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Intermediate scattering function of colloids
in a periodic laser field†

Regina Rusch, ‡a Yasamin Mohebi Satalsari, ‡b Angel B. Zuccolotto-Bernez,b

Manuel A. Escobedo-Sánchez b and Thomas Franosch a

We investigate the dynamics of individual colloidal particles in a one-dimensional periodic potential

using the intermediate scattering function (ISF) as a key observable. We elaborate a theoretical

framework and derive formally exact analytical expressions for the ISF. We introduce and analyze a

generalized ISF with two wave numbers to capture correlations in a periodic potential beyond the

standard ISF. Relying on Bloch’s theorem for periodic systems and, by solving the Smoluchowski

equation for an overdamped Brownian particle in a cosine potential, we evaluate the ISF by numerically

solving for the eigenfunctions and eigenvalues of the expression. We apply time-dependent perturbation

theory to expand the ISF and extract low-order moments, including the mean-square displacement, the

time-dependent diffusivity, and the non-Gaussian parameter. Our analytical results are validated through

Brownian-dynamics simulations and experiments on 2D colloidal systems exposed to a light-induced

periodic potential generated by two interacting laser beams.

1 Introduction

Colloidal particles suspended in fluids serve as a powerful
model system in soft matter and biological physics. Their
microscopic size makes them easy to manipulate, allowing
researchers to explore fundamental physical principles in a
controlled environment.1–7 A major breakthrough in this field
was the invention of optical tweezers by Ashkin et al., which
enabled the precise trapping and manipulation of individual
particles using focused laser beams.8–10 Building on this advance-
ment, scientists have since developed laser interference patterns to
create structured external potentials, offering a unique way to
study how particles behave under spatially periodic forces. These
optical potentials arise from the interaction between light and
particles with a refractive index different from that of the sur-
rounding medium, creating highly tunable energy landscapes.11,12

In order to understand how colloidal particles move within
these periodic potentials, researchers have analyzed the prob-
ability distribution, the first-passage time, and low-order
moments, such as the mean-square displacement, the long-
time diffusivity, and the non-Gaussian parameter.4,6,13,14

Although these observables provide valuable information, most
theoretical studies have focused only on diffusion coefficients
in the short- and long-time limits.15–17 More recent work has
expanded on these studies by analytically exploring tilted wash-
board potentials,18,19 comparing theoretical predictions with
experimental results,20 and investigating memory effects in
such systems.21,22 These low-order moments are useful for
identifying deviations from free Brownian motion, revealing
effects such as trapping and non-Gaussianity.23,24 However,
they offer only a limited perspective of the system dynamics,
as they do not capture the full spatial-temporal evolution of
particle motion. To achieve a more complete description, it is
necessary to adopt a framework that incorporates both spatial
and temporal correlations.

One such framework emerges naturally in Markovian sys-
tems, where the future state depends only on the present and
not on the past. In these systems, all relevant dynamical
information is contained in the propagator, which describes
the probability of a particle transitioning between states over a
given time interval. Although the propagator provides a full
statistical description of particle motion, it is often challenging
to access experimentally. A more practical and experimentally
accessible alternative is the intermediate scattering function
(ISF), which encodes both spatial and temporal correlations
in particle motion. Unlike traditional low-order moments,
the ISF offers a more comprehensive characterization of
the system and can be directly measured using techniques
such as dynamic light scattering,25,26 differential dynamic
microscopy,27 and single-particle tracking.28
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Furthermore, upon a small-wave-vector expansion of the ISF
the low-order moments are recovered. Analytical derivations of
the ISF have been achieved for various systems, including
anisotropic active Brownian particles,23,29 Brownian circle
swimmers in gravitational fields,30–32 anisotropically diffusing
colloidal dimers,33 and run-and-tumble agents.34,35 Notably,
experimental validations have been conducted for colloidal
dimers and active colloids.

In this work, we extend the traditional ISF by introducing a
generalized version that incorporates two wave numbers, allow-
ing us to investigate the correlations in periodic systems in
reciprocal space. The central question we address is twofold.
First, we develop a theoretical framework to gain analytic
insight into the dynamics of colloidal particles in general
periodic potentials. Second, we compare our predictions with
experimental results, exploring a spatio-temporal regime that
has not yet been fully investigated.

To develop the theoretical framework, we solve the Smolu-
chowski equation for a single, overdamped Brownian particle
in a cosine potential. Reformulating the problem as a Hermi-
tian Schrödinger equation allows expressing the solutions in
terms of eigenvalues and eigenfunctions.36 Taking advantage of
the systems periodicity, we apply Bloch’s theorem, which provides
a systematic way to expand the ISF using time-dependent pertur-
bation theory and extract key dynamical moments. These methods
are based on previous work31,32,37 and have been successfully
applied to bistable periodic potentials.38,39 To validate our theore-
tical predictions, we compared our theoretical framework with
Brownian dynamics simulations.

Experimentally, we track individual colloidal particles con-
fined between two walls in a two-dimensional configuration,
subjected to a periodic potential created by the interference of
two laser beams. By systematically varying the laser power, we
control the potential amplitude and record particle trajectories
under different conditions. The generalized ISF, along with its
associated moments, is then extracted from these experimental
data and directly compared with our theoretical predictions,
enabling a precise evaluation of the Brownian motion des-
cription in periodic optical fields. By integrating theoretical
modeling, experimental measurements, and computational
simulations, this work aims to provide a comprehensive under-
standing of colloidal motion in structured environments. Our
approach bridges the gap between fundamental stochastic
dynamics and experimentally accessible observables, offering
new insights into the interplay between Brownian motion and
periodic potentials.

