).
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which cannot reliably distinguish between phases (not
shown). The poor reproducibility of these transitions warrants
further investigation but lies beyond the scope of this paper.
The simulations reveal four phases with ambiguous transition
boundaries: the invaginated, oblate, neck, mixed, and prolate
phases.

The invaginated phase is found at v o 0.4, with most CMCs
localized on the saddle-curved rim of the invagination. The
oblate phase appears for w o 1 and v = 0.5–0.6. The prolate
phase is restricted to v = 0.8 and w o 0.5. The neck phase
exhibits slender cylindrical protrusions with nematically
ordered CMCs, flanked by convex, CMC-free regions. Notably,
this phase persists even without volume constraints at w = 2–3
(see Fig. 12(a), right column). Heatmaps of the mean cluster
size hNi and mean nematic order parameter hSi (Fig. 12(b) and

(c)) show a monotonic increase with w, where the neck phase
corresponds to elevated hNi.

At a lower CMC density (r = 0.16), steady-state shapes display
CMC aggregation in neck regions between convex membrane
segments, resembling a pearling phase (Fig. 13(a)). For r = 0.5
and w = 3, saddle CMCs exhibit strong nematic alignment
(Fig. 13(b)).

4.2.4. Analysis of topological defects. A topological defect
(TD) on a surface arises when the order parameter Si of the
inclusions cannot be smoothly defined everywhere, leading to
singular points or lines where the order parameter abruptly
changes. TDs are characterized by their discrete topological
charge, an additive and conserved quantity.54 TDs with like
charges repel each other, whereas those with opposite charges
attract. Given these similarities to electrostatic interactions,

Fig. 7 (a) The curvature-binding strength phase diagram for steady-state shapes with saddle CMCs (r = 1). The curvature of the hyperbolic paraboloid is
given on the y-axis by Dm (Hm = 0) and w on the x-axis. When saddle CMCs are more flat (Dm = 0.75), the vesicles mirror this by exhibiting regions of flat
membrane (top row), while more curved saddle CMCs (Dm = 1.2) result in global shapes that mimic the inclusion’s curvatures (bottom row). The energy
per vertex is shown by the corresponding heatmap. (b) The average nematic order heatmap (eqn (9)) for the curvature-binding strength phase diagram
shows a gradual increase with increasing w.
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some studies55–57 suggest an electrostatic analogy to describe
the interplay between Gaussian curvature and TD configura-
tions. TDs with positive (negative) value of topological charge
are referred to as defects (antidefects).55,58 On 2D surfaces, the
topological charge corresponds to the winding number of the
nematic director field.54,59 According to the Gauss-Bonnet and
Poincaré-Hopf theorems,60,61 TDs must exist in all non-toroidal
topologies. These theorems dictate that the sum of all topolo-
gical charges (the total winding number) equals 2 for 2D
surfaces of spherical topology. In nematic ordering, the topo-
logical charge can be a multiple of half an integer.

It is well-established that Gaussian curvature strongly influ-
ences the location and number of TDs.55–57 Regions with positive
(negative) Gaussian curvature attract TDs of positive (negative)
topological charge. While TDs are energetically costly—leading
systems to avoid them, often through the annihilation of defect-
antidefect pairs into locally defect-free structures55—their
presence is frequently unavoidable due to the system’s topology.

The occurrence of TDs is most apparent when CMCs cover the
entire membrane surface and can be analyzed by studying Si and
variations of C1m orientation (Fig. 2–8). In the case of vesicles fully
covered with arc-shaped CMCs, the TDs of positive charge are
normally found on the cap of the cylindrical shapes of the prolate
phase where Gaussian curvature is positive. An example of four
defects with charge +1/2 can be seen in Fig. 14(a), which is a close-
up of the TD found on the cap of the prolate phase in Fig. 6(c).
Alternatively, when saddle-like CMCs fully cover the membrane, a
single defect of charge +1 is found on the tip of the protrusion and
two defects with charge +1/2 on either side of the base (Fig. 14(b)).
They are positioned on opposite sides to maximize separation,
consistent with the repulsion between like-charge defects. In both
these cases, the topological charge sums up to 2, in line with the
Gauss-Bonnet and Poincaré-Hopf theorems.

The electrostatic analogy for TDs holds best when the
intrinsic (direct interaction) term dominates.56,57 However,
extrinsic62,63 or deviatoric38,64 terms may also play a role,
particularly on surface patches where principal curvatures
differ. These terms can impose an external ordering field,

favoring CMC orientations that best conform to the surface
geometry. Consequently, intrinsic and deviatoric/extrinsic
terms may introduce competing tendencies.63

We compare the result shown in Fig. 14(b) to simulations of
axisymmetric studies of closed membrane shapes with saddle-
like CMCs and find good agreement with the equilibrium
steady-state shape and with the position of defects (Fig. 15).

In our example (Fig. 14(b) and 15), the deviatoric term
(eqn (2)) exerts its strongest influence along the tubular protru-
sion, where the difference in principal curvatures (i.e., the
deviatoric curvature) is greatest. This term aligns the CMCs
parallel to the protrusion, minimizing frustration. In contrast,
the less deviatoric regions—particularly the nearly spherical
base in Fig. 15—remain unaffected by this term, as the surface
is isotropic (equal principal curvatures). The deviatoric term
also has no effect at the highly curved, isotropic tip of the
protrusion.

Since the TDs in Fig. 14(b) and 15 appear in regions of high
Gaussian curvature, we conclude that intrinsic and deviatoric/
extrinsic terms do not conflict in this case. The deviatoric
term’s influence is evident along the tubular protrusion, where
it enforces CMC alignment. In contrast, considering only the
intrinsic term could yield configurations with CMCs tilted
relative to the protrusion.

5. Discussion

Our results demonstrate that anisotropic curved membrane
components (CMCs) significantly influence vesicle morphology
through curvature sensing and nematic alignment. By focusing
on the two simplest anisotropic CMCs – the arc-shaped and
saddle-shaped – we find a wider variety of steady-state phases
compared to isotropic CMCs, where only convex budding
phases were found across all concentrations of CMCs.65,66 By
mapping the steady-state shapes of fully covered vesicles for
both arc- and saddle-shaped CMCs, we found that in the former
case, there exists a competition between nematic ordering and

Fig. 8 The heat map of the local nematic order (eqn (9)) for the steady-state shapes of vesicles covered by saddle-shaped CMCs, shown in Fig. 7(b).
The nematic defects characterized by minimal Si are shown in blue. When there is no interaction w = 0, the steady-state is a sphere (A) and a bowtie-
like morphology for w = 1 (B). The inset shows the nematic defect field, which is not fully developed. (C) The nematic defect is most notable when
w = 3, at the tip of the elongated membrane. Its topological charge is +1, while there are two additional charges +1/2 on either side of the wider part
(inset).
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curvature; when the former is absent, equilibrium steady-state
shapes are a series of connected pearls (Fig. 2). Nematic
binding tends to break up the pearling phase and results in
smooth prolate phases, with the radius of the cylinder deter-
mined by the intrinsic curvature of the CMCs. With this, we
have confirmed pearling using our non-axisymmetric numer-
ical scheme and connected it to previous studies originating
from analytic and theoretical considerations.38,67 Additionally,
these findings align with experimental observations of BAR
domain proteins (e.g., amphiphysin and IRSp53) stabilizing
tubules or negatively curved membranes.1,3,68 The pearling-to-
cylinder transition at low nematic strength mirrors the budding
and tubulation processes seen in cellular membranes, suggest-
ing that weak interactions may suffice for initial curvature

sensing, while stronger alignment drives large-scale shape
changes.

We next investigated how nematic ordering and volume
constraints govern phase behavior. The interplay between
nematic interaction strength and reduced volume reveals dis-
tinct phases (Fig. 9 and 12). A membrane half-covered with arc-
shaped CMCs can exhibit both prolate and oblate phases,
depending on the binding strength between CMCs; the prolate
and oblate phases occur at low and high nematic interaction
strengths, respectively. Tubular structures stabilized by arc-
shaped CMCs are well documented in numerous numerical
studies,22,69–71 and are also supported by experiments with
giant unilamellar vesicles,72 curvature-stabilizing proteins in
the endoplasmic reticulum (ER),73 and in the daughter vesicles

Fig. 9 Reduced volume-binding strength plane for arc-shaped CMCs. The CMC and bare regions of the membrane are shown in blue and gray,
respectively, while the orange lines show the principal curvature direction C1m. (a) Phase diagram as function of v and w for r = 0.5 CMC concentration
for Hm = Dm = 0.25. The different phases are indicated by their names and a typical snapshot of the equilibrium shape is shown. The transition lines
between the phases were drawn according to the measures shown in the bottom panels. The oblate phase is separated by the small eigenvalue l1

2, as
explained in the main text (b). The prolate phase is roughly indicated by a small intermediate eigenvalue l2