This work is organized as follows. In Section 2 the experi-
mental materials and methods are described. In Section 3, we
introduce the analytical model, and derive the theoretical
framework and observables. Readers more interested in the
results rather than the theoretical derivation may skip this
section and jump directly to Section 4, where we present our
findings, compare experimental results with theoretical predic-
tions, and discuss their implications. Finally, we summarize
our findings, concluding with an outlook on future research
directions in this field in Section 5.

2 Material and methods

This section describes the employed numerical methods and
the used experimental setup to study colloidal dynamics in
periodic potentials. We describe the processes of preparing
two-dimensional colloidal samples and explain our custom-
built optical setup that generates periodic laser fields. Also, the
experimental protocol, including data acquisition parameters
and particle tracking methodology, is described. Our experi-
mental design allows us to systematically investigate the beha-
vior of colloidal particles under varying potential strengths
while maintaining high spatial and temporal resolution, which
is essential for a rigorous comparison with the theoretical
framework presented in Section 3.

2.1 Numerical methods

To complement our analytical and experimental approach, we
conducted Brownian-dynamics simulations of single particles
in a one-dimensional cosine potential. We implemented the
Euler–Maruyama method40 for numerically solving the differ-
ential equation of motion. For efficient sampling of observa-
bles, we used the extended order-n algorithm of Frenkel and
Smit, which enables equidistant sampling on a logarithmic
time scale.41–43

To numerically solve the equation of motion, as it will be
explained in detail in the theory Section 3, we employed a
spectral method. Specifically, we expanded the equation in its
Fourier basis to obtain its operator form. Numerically, we
truncated the expansions to form a finite-dimensional matrix
eigenvalue problem. We used the scipy.linalg.eig function from
the SciPy library44 to compute the eigenvalues and eigenvectors
of the resulting matrix. The convergence of our results was
verified by systematically increasing the truncation order until
the eigenvalues stabilized to the desired precision.

2.2 Sample preparation

The experiments were performed with two-dimensional (2D)
colloidal systems to ensure controlled particle motion mainly
in the horizontal plane. We prepared a dilute suspension of
monodisperse polystyrene sulfate latex particles (radius 1.5 mm,
4% polydispersity, Thermo Fisher Scientific, batch number
1660463) in ultra-pure water (resistivity 18.2 MO cm, Purelabs
Flex, Elga). To build the sample cells chamber, we first attached
a rectangular coverslip (Thickness No. 1, 24 � 50 mm, VWR
631-0146) to a microscope slide using UV-curing adhesive
(NOA61, Norland Products Inc.). We then carefully deposited
2.5 mL of the particle suspension at the center of this base
coverslip. A smaller square coverslip (Thickness No. 1.5, 22 �
22 mm, VWR 631-0125) was gently placed on top to create a thin
chamber. We sealed the edges with UV-curing adhesive to
prevent evaporation during long observation periods. To ensure
enough space between the coverslips, particles with a radius of
2 mm were added to the colloidal suspension to act as spacers.
These spacers ensure a sufficient gap between coverslips that
counteracts the pull of capillary forces, preventing the cover-
slips from coming close to each other and squeezing the main
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particles. The resulting configuration reached an area fraction
of 0.01. The completed cell was positioned on the microscope
stage for observation.

2.3 Experimental setup

Our experimental setup consists of a laser field generator and
an imaging system, as illustrated in Fig. 1. The laser field
generator creates the periodic potential experienced by the
colloidal particles. A 532 nm laser (Cobolt 05-01 Samba, 1.5 W)
beam passes through a beam expander and is directed by
mirrors (M1 and M2) to a Köster prism (KP). This prism splits
the incoming beam into two parallel beams of equal intensity,
which are then focused by lens L1 and directed by a dichroic
mirror (D1) into the sample plane. At the sample plane, the
beams interfere to generate the laser field inducing a periodic
potential, with a periodicity of L = (4.15 � 0.07) mm.
By adjusting the position of the Köster prism, we can fine-
tune this periodicity. Additionally, by controlling the laser
power, we can precisely modulate the amplitude of the potential
experienced by the particles. The relationship between the ampli-
tude of the potential as a function of laser power (calibration) is
presented in Appendix A.

The imaging system is an inverted bright-field microscope
(Nikon Ti-E) with a 20� objective (Nikon Plan Flour, 0.5 NA).
We illuminate the sample with a blue LED (Thorlabs M455L4)

and capture images using a CMOS camera (Mako U-130B) at a
resolution of 1280 � 1024 pixels, with a pixel pitch of 0.24 mm
per px. To prevent laser light from reaching the camera sensor,
we employed a second dichroic mirror (D2) that redirects the
laser beams to a beam dump (BD), with any residual laser light
being filtered out by a notch filter (NF). This optical arrange-
ment allows us to simultaneously apply the periodic potential
and observe particle dynamics with high precision.

2.4 Experimental realization

We conducted all experiments in a temperature-controlled
laboratory environment maintained at 20 1C. Before measure-
ments, samples were allowed to equilibrate for 48 hours to
ensure thermal stability. For each experiment, we recorded
180 000 images over 2 hours, using a frame rate of 25 Hz and
an exposure time of 1 ms. These parameters represent a
balance between temporal resolution and the need to collect
sufficient data for robust statistical analysis. We collected
between 400 and 1500 individual particle trajectories for each
laser power from several measurements. At the highest laser
power, the pressure radiation pushed approximately 20% of
particles out of the field of view, requiring us to sample multi-
ple regions within each sample cell to obtain statistically
meaningful datasets. To extract particle positions with high
precision, we employed a custom MATLAB-based tracking
algorithms adapted from the work of D. Blair and E. Dufresne45

together with the Michalet algorithm,46 achieving a localization
uncertainty of approximately 3 nm. Trajectories are openly avail-
able in Zenodo at https://doi.org/10.5281/zenodo.14931759.