2 (c). The prolate phase is indicated with largest
eigenvalue l3

2, but the boomerang and dumb-bell phases’ transition is difficult to determine from li
2 (d). The average cluster size heatmap shows an

approximate separation between the oblate and the capped phases (e). When v is increased above 0.7, the CMC patch on the rim of the oblate phase
segregates into distinct CMC patches. This also results in the capped phase having the largest average nematic order hSi (f). The column right of panel (a)
shows that a decrease in v is slight with no volume constraints and increasing w, resulting in a transition that goes straight from spherical to capped phases.
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of the erythrocyte membrane.74 We found that arc-shaped
CMCs, in the absence of neighbor interactions, accelerate the
oblate-to-prolate transition compared to bare membranes
where this transition is driven only by volume constraints
(Fig. 10), highlighting how CMC entropy penalizes flat vesicle
regions. This entropy-driven effect is consistent with the clus-
tering of CMCs on curved rims (Fig. 11), resembling lipid raft
aggregation in Golgi cisternae17 or pore stabilization.75,76 In
contrast, saddle-like CMCs exhibit metastability and neck
phases (Fig. 12), similar to tubulation phenomena.36 The
persistence of protrusions even without volume constraints
(Fig. 12(a)) underscores the role of saddle-like anisotropic
CMCs in stabilizing connecting necks with negative Gaussian
curvature.

At concentrations below 10% CMC and high interaction
strength, we found that saddle-shaped CMCs preferentially
accumulate in the elongated necks separating convex empty
membrane regions. This observation agrees with previous
studies77,78 suggesting that vesicle necks contain high concen-
trations of anisotropic membrane components with non-zero
deviatoric curvature. The accumulation of these components in
membrane necks correlates with strong in-plane nematic order-
ing, occurring where the difference between principal
membrane curvatures (and consequently, Gaussian curvature)
is maximized. This was also observed in simulations and
in vitro experiments of Le Roux et al.68 The authors of the work
modeled the membrane-bound N-BAR proteins as being ellip-
tical with a concave isotropic curvature (invaginated) in con-
trast to our anisotropic, saddle-shaped CMCs.

A similar result was obtained by simulations of Noguchi
et al.,79 where the authors showed that an assembly of curved
rod-shaped proteins assemble in the necks and may play
an important role in the formation of neck-like structures during
cell division and membrane budding. The difference between rod-
and arc-shaped CMCs is in the fact that the former have one and the
latter have two intrinsic curvatures, respectively.

Additionally, such neck-like phases are observed also when
the deviatoric term is increased in the absence of direct inter-
actions. This leads us to conclude that the pearling phase is a
ubiquitous process which always requires some CMCs to
develop, but the ramifications of our simulations could provide
insight into the structure of pearling or neck-like phases simply
by observing the width of the neck and/or the pearls them-
selves. Conversely, we found that in the case of arc-shaped
CMCs the average mean curvature Hm controls the radius of the
pearls and that nematic order in the thin necks connecting the
bare parts of the membrane is zero.

We investigated topological defects (TDs) for both anisotro-
pic CMC types. Our results show that TDs consistently localize
to regions of high Gaussian curvature (Fig. 14 and 15). The +1/2
defects on cylindrical caps and +1 defects at protrusion tips

Fig. 10 (a) The phase diagram in the space v–E for vesicles with no CMCs shows a familiar sequence of morphologies with increasing v; stomatocytes,
oblates and prolates. An interesting intermediate shape transition (ellipsoid) is observed between oblate and prolate shapes, marked in green, which was
reported in literature.53 (b) The phase diagram in the v–E space for arc-shaped CMCs (r = 0.5, Hm = Dm = 0.25, w = 0). In comparison to empty vesicles,
there is no stomatocyte phase, but an intermediate boomerang phase (shown in green) which is a subset of a prolate phase. The transition to prolates is
accelerated and happens at around v = 0.5, possibly due to entropic mixing of the CMCs, which leads to their migration away from the rim of the oblate
vesicles. The CMC and bare regions of the membrane are shown in blue and gray, respectively, while the orange lines show the principal curvature
direction C1m.