This exceptional spatial resolution is crucial for accurately
capturing the subtle dynamics of particles within the periodic
potential, particularly when comparing experimental results
with theoretical predictions. The observables are computed
for each measurement and averaged over all the measurements.
Results in Section 4, represent the mean values and the error bars
their standard deviation.

3 Theory and observables

In this section, we introduce the model and the theoretical
framework. Further, we derive the generalized ISF and low-
order moments. From the expansion of the ISF, we compute
exact expressions of the mean-square displacement, diffusivity,
and non-Gaussian parameter.

3.1 Model

We model the interaction of the colloid and the interfering
laser beam by a one-dimensional periodic potential U(x) =
U(x + L) with period L. We assume a simple cosine potential

U(x) = U1 cos(Q1x), (1)

where Q1 = 2p/L is the wave number associated with the period
L. We introduce the dimensionless amplitude u = U1/kBT where
kBT is the thermal energy scale. The colloid is assumed
to undergo Brownian motion in the presence of the spatially

Fig. 1 Illustration of the experimental setup. The laser field generator
utilizes a 532 nm laser beam to create a periodic light field through a
Köster prism (KP). The two parallel beams from KP are focused on the
sample plane using lens L1 and their interference creates the fringe
pattern. The imaging system, consisting of a microscope with a 20�
objective and a CMOS camera, captures the sample’s particle trajectories.
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periodic force �qxU(x). Then the equation of motion for its
position x(t) is provided by the Langevin equation

:
x(t) = DQ1u sin(Q1x(t)) + Z(t). (2)

Here, D denotes the short-time diffusion coefficient such
that D/kBT is the mobility as derived by the Einstein relation.
The stochastic term Z(t) represents a centered Gaussian white
noise with a delta-correlated variance hZ(t)Z(t0)i = 2Dd(t � t0).

We identify three quantities which set the characteristic
units of the system: The period L of the potential is the
fundamental unit of length. The time a free particle needs to
diffuse the distance of a period is L2/D and will be used as a
time unit. Energies are compared to the thermal energy kBT.
Therefore, the problem displays the dimensionless amplitude u
as a single control parameter.

3.2 Smoluchowski equation

To make analytic progress, we rely on the Smoluchowski
equation which is equivalent to the Langevin description in
eqn (2) in the case of equilibrium dynamics. Here, the funda-
mental quantity is the propagator P := P(x,t|x0), defined as the
conditional probability of finding the particle at position x at
time t, given its initial position was x0 at time zero. The initial
condition is therefore provided by P(x,t = 0|x0) = d(x � x0).
By standard methods36 one derives the Smoluchowski equation
governing the time evolution of the propagator

qtP = �qx[DQ1u sin(Q1x)P] + Dqx
2P =: OP. (3)

A stationary solution is provided by

peqðxÞ ¼ 1

Z1
exp �UðxÞ=kBT½ �; (4)

with a normalization factor Z1. Since in the infinite system no
stationary solution exists, we choose Z1 as the normalizing
factor for a unit cell ðL

0

dxpeqðxÞ ¼ 1: (5)

Explicitly

Z1 ¼
ðL
0

dxe�u cos Q1xð Þ ¼ LI0ðuÞ; (6)

where In(�) denotes the modified Bessel function of the first
kind to order n.

We replace our infinite system with a finite system by
dividing it into N A N unit cells of length L and apply periodic
boundary conditions. The limit N - N will be performed at
the end of the calculations.

In order to find non-trivial solutions of eqn (3) we first
perform a separation ansatz

P = E(t)c(x), (7)

and find the solution for the time-dependent part immediately
as E(t) = e�lt. For the position-dependent part, we have to solve
an eigenvalue equation. As the Smoluchowski operator O is

non-Hermitian, we distinguish between right and left eigen-
functions

OcR
l ðxÞ ¼ � lcR

l ðxÞ;

OycL
l ðxÞ ¼ � l�cL

l ðxÞ;
(8)

and O† is the adjoint operator with respect to the scalar product

hfjci : ¼ 1

N

ðNL

0

fðxÞ�cðxÞdx: (9)

Left and right eigenfunctions to different eigenvalues are
orthonormal, satisfying

cl cl0jh i ¼ 1

N

ðNL

0

cL
l ðxÞ�cR

l0 ðxÞdx ¼ dll0 : (10)

Therefore, only the product of left and right eigenstates to
identical eigenvalue is normalized. Furthermore, the eigen-
functions are complete, fulfilling the condition

1

N

X1
l

cR
l ðxÞcL

l x0ð Þ� ¼ d x� x0ð Þ: (11)

By comparing eqn (3) and (8) for the stationary state, we identify
that the eigenfunction cR

0(x) to eigenvalue zero has to be propor-
tional to the equilibrium distribution cR

0(x) p peq(x). We choose

cR
0(x) = peq(x), cL

0(x)* = 1, (12)

which fulfills the normalization conditions eqn (5) and (10).
The formal solution of the Smoluchowski, eqn (3), can be

written as P = eOtd(x� x0). We can insert the completeness relation,
eqn (11), and apply the eigenvalue equation, eqn (8), and obtain

P x; t x0jð Þ ¼ 1

N

X1
l

e�ltcR
l ðxÞcL

l x0ð Þ�: (13)

3.3 Schrödinger form

It is favorable to transform the Smoluchowski equation, eqn (3),
into a Schrödinger-like equation using the ‘gauge transform’36

P = e�U(x)/2kBTP0. (14)

A straightforward calculation reveals that this yields in
general to

@tP0 ¼ D@x
2P0 �D

½U 0ðxÞ�2

4 kBTð Þ2
P0 þ

DU 00ðxÞ
2kBT

P0: (15)