Fig. 11 In the case of vesicles which are half-covered by arc-shaped
CMCs, the oblate–prolate phase transition includes a rearrangement of
the CMC distribution measured from the center of mass of the vesicle
(COM). Oblate vesicles have most of their CMCs located on the rim (a),
while in prolate vesicles they are more evenly distributed (b). The CMC and
bare regions of the membrane are shown in blue and gray, respectively,
while the orange lines show the principal curvature direction C1m.
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(Fig. 14) match theoretical predictions,55,56 with their total
topological charge satisfying the Poincaré-Hopf theorem. Along
tubular protrusions, the deviatoric curvature term dominates,
enforcing CMC alignment parallel to the tube axis, while
intrinsic interactions primarily determine defect positioning.
This dual behavior suggests that CMCs may utilize both curva-
ture sensing and generation mechanisms in biological systems,
as observed in ER tubules20 and photoreceptor discs.19

Although area and volume constraints in combination with
a nematic in-plane field have been studied before,80,81 our
systematic exploration of the phase diagram reveals the transi-
tion between distinct steady-state phases. Simulations of mem-
branes with rod-shaped membrane-bound components by
Bonazzi et al.82 revealed the formation of prolate phases every
time the CMC concentration exceeded 40%, irrespective of their
intrinsic curvature. We find that contrary to this observation,

Fig. 12 Reduced volume-binding strength plane for saddle-like CMCs. (a) Phase diagram as function of v and w with r = 0.5 concentration for Hm = 0
and Dm = 0.98. Invaginated steady-state shapes are common under v = 0.5 with the majority of CMCs found on the invaginated rim. The oblate shapes
are limited to low w and regions approximately between v = 0.5–0.6. An elongated neck-like formation is typical at w = 3, but the elongation becomes
less pronounced at higher v. In comparison, steady-state shapes with no volume constraints are shown right of panel (a). The average cluster size
heatmap shows largest clusters at w = 3, approximately where neck formation takes place (b). Average nematic order gradually increases with increasing
w (c). The transitions between the phases are less defined than in the case of arc-shaped CMCs, with oblate and invaginated phases often having very
similar equilibrium energies. The CMC and bare regions of the membrane are shown in red and gray, respectively.

Fig. 13 (a) A small concentration of anisotropic saddle CMCs (shown in red) (Hm = 0, Dm = 0.98, r = 0.16, w = 3, v = 0.54) clusters together to form necks
between empty convex membrane regions (grey). Orange lines show the direction of the principal curvature C1m of the CMCs. (b) The nematic order heatmap and
orientation of saddle-like CMCs for the case of Hm = 0, Dm = 0.98, r = 0.5, w = 3, v = 0.61. The heat map in both panels shows local nematic order.
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oblate steady-state shapes exist even at 50% CMC concentra-
tions and up to 0.65 reduced volume, but only if the CMCs
interact nematically. The fraction of CMC vertex coverage is
directly comparable to its area coverage. This is because, in a
mesh, each vertex accounts for one-third of the area of every
triangle it touches, making the results comparable.

When considering nematic ordering on curved surfaces,
extrinsic curvature effects play a significant role in aligning

conventional (rigid rid-like) nematics along directions of least
principal curvature.62 In our system, however, the molecules
(CMCs) possess intrinsic curvature, necessitating a generalized
approach. For 1D curved molecules, prior work58 demonstrated
that the extrinsic (deviatoric) bending energy drives alignment
toward optimal surface fit rather than minimal curvature.
Extending this to 2D CMCs, our coupling term (eqn (1))
encodes a similar interplay between extrinsic curvature and

Fig. 14 (a) For a fully covered equilibrium steady-state shapes with arc-shaped CMCs (Hm = Dm = 0.25, w = 5), the four defects of charge +1/2 are found
on the cylindrical caps, where the Gaussian curvature is positive. (b) In the case of a membrane that is fully covered by saddle-like CMCs (Dm = 0.98, Hm =
0, w = 3), two +1/2 defects are found on either side of the bulbous base (the other defect lies adjacently on the other side and is not shown) and a +1
defect on the tip of the protrusion. The defects are characterized by a locally low nematic order Si, marked by blue regions.

Fig. 15 Equilibrium orientational ordering profile on a fixed axisymmetric 2D surface that is topologically equivalent to the shape presented in Fig. 14(b).
The nematic ordering amplitude l is denoted by the color code, while the local orientation of molecules is presented by the lines in the (f, s)-plane,
where f is the azimuthal angle of the axisymmetric surface and s the arc length of the profile curve characterizing the axisymmetric surface. The
equilibrium nematic ordering amplitude is denoted by l0 and the total length of the profile curve by Ls. Topological defects are marked with capital
letters. The topological charge of TD A, B and C is +1, +1/2 and +1/2, respectively. The surface is completely covered by saddle-like CMCs with Hm = 0
and Dm = 0.98. The details of the modeling used in this calculation are described in detail in ref. 58. The only difference in the modeling is that we used
the deviatoric term for 2D inclusions instead of the term for 1D inclusions, which was used in ref. 58.
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molecular shape, but with the alignment now governed by the
compatibility between the intrinsic curvature of CMCs and the local
surface geometry. This distinction highlights how our model
inherently incorporates extrinsic effects while accounting for the
additional complexity of the shape-anisotropy of the molecules.