By specializing to the potential given in eqn (1), we find

@tP0 ¼
D

L2
2p2u cos Q1xð Þ � p2u2 sin2 Q1xð Þ
� �

P0

þD@x
2P0¼ :L0P0: (16)

We note that the operator L0 is Hermitian with respect to the
standard scalar product in eqn (9). Equivalently to the procedure of
finding solutions of the Smoluchowski operator, to find the non-
trivial solution of eqn (16) we perform again a separation ansatz

P0 = E(t)C(x), (17)
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with E(t) = e�lt and for the position-dependent part, we have to
solve an eigenvalue equation

L0Cl(x) = �lCl(x), (18)

where l represents the eigenvalue and Cl(x) the eigenfunction.
We note that the transformation of the eigenfunctions of the
Schrödinger operator to the Smoluchowski operator eqn (8) is
provided by

cR
l ðxÞ ¼ ClðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ

p
; cL

l ðxÞ ¼ ClðxÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

peqðxÞ
p

: (19)

As L0 is an Hermitian operator, the eigenvalues are real and
two eigenfunctions with different eigenvalue are orthonormal,
equivalently to eqn (10). The eigenfunctions are complete,
fulfilling the completeness relation, similarly to eqn (11). The
eigenfunction to eigenvalue zero can be easily found using
eqn (12) and (19)

C0ðxÞ ¼ C0ðxÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ

p
: (20)

3.4 Bloch representation

For periodic systems we make use of the Bloch representation
of the eigenfunctions in terms of the discrete wave vector
q A (2p/NL)Z, with �p/L o q r p/L and the discrete band
index n. The wave vector can be restricted to the first Brillouin
zone (BZ) because of the periodicity of the systems. The
eigenfunctions are of the form

Cnq(x) = eiqxunq(x), (21)

where the Bloch function unq(x) = unq(x + L) is periodic, and the
wave functions obtain a second index q, representing the wave
number. The associated eigenvalue will be denoted by lnq.
The orthonormality relation for the Bloch functions can be
expressed as ðL

0

dxunqðxÞ�umqðxÞ ¼ dnm; (22)

see Apendix C for the detailed derivation. Also, the complete-
ness relation still holds

d x� x0ð Þ ¼
X
n

unqðxÞunq x0ð Þ�; (23)

where x and x0 are within the same unit cell. Finally, we obtain
the probability density using eqn (13) and transforming the
eigenfunction of the Smoluchowski operator to the eigenfunc-
tions of the Schrödinger operator with eqn (19). Lastly, insert-
ing the Bloch form of the eigenfunctions we find the probability
density

P x; t x0jð Þ ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ
peq x0ð Þ

s X
q2BZ

X
n

e�lnqtCnqðxÞCnq x0ð Þ�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ
peq x0ð Þ

s ð
BZ

Ldq

2p

X
n

e�lnqteiq x�x0ð ÞunqðxÞunq x0ð Þ�;

(24)

where in the last step the thermodynamic limit N - N was
performed and therefore, the sum over the wave numbers can
be replaced by an integral over the Brillouin zone (BZ).

3.5 Dirac notation

To make further progress, we introduce the compact Dirac
notation where we rely on the isomorphism between the
periodic square-integrable functions unq(x) A L2[0,L] and the
abstract kets |unqi in a separable Hilbert space H. We intro-
duce the generalized position basis |xi, such that unq(x) =
hx|unqi. In particular, the set of associated eigenstates is ortho-
normal

unq
��umq

� �
¼
ðL
0

dx unq
��x� �

x umq

��� �
¼ dnm; (25)

and complete X
n

unq
�� �

unq
� �� ¼ 1; (26)

for a given wave number q. From the completeness relation in
real space

d x� x0ð Þ ¼
X
n

X
q2BZ

x unq
��� �

unq
��x0� �

; (27)

we infer hx|x0i = d(x0 � x). From eqn (25) the (over-) complete-
ness relation for the basis states |xi followsðL

0

dxjxihxj ¼ 1: (28)

For the actual computation of the eigenfunctions we use the
Fourier modes as orthonormal basis {|ni: nA Z} in H with real-

space representation hxjni ¼ exp iQnxð Þ
� ffiffiffiffi

L
p

. It is favorable to
express the Bloch functions unq(x) in terms of their Fourier
decomposition, and we express our eigenmodes in Dirac nota-
tion

unqðxÞ ¼ x unq
��� �

¼
X
n2Z

hxjni njunq
� �

; (29)

where the corresponding Fourier coefficients are provided by
the integral

n unq
��� �

¼
ðL
0

dxffiffiffiffi
L
p e�iQnxunqðxÞ: (30)

This is possible because all Bloch functions are lattice
periodic.

3.6 Intermediate scattering function: definition and
properties

We aim to analyze the characteristic function of the random
displacements Dx(t) := x(t)� x(0), which corresponds to the self-
ISF and provides full spatio-temporal resolution of the particle
dynamics. Making use of the periodicity of the system, we
introduce the Bravais lattice, defined as L := {nL: n A Z}. The
reciprocal lattice is similarly defined as L* := {Qm = (2pm/L):
m A Z}. Any wave vector k can be uniquely decomposed as
k = q + Qm, where q A BZ lies within the first Brillouin zone (BZ)
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and Qm A L* is a reciprocal lattice vector. We define the
generalized ISF

Fmn(q,t) := he�i(q+Qm)x(t)ei(q+Qn)x(0)i, (31)

with the mode indices m,n A Z. In the following we refer to this
quantity as the ISF. The brackets h� � �i indicate an ensemble
average. The conventional ISF to wave number q + Qm then
corresponds to F(q + Qm,t) := Fmm(q,t) and probes diagonal
correlations in reciprocal space. The off-diagonal elements
Fmn(q,t), m a n, encode Umklapp-processes where wave vectors
differ by a reciprocal lattice vector Qn � Qm. These Umklapp-
processes enter by scattering from the periodic modulation,
while they are absent in the homogeneous case. Thus, Fmn(q,t)
corresponds to a matrix-valued correlation function: for a set of
complex numbers bm(q) A C the weighted sum

bðq; tÞ�bðq; 0Þh i ¼
X
m;n2Z

bmðqÞ�Fmnðq; tÞbnðqÞ; (32)

forms an autocorrelation function, with bðq; tÞ ¼P
m
bmðqÞei q�Qmð ÞxðtÞ. In particular, autocorrelation functions dis-

play non-negative spectra.47 Notably, the diagonal elements,
Fmm(q,t), are autocorrelation functions. For the case of purely
relaxational dynamics, for example, Smoluchowski dynamics,
autocorrelation functions are completely monotone, i.e., all
time derivatives exist and satisfy the inequality (�1)mqm

t hb(q,t)*
b(q,0)i Z 0 for m A N0 and t 4 0,48 ensuring monotonically
decaying, non-oscillatory behavior. In contrast, the individual
off-diagonal elements, m a n, can exhibit non-monotonic
behavior, including local minima or maxima.

Further, we note that the wave number q is identical in both
exponentials and that the diagonal elements, Fmm(q,t), corre-
spond to the conventional ISF evaluated at wave vector q + Qm.
In translationally invariant systems only the diagonal elements
are non-vanishing, since shifting the trajectory of a particle by
an arbitrary displacement leads to an equally likely trajectory.
For our case, the discrete symmetry is reflected in the sense
that a common shift x(t) / x(t) + R for all times by a lattice
vector R A L leaves the ISF invariant. The brackets h� � �i indicate
an ensemble average.

Using the conditional probability density, the ISF of eqn (31)
can be expressed as

Fmnðq; tÞ ¼
ðNL

0

dx

ðL
0

dx0e
�i qþQmð Þxei qþQnð Þx0

� P x; t x0jð Þpeq x0ð Þ:
(33)

Here, we used that without restriction, the initial position of
the particle can be chosen to be in a definite cell and is sampled
from the equilibrium distribution for this single cell.

Reversely, we can compute the probability density by the
backward Fourier transform

P x; t x0jð Þpeq x0ð Þ ¼
1

L2N

X
m;n2Z

X
q2BZ

Fmnðq; tÞei qþQmð Þxe�i qþQnð Þx0 :

(34)

see Appendix D for the derivation. The previous relation also
reveals that the conventional ISF is not sufficient to reconstruct
the full probability density unless the system is fully transla-
tionally invariant.

The explicit form of eqn (33) in terms of the Bloch functions
is obtained by inserting eqn (24) and simplifies to express the
stationary solution in terms of the eigenfunctions of the
Schrödinger operator, using eqn (25). After some algebra and
rearranging the terms, we find the final expression

Fmnðq; tÞ ¼
X
n

e�lnqt
ðL
0

dxe�iQmxunqðxÞu00ðxÞ�
	 


�
ðL
0

dx0e
�iQnx0unq x0ð Þu00 x0ð Þ�

	 
�
;

(35)

see Appendix D for more details.
To determine the functions unq(x) we introduce the operator

Lq for which the eigenvalue equation

Lqunq(x) = �lnqunq(x), (36)

holds. Straightforward substitution leads to

Lq : ¼
Dp2

L2
2u cos Q1xð Þ � u2 sin2 Q1xð Þ
� �

þD@x
2 þ 2iqD@x �Dq2;

(37)

which can be abbreviated as Lq = L0 + dLq. Here, the operator
L0 (first three terms) encodes the interaction of the diffusive
particle with the potential and the q-dependent operator dLq

(last two terms) contains a drift or advection-like term, linear in
the wave number, and a diffusion-like term proportional to q2.

The matrix representation of the operator, is given by

m L0j jnh i ¼
ðL
0

dx

L
e�iQmxL0e

iQnx

¼ Dp2

L2
u dm;nþ1 þ dm;n�1
� ��

þ u2

4
dm;nþ2 � 2dm;n þ dm;n�2
� �

� 4m2dm;n



;

(38)

and

hm|dLq|ni = (�4pqDn/L � Dq2)dm,n. (39)

The matrix L0 is a Hermitian matrix and pentadiagonal in
the Fourier basis, i.e., it has non-zero elements only on the
main diagonal and the two diagonals above and below it. The q-
dependent matrix is diagonal in the Fourier basis. The eigen-
value problem Lq|unqi = �lnq|unqi is computed numerically by
diagonalizing the (truncated) Hermitian matrixX

n2Z

m Lq

�� ��n� �
n unq
��� �

¼ �lnq m unq
��� �

: (40)

The time evolution of the ISF is encoded in the eigenvalues
and eigenfunctions of the operator Lq. The eigenvalues lnq

form continuous bands as the number of cells goes to infinity,
N - N, see Fig. 2. All eigenvalues are non-negative, and the
only zero eigenvalue is in the center of the Brillouin zone at the
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lowest band. Only the lowest bands are significantly affected by
the potential U(x). For l \ p2Du/L2 the bands correspond to a
particle freely diffusing without underlying potential modula-
tion. Albeit the bands come very close at the edges of the
Brillouin zone, we checked numerically that they do not touch.
For symmetric potentials the avoided crossing theorem does
not apply and in principle bands can cross. For the simple
cosine potential, one can actually show that all eigenvalues for
q = 0 except for l00 = 0 are twofold degenerate, see Appendix C.