Our findings are in line with the conclusions of ref. 83, who
emphasized the importance of incorporating both shape and
curvature anisotropy, as well as interaction potentials, in under-
standing protein sorting behavior. Our study demonstrates that
curvature anisotropy and interaction strength enhance sorting
efficiency, while shape anisotropy can counteract it. In our
model, the in-plane nematic field was also researched in the
context of non-convex CMCs. Moreover, in-plane coupling to
membrane curvature can drive the emergence of complex
structures such as tubes and discs, reminiscent of those
induced by curvature-sensing proteins.84 Additionally, our find-
ings support and extend prior work showing that anisotropic
curvature-inducing proteins, modeled as in-plane nematics,
can drive membrane remodeling and aggregation via curvature
sensing alone, without explicit self-interactions.85 Specifically,
the variation of the Gaussian modulus has previously been
reported to affect shape changes even in the absence of direct
CMC interactions, and its increase can facilitate neck for-
mation even in axis-symmetrical 2D systems.86 Our article
highlights the necessity of incorporating anisotropic sponta-
neous curvature into membrane models to accurately capture
vesiculation phenomena, as also demonstrated elsewhere.87

Our simulations establish a framework for understanding
how anisotropic CMCs (including BAR proteins and lipid rafts)
shape cellular membranes. The boomerang phase (Fig. 9) and
neck-driven elongation (Fig. 13) potentially model Vibrio cho-
lerae cells or budding of yeast cells, respectively.88 However, the
metastable behavior of saddle-like CMC phases (Fig. 12)
requires further investigation, particularly to distinguish
between invaginated and elongated phases.

6. Conclusion

In this work, we systematically investigated how anisotropic
curved membrane components (CMCs) govern vesicle morphol-
ogy through curvature sensing and nematic alignment. By
focusing on arc- and saddle-shaped CMCs, we uncovered a far
richer spectrum of membrane shapes than previously observed
with isotropic CMCs, where only budding was reported. Our
simulations revealed that nematic ordering plays a crucial role
in shaping vesicles: for arc-shaped CMCs, weak alignment
allows pearling, while stronger alignment stabilizes smooth
cylindrical phases. These findings confirm long-standing theo-
retical predictions and align with experimental studies of BAR
domain proteins and tubule-forming systems.

We mapped the morphological transitions as a function of
nematic interaction strength and reduced volume, demonstrat-
ing how these two parameters control the emergence of prolate,
oblate, tubular, and metastable necked morphologies. Notably,
arc-shaped CMCs can drive shape changes even in the absence
of direct interactions, with entropy playing a key role in

destabilizing flat membrane regions and facilitating neck for-
mation. Saddle-shaped CMCs, on the other hand, induce and
stabilize negatively curved necks, even at low concentrations
and without volume constraints, reinforcing their role in neck
formation observed in biological systems.

Our investigation of topological defects (TDs) and local
nematic order provides a novel perspective on the coupling
between curvature, nematic alignment, and vesicle topology.
We also compared our curvature-energy framework with prior
models, emphasizing our focus on mean and deviatoric curva-
ture, which better aligns with biological observations of aniso-
tropic curvature sensing. Our phase diagrams are, to our
knowledge, the first to fully chart this behavior in the space
of binding strength and reduced volume.

Altogether, our findings underscore the importance of ani-
sotropic spontaneous curvature in modeling membrane remo-
deling and suggest a unifying framework for understanding
how proteins such as those containing BAR domains, lipid
rafts, and neck-stabilizing proteins shape cell membrane vesi-
cle topology in vivo.
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Our code is readily found on github as cited in the paper, but
should the situation arise, we are also keen on sending you the
original vtu files or python scripts upon request to the corres-
ponding author.

Appendices
8. Appendix

A. Monte-Carlo procedure. The membrane is represented
by a set of N vertices that are linked by variable length tethers l
to form a closed, dynamically triangulated, self-avoiding two-
dimensional network of approximately 2N triangles and with
the topology of a sphere.89,90 The lengths of the tethers can vary
between a minimal and a maximal value, lmin, and lmax,
respectively. Self-avoidance of the network is ensured by choos-
ing the appropriate values for lmax and the maximal displace-
ment of the vertex s in a single updating step.