Finally, the ISF in eqn (35) can be conveniently expressed in
a spectral representation using the Fourier basis

Fmnðq; tÞ ¼
X
n

e�lnqt
X
s;t2Z

u00jsh i sþ m unq
��� �

unq
��tþ n� �

t u00jh i;

(41)

see Appendix D for the derivation. The previous relation reveals
that

P
m;n

bmðqÞ�Fmnðq; tÞbnðqÞ is completely monotone.

Of particular interest is the conventional ISF with wave
vector in the first Brillouin zone, F(q,t) := F00(q,t), which
simplifies upon exploiting the completeness of the Fourier basis

Fðq; tÞ ¼
X
n

e�lnqt u00junq
� �

unq
��u00� �

¼ u00 eLqt
�� ��u00� �

: (42)

Since all eigenvalues are strictly larger than zero, except for
l00 = 0 in the lowest band and in the center of the Brillouin
zone, F(q,t) decays to zero for large time, t - 0 for q a 0.

3.6.1 Symmetry relations. The symmetries of the general-
ized ISF are derived following the same arguments as in ref. 49.
For equilibrium dynamics, time inversion symmetry holds and
the ISF is even in time. Time-translation invariance then reveals
the relations

Fmn(q,t) = Fmn(q, �t) = Fnm(q,t)*. (43)

For symmetric potentials U(�x) = U(x), space-inversion sym-
metry implies

Fmn(q,t) = Fmn(q,t)* = F�m,�n(�q,t). (44)

In particular, the ISF is a real quantity and symmetric upon
interchanging its mode indices. At the edge of the Brillouin
zone we have the additional relation

Fmn(p/L,t) = Fm+1,n+1(�p/L,t) = F�(m+1),�(n+1)(p/L,t).
(45)

3.6.2 Short- and long-time limits. For the simple cosine
potential, eqn (1), the short-time limit of the ISF can be
calculated explicitly

Fmnðq; t ¼ 0Þ ¼ exp �iQm�nxð0Þ
� �� �

¼
ðL
0

e�iQm�nxpeqðxÞdx

¼ ð�1Þm�nIm�nðuÞ
I0ðuÞ

:

(46)

From eqn (35) and u00ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ

p
, one infers that for q = 0

the ISF displays a non-vanishing long-time limit

Fmn(0,t - N) = he�iQmx(t)iheiQnx(0)i. (47)

The factorization of the limit can be interpreted as the
system being ergodic. For the simple cosine potential,
eqn (1), the limit can be calculated explicitly

Fmnð0; t!1Þ ¼
ð�1ÞnþmImðuÞInðuÞ

I02ðuÞ
(48)

An equivalent formal expression for the long-time limit
follows from eqn (41)

Fmnð0; t!1Þ

¼
X
s2Z

u00jsh i sþ m u00jh i
" # X

t2Z

u00jtþ n u00jh i t u00jh i
" #

:

(49)

Since u00ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ

p
and employing the Jacobi–Anger

expansion,50 the Fourier coefficients hm|u00i can be calculated
explicitly

m u00jh i ¼ ð�1Þ
mImðu=2Þffiffiffiffiffiffiffiffiffiffi
I0ðuÞ

p : (50)

With Neumann’s addition theorem for modified Bessel
functions50 the sums in eqn (49) can be performed and we
recover eqn (48). Note that eqn (46) and (48) represent static
quantities that only depend on the potential amplitude.

3.7 Mean-squared displacement and non-Gaussian parameter

The goal of this subsection is to elaborate the low-order
moments of the fluctuating variable Dx(t). They can be derived
from the conventional ISF, F(q,t) = F00(q,t), which is the char-
acteristic function of the random displacements. As moments
of odd order vanish by symmetry, we compute only the even
moments. The lowest nontrivial is the time-dependent mean-
squared displacement h[Dx(t)]2i. We also define the time-dependent
diffusion coefficient via the derivative of the mean-squared

Fig. 2 Eigenvalues lnq of the operator Lq for U1 = 1.0kBT are shown, for
the five lowest bands in the first Brillouin zone.
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displacement (MSD)

DðtÞ : ¼ 1

2

d ½DxðtÞ�2
� �

dt
: (51)

The long-time dynamics is diffusive, in particular, the long-
time limit DN := D(t - N) 4 0 is finite and defines the long-
time diffusion constant. An analytic expression for arbitrary
periodic potentials is known.15,16,18,22,51 In particular, for the
simple cosine potential it evaluates to

D1 ¼
D

I02ðuÞ
¼ 2pDe�2u½uþOð1Þ� for u!1: (52)

The exponential suppression of the diffusion constant
reflects Kramers’s rule for hopping over a potential barrier.36

A convenient measure to discuss deviations from simple diffu-
sion is the non-Gaussian parameter47,52

a2½DxðtÞ� : ¼
½DxðtÞ�4
� �
3 ½DxðtÞ�2h i � 1: (53)

The derivation for extracting the moments from the ISF is
similar to ref. 31 and 32 with only the essential steps presented
here. The key idea is to apply perturbation theory for small wave
numbers q and compare it to the Taylor series of the ISF, which
yields the moments

Fðq; tÞ ¼ 1� q2

2
½DxðtÞ�2
� �

þ q4

4!
½DxðtÞ�4
� �

þ � � � ; (54)

where we already exploited that all odd-order moments vanish.
The ISF, eqn (42), will be expanded in powers of q by Lq = L0 �
Dq2 + dL1

q with dL1
q = 2iqDqx. We rely on the Dyson representation

e L0þdL1
qð Þt ¼ eL0t þ

ðt
0

dseL0ðt�sÞdL1
qe

L0þdL1
qð Þs: (55)