One Monte-Carlo sweep (MCs) consists of individual attempts
to displace each of the N vertices by a random increment in the
sphere with radius s, centered at the vertex, followed by RBN
attempts to flip a randomly chosen bond. We denote RB as the
bond-flip ratio, which defines how many attempts to flip a bond
are made per one attempt to move a vertex in one MCs. Note that
the bond-flip ratio is connected to the lateral diffusion coefficient
within the membrane, i.e. to the membrane viscosity. In this work
we have chosen RB = 3, s/lmin = 0.15 and lmax/lmin = 1.7. The
dynamically triangulated network acquires its lateral fluidity from
a bond flip mechanism. A single bond-flip involves the four

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
W

ay
su

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
6/

11
/2

02
5 

7:
38

:1
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00620a


8422 |  Soft Matter, 2025, 21, 8407–8428 This journal is © The Royal Society of Chemistry 2025

vertices of two neighboring triangles. The tether connecting the
two vertices in diagonal direction is cut and reestablished between
the other two, previously unconnected, vertices. The self-avoidance
of the network is implemented by ensuring that no vertex can
penetrate through the triangular network and that no bond can cut
through another bond.65,91

B. Anisotropic code details
B.1. Representing the membrane as a mesh. Our solver is

called Trisurf. It models the vesicle as a closed, triangulated
surface: a graph with vertices i A V and edges eij A E, and an
auxiliary set of triangles tijk A T. The triangles make the
approximation of the surface, but it is the vertices which are
the principal dynamical entities that hold the properties of the
membrane (intrinsic curvature, membrane composition,
nematic director, etc.) and move in space.

From the position of the vertices, -
xi we can compute the normal

vector to each triangle
-

Nijk and circumcenter
-

Oijk (center of the circle
containing the position of -

xi,
-
xj,

-
xk). This allows us to divide the

triangle to six parts and assign two pieces to each vertex.

For vertex i, these are the sub-triangle between the vertex

position -
xi, the triangle center

-

Oijk, and the middle of one of the

edges
~xi þ~xj

2
; and a similar sub-triangle for the other edge ik. We

can denote the vector for the side between the vertex and the edge
middle as half the edge length -

eij = -
xj �

-
xi and the side between

center and the edge middle, which is half of the dual (Voronoi)
edge, as �si

jk (the other half of the voronoi edge is on the neighboring
triangle si

cj). We can compute this s from the circumcenter and the
middle of -

xi,
-
xj. This allows us to divide the triangle to six parts and

assign two pieces to each vertex (Fig. 16).

~sijk ¼
~xi þ~xj

2
� ~Oijk (13)

With this, we assign an area A(i) and a normal N(i) for each vertex i,
by running over the neighbors j � 1, j, j + 1. . . and the adjacent
triangles (i, j � 1, j), (i, j, j + 1). . .

A ið Þ ¼
X
i;jh i

1

2

eij
		 		
2

sij;jþ1
			 			þ 1

2

eij
		 		
2

sij;j�1
			 			 (14)

~N ið Þ ¼

P
i;jh i
~Nij;jþ1 eij

		 		 sij;jþ1			 			þ ~Ni;j�1;j eij
		 		 sij;j�1			 			

. . .j j (15)

where the j vertices are the counterclockwise ordered neighbors of i.
The fluidity of the surface is achieved by bond-flips, where a

bond ij and the two triangles that share it is ijk, jic are replaced
by a cross bond kc and two triangles ick, jkc, which allows
vertices to change neighbors.

B.2. Anisotropic curvature on the vesicle. We use the shape
operator, which is a discreet version of the principal curvatures
on a mesh, but we calculate it by projecting it onto a plane d
(director) and t (tangent) to get the 2 � 2 matrix C(v). By this, we
have 2H given by tr(C) and det(C) gives K.

Fig. 16 Schematic of a vertex and it’s neighbors. The vertex i has neighbors,
c, j, k, . . ., which are connected by edges eij,. . ., where we explicitly show eij.
Each triangle has a circumcenter O, and the area is assigned to each of the 3
vertices, which is shown for triangle ijk (red, green, and blue section). The total
area assigned to i is shown in red across the entire cap, and the dual edge si

across eij are shown si
jk and si

cj. The curvature of vertex i is essentially
computed on the red area, for example, the normal of the vertex N(i) is the
average of the local normal for every point in the red surface.

Fig. 17 (a) Populating an empty cylinder with arc-shaped CMCs (Hm = Dm = 0.5) and setting w = 0 results in pearl steady-states shapes. (b) This transition
is accompanied by a drop in bending energy, average nematic order and volume, but an increase in average deviator.
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To get the anisotropic bending energy of the surface, we use the
method by ref. 48 to estimate the shape operator matrix S on each
vertex, which represents the shape of the surface at the point. We
then calculate the mismatch tensor M = S � Cm, where Cm is the
intrinsic curvature tensor whose direction is determined by the
director and the other tangent vector to the local normal (t̂ = N̂� d̂).

Cm ¼
Hm þDm

2
d̂ � d̂ þHm �Dm

2
t̂� t̂ (16)

where Hm = (C1m + C2m)/2, Dm = (C1m � C2m)/2 are the spontaneous
curvature and spontaneous deviator at the vertex, respectively, which
reflects the physical characteristics of local membrane composition.
This is a change from the original method by Ramakrishnan et al.,33

where the Pv was used as a matrix projection, and could be the detail
that makes the calculations more robust and efficient.

The bending energy is calculated by inserting the mismatch
tensor in the Hamiltonian

E1 ¼
K1

2
TrMð Þ2þK2DetM (17)

where K1 and K2 are the bending moduli of the vertex, again
reflecting physical parameters due to local composition.

To calculate the shape curvature of a vertex i based on,48

each edge ij is assigned a shape tensor estimation

Sij = hij

-

b#
-

b (18)
-

b is the binormal at the edge N̂ij �
-eij, where -eij = -xj �

-xi is the
edge vector and N̂ij is the normal of the edge N̂ij = (N̂i,j�1,j +
N̂i,j,j+1)/|� � �| which is the sum of the normal of the two triangles
sharing the edge, normalized. hij is a factor representing the
directional derivative of the area ErpA

hij ¼ 2 eij
		 		 cos F

2

� �
(19)

where F is the dihedral angle (angle between the two triangle
sharing the edge). Luckily there is a simple triple product
formula for this factor

hij ¼ 2 ~eij
		 		~Nij � ~Ni;j�1;j � êij


 �
(20)

The cross product of the edge direction and a triangle normal
gives a vector on the triangle which is perpendicular to the

edge, which is at an angle
F
2

from the edge normal.
The full vertex-shape tensor is a sum of the edge tensor,

weighted by the match of the normal of the edge to the normal
of the vertex.

S ið Þ ¼ 1

A ið Þ
X
j

N̂ ið Þ � N̂ijSij (21)

We then project this 3 � 3 matrix in real space x̂, ŷ, ẑ to the
tangent plane of the vertex d̂, t̂

S2�2 ¼
d̂ � S � d̂ d̂ � S � t̂

t̂ � S � d̂ t̂ � S � t̂

0
@

1
A (22)

The mean curvature H at the vertex is half the trace, while
the Gaussian curvature K is the determinant, which are two of
the degrees of freedom in the Hamiltonian.

The mismatch matrix can be calculated

M ¼
Sdd �

Hm þDm

2
Sdt

Std Stt �
Hm �Dm

2

0
BB@

1
CCA (23)

The angle between the director and the eigenvectors of the
shape matrix is what results in the o angle dependence, which
is the final degree of freedom. The mismatch tensor is simply

Fig. 18 With no nematic interaction (w = 0), but increasing K2, the steady-
states of vesicles form saddle-like necks between alternate convex regions
and show perfect alignment between neighboring saddle-like CMCs at
low concentrations. The x-axis is the constant K2 in eqn (1), while hcos(2o)i
is the average orientation between neighboring CMCs. Parameters here
are for simulations with Hm = 0, Dm = 0.98, r = 0.06, w = 0.

Fig. 19 The curvature of the arc-shaped CMCs determines the radius of steady-state for a fully covered membrane. (a) Without nematic interaction (w =
0), but varying curvature Hm, the steady-states of vesicles gradually change to pearls. No nematic interaction between CMCs ensures their random
orientations on the membrane, leading to spherical and pearling morphologies for low- and high-curvature CMCs, respectively. (b) Total energy as a
function of Hm shows that bending energy initially increases, but is reduced once the number of pearls exceeds 2.
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inserted into eqn (17) to compute the bending energy of the
vertex. If we integrate it across the whole membrane, we get
eqn (1).