Replacing the time-evolution operator in the integral on
the right-hand side iteratively generates the Born series, see
ref. 32. The main simplification steps are to make use of the
fact that eL0t|un0i = |un0i and also hun0|eL0t = hun0| and to insert
complete basis sets, eqn (26), for q = 0. Occurring integrals can
be formally evaluated and the terms are simplified to obtain the
final result, which is similar to the result in ref. 32, but slightly
changed for our operator and eigenvectors. We find the formal
expression

Fðq; tÞ ¼ e�Dq2t u00 e L0þdL1
qð Þt

��� ���u00D E

¼ e�Dq2t 1þ q2

2
~F2ðtÞ þ

q4

4!
~F4ðtÞ þO q6

� �	 

;

(56)

with

~F2ðtÞ ¼
2

q2

X
n

e�ln0t þ ln0t� 1

ln02
u00 dL1

q

��� ���un0D E
un0 dL1

q

��� ���u00D E

and,

~F4ðtÞ ¼
24

q4

X
n

X
m

X
p

e�ln0t þ ln0t� 1

ln02 ln0 � lm0ð Þ ln0 � lp0
� �

"

þ e�lm0t þ lm0t� 1

lm0
2 lm0 � ln0ð Þ lm0 � lp0

� �

þ e�lp0t þ lp0t� 1

lp02 lp0 � lm0

� �
lp0 � ln0
� �

#

� u00 dL1
q

��� ���un0D E
un0 dL1

q

��� ���um0

D E

� um0 dL1
q

��� ���up0D E
up0 dL1

q

��� ���u00D E
:

(57)

Here, all sums over n, m, p include all bands and therefore
formally the expression causes divisions by zero if a band index
corresponds to the lowest band or two band indices correspond
to the same band. In both cases the corresponding numerators
also vanish. The appearance of the zero divisors can be avoided
in the first place by handling these case separately before
performing the integrals in the simplification steps. Here we
follow a different route to keep the expressions simple by
analytically continuing the expression for the case of zero
numerators/denominators.

A further complication arises in the case of a simple cosine
potential, since all eigenvalues ln0 are, additionally, twofold
degenerate, except for the ground state causing additional zero
divisors. However, as in degenerate perturbation theory, one
can choose basis states such that the matrix elements of dL1

q

coupling different states to the same eigenvalues vanish. Since
L1

q anticommutes with space inversion, only states of different
parity couple, however, because un0 are either even or odd, no
zero divisors occur.

The low-order cumulants of the random variable Dx(t) are
generated upon expanding the logarithm of the ISF in powers
of the wave number q

lnFðq; tÞ¼�q
2

2
h½DxðtÞ�2þq4

4!
½DxðtÞ�4
� �

�3 ½DxðtÞ�2
� �

2

 �

þO q6
� �

:

(58)

To order O(q2) we find the mean-square displacement as
first nonvanishing cumulant

½DxðtÞ�2
� �

¼ 2Dt

� 2

q2

X
na0

e�ln0tþln0t�1

ln02
u00 dL1

q

��� ���un0D E
un0 dL1

q

��� ���u00D E
;

(59)

where no contributions from n = 0 as intermediate state arises
since the transition matrix element vanishes

u00 dL1
q

��� ���u00D E
¼ 2iqD

ðL
0

u00ðxÞ�@xu00ðxÞ¼ 0; (60)

where the last equality follows by integration by parts
and observing that u00(x) is real. The time-dependent
diffusion coefficient, eqn (51), can be computed using the
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time-derivative of eqn (59).

DðtÞ ¼Dþ 1

q2

X
na0

e�ln0t�1

ln0
u00 dL1

q

��� ���un0D E
un0 dL1

q

��� ���u00D E
: (61)

For the fourth cumulant we need to collect terms of order
O(q4) and we obtain

h[Dx(t)]4i � 3h[Dx(t)]2i2 = F̃4(t) � 3[F̃2(t)]2. (62)

For completeness, let us argue explicitly that all odd powers
in q in the expansion of F(q,t), eqn (56), vanish. A term linear in
q corresponding to a mean drift would involve the matrix
element hu00|dL1

q|u00i which is shown to vanish in eqn (60).
This vanishing of the mean drift is, of course, a general
property in equilibrium. For any symmetric potential all odd
moments vanish. The expansion of F(q,t) in eqn (56) generates
a chain hu00|dL1

q|un0i hun0|. . .|up0i hup0|dL1
q|u00i in eqn (57) of

products of matrix elements. By parity and the property of the
operator dL1

q a matrix element is non-vanishing only if the
states are of different parity. Thus, for the chain to yield a non-
vanishing contribution, the first intermediate state has to be
odd, the second even, and so on. However, the last state is the
ground state again which is even. Therefore, only even powers
of q are generated.

4 Comparison of the theoretical
framework with experimental and
simulation results

In this section, we analyze the observables and compare the
theoretical predictions with the experimental results. First, we
examine the diagonal and off-diagonal elements of the ISF
for various wave numbers and potential amplitudes. Next, we
discuss the mean-square displacement (MSD), time-dependent
diffusivity, and the non-Gaussian parameter for different
potential amplitudes. To facilitate the comparison with the
experimental results, we restore units; in particular, we use the
amplitude of the modulation U1, eqn (1), as a control para-
meter. The presented experimental results correspond to the
mean of multiple measurements, with error bars indicating the
standard deviation. Each measurement consisted of a suffi-
ciently large number of recorded trajectories, from which the
observable of interest was computed as an average. To enable
comparison with theoretical predictions, we established the
relationship between the potential amplitude U1 and laser
power (LP) (see Appendix A for details). Additionally, length
and time scales were calibrated by determining the short-time
diffusion coefficient D and the characteristic period L from the
experimental data. We determined from the initial slope of the
mean-square displacement an average short-time diffusion
coefficient of (0.050 � 0.002) mm2 s�1.