Let us shortly comment the main differences in numerical
methodology. While Kumar and colleagues43 project the principal
curvatures—and their corresponding bending rigidities—along
both principal directions in the tangent plane of each membrane

vertex, we use their sum and difference, namely the mean curvature
and mean deviator (and correspondingly, bending and splay stiff-
ness). When comparing the two approaches, one might notice a
discrepancy in the absolute value of the energies, but this difference
is not important for the method itself, as the Monte Carlo steps and
the convergence of both methods rely only on the energy difference
between the former and latter states, DE. Our methodology is

Fig. 20 Oblate shapes v = 0.4 at r = 0.5 of arc-shaped CMCs (Hm = Dm = 0.25) and three values of w (from 0 to 2). Even without nematic interaction
between CMCs (c), these are not distributed homogeneously over the membrane, but tend to accumulate on the rim, as is reflected in the inclusion
distribution from the COM (row (c)). This slight ordering results in a positive average nematic order hSi. Slight nematic ordering of w = 1 (b) results in the
majority of CMCs being located at the rim (row (b)) and nematic order hSi increasing in the process. Deviator and radial dependence for Hm = Dm = 0.25.
The CMCs profile from the centre of mass (COM) is made for the last state, namely at 500 MC steps. The CMC and bare regions of the membrane are
shown in red and gray, respectively, while the orange lines show their principal orientation C1m.
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distinct because we explicitly apply the theoretical results posited
nearly thirty years ago in the works of Kralj-Iglic and Iglic.37–40 To
make this example more concrete, let us directly compare our
method with that of Kumar and colleagues80 for a simple case of
a tubulating membrane. To investigate the steady-state shapes of
membranes fully covered by nematic CMCs, the method of ref. 80
uses c8 and c>, while our method uses Hm and Dm. For an outward
tubulation of the membrane, the first method uses c|| o 0 and
c> 4 0, while our method uses Hm = Dm 4 0. Similarly, for inward
tubulation, the first method uses c8 4 0 and c> o 0, and our
method Hm = Dm o 0. Of course, the length scales of the CMCs
relative to the membrane size would need to be adjusted and
matched in both cases. Anisotropic CMCs interact with both
principal curvatures of the membrane, so in any case, the degrees
of freedom are two; what differs is the parametrization.

C. Supplementary information
C.1. Pearling transition up close. We study the transition

from cylinders to pearl-like steady-state shapes by populating
a previously empty cylinder with arc-shaped CMCs and running
the simulation (Fig. 17).

C.2. Pearling transition by varying Hm. At w = 0 and changing
Hm, the steady-state shape changes from a sphere to a pearling
state as shown in Fig. 19.

C.3. Spontaneous ordering in necks when K2 increases. For
saddle-like CMCs at w = 0 and increasing K2 (see eqn (1)), the
steady-state shapes form saddle-like necks between empty
convex membrane regions (see Fig. 13). This is due to the
dominance of the deviatoric term (Fig. 18).

C.4. Arc-shaped CMCs cluster on the rim to form oblates even
in absence of nematic ordering. Fig. 20 shows the total energy,
average nematic order, average deviator and CMC distribution
during the sphere-oblate transition for r = 0.5 of arc-shaped
CMCs (Hm = Dm = 0.25) at v = 0.4 and three values of w. Vesicle
energy (eqn (2)) converges to a minimum in all three cases, but
is lower at greater values of w. Average nematic order is largest
for w = 2 and lowest for w = 0 when no explicit nematic ordering
is present.

The average curvature deviator for each shape is calculated
and shown in the third column of Fig. 20. The membrane
deviator is defined for each vertex as D = (C1 � C2)/2, where C1

and C2 are its two principal curvatures. Dimensionless deviator
is given by d = RD, where R is the radius of the sphere with the
same area as the vesicle. The average deviator for each shape is
calculated as hdi ¼

Ð
dda
�Ð

da.92 We find that the deviator
slightly decreases with increasing w, as shown in the third
column of Fig. 20; all shapes are oblates with varying degrees of
flatness, with most flat regions corresponding to w = 2, where –
due to strong nematic ordering – most of the CMCs are located
at the rim (see the upper figure of the fourth column of Fig. 20).
Note that a sphere would have d = 0.
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22 V. Kralj-Iglič, et al., Stable tubular microexovesicles of the
erythrocyte membrane induced by dimeric amphiphiles, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2000, 61(4), 4230.
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77 A. Iglič, et al., On the role of anisotropy of membrane
constituents in formation of a membrane neck during
budding of a multicomponent membrane, J. Biomech.,
2007, 40(3), 579–585.
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92 V. Kralj-Iglič, et al., Minimizing isotropic and deviatoric
membrane energy–An unifying formation mechanism of
different cellular membrane nanovesicle types, PLoS One,
2020, 15(12), e0244796.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
W

ay
su

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
6/

11
/2

02
5 

7:
38

:1
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.1039/C5SM00431D
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00620a