4.1 Diagonal ISF, l = n

The diagonal ISF is computed from our experimental data
relying on the definition given in eqn (31) for m = n. We have

checked that its imaginary part is in deed negligible reflecting
the mirror symmetry of the potential. We compare the experi-
mental results to the numerical ones relying on the spectral
representation in eqn (41). Last, all results are corroborated by
Brownian-dynamics simulations. The ISF is displayed in Fig. 3
for a range of different wave numbers Qm A L* and q A BZ for
three distinct amplitudes U1.

We first focus on the behavior for q a 0, where all ISF
eventually relax to zero. For moderate potential amplitudes
U1 E kBT, the potential is not high enough to significantly
inhibit hopping between different potential valleys, yielding
a single-step relaxation. For larger amplitudes, a two-step
process occurs. The particle initially freely diffuses with short-
time diffusion coefficient D until the potential forces become
dominant. For U1 \ kBT the motion occurs essentially at the
bottom of the potential, which can be approximated by a
harmonic well

UðxÞ � �U1 þ
U1Q1

2ðx� L=2Þ2
2

: (63)

The particle then locally equilibrates on the time scale of the
harmonic relaxation time, t = (L2/4p2D)(kBT/U1), and the ISF
saturates at a plateau value, see Fig. 3. The ISF within the
harmonic approximation can be calculated explicitly, see
Appendix E. For large barriers, Fig. 3(c), the harmonic approxi-
mation quantitatively describes the relaxation to the plateau
value for wave numbers resolving smaller length scale than a
period L. The relaxation from the plateau occurs on a much
larger time scale provided by Kramers’ theory tK p exp(2U1/
kBT). Once the particle overcomes the barrier and reaches
additional minima, the ISF eventually decays to zero. For small
wave numbers and long times, the hydrodynamic regime is
reached F00(q,t) = exp(�DNq2t). In this regime, the wave num-
bers only resolve the motion over many periods at time scales
much larger than Kramers’ escape time. Our analytical predic-
tions as well as the simulation results within the Smoluchowski
picture of a simple cosine potential show excellent agreement
with the experimental results.

For the wave number in the center of the BZ, q = 0, the ISF
does not decay to zero in the long-time limit t - N, rather
approaches a finite value, as computed in eqn (48). In Appendix
A we used this feature to calibrate the laser power of the
experiment to the theoretical kBT value.

4.2 Off-diagonal ISF, l a n

For the off-diagonal ISF, m a n, we present results for different
modes corresponding to |m � n| = 1 and |m � n| = 2. The results
are shown for three different wave numbers q and the ampli-
tude U1 = 0.99kBT, see Fig. 4. The general symmetries of the ISF
for symmetric potentials are summarized in eqn (43) and (44).

For wave numbers at the edge of the BZ q = p/L additional
symmetries of the ISF, eqn (45), hold. For example, the curves
for (m, n) = (1, �1) and (0, �2), or (1,0) and (�1, �2) are
identical.

For q = 0 both the initial value and the long-time limit are
non-zero. As soon as q a 0 the curves decay to zero for long
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times. If |m � n| is odd, the initial value is negative and for even
differences the initial value of the ISF is positive, eqn (46). And
also according to eqn (48) for odd (or even) values, the long-
time limit is negative (or positive, respectively). In contrast to

the diagonal elements of the ISF, we find no longer strictly
monotone behavior but minima and maxima, see eqn (32).

Results from the experimental data of the off-diagonal ISF
closely follow the shape of the analytical predictions and
simulation results at long times. However, a clear deviation is
observed at short and intermediate times, as shown in Fig. 4.
We attribute these discrepancies to experimental factors not
implemented in the theoretical model. We consider the pri-
mary factor to be the spatial inhomogeneities in the periodicity
and amplitude of the light-induced potential across the field
of view, which slightly deviates from the ideal cosine form
assumed in the theoretical model. As a result, individual
particles effectively experience slightly different periodicities
and amplitudes across the field of view. A detailed charac-
terization of the amplitude and periodicity in the field of view is
shown in Appendix B. Additionally, confinement effects due to
the two-dimensional nature of the system and inertial effects
not considered in the theoretical framework are factors that
might also contribute to these discrepancies. Despite these
differences, experimental results for the indices m and n with
equal |m � n| collapse into a common intercept (short-time
limit), capturing the expected phenomenology from the theo-
retical predictions given by eqn (46), though with a noticeable
shift respect to theory.

Theoretically, each Fourier component of the ISF is defined
in terms of a well-defined lattice wavenumber 2p/L. However, in
experiments, achieving this level of precision is challenging
because of variations in how individual particles interact with
the optical field. To allow a more accurate comparison between
theory and experiment, a normalization procedure is applied,
an approach that is further examined in Fig. 5.

Fig. 5 illustrates the normalized ISF, Fmn(q,t)/Fmn(q,0), for
different potential amplitudes U1/kBT, three different m, n
combinations and, for all of them, qL = p. The choice of qL =
p is particularly insightful, as it balances, for the measurements
time window, sensitivity to both free diffusion and potential-
induced localization, providing a clear distinction between different
transport regimes. As it can be seen in Fig. 5, after normalization,
the agreement between experimental results, the theoretical frame-
work and computer simulations is remarkable, confirming that the
model effectively captures full description of the system.

The most striking feature in the off-diagonal elements is the
emergence of a maximum at intermediate times, t { t { tK as
seen in Fig. 5(b) and (c). For larger times, the curves decay to
zero for q a 0. From the harmonic approximation we anticipate
the development of a plateau, whose value can be determined
from eqn (77). If (Qm + q)(Qn + q) o 0, the plateau corresponds to
a maximum, which is nicely approached for large potential
amplitudes, see Fig. 5(b) and (c). If (Qm + q)(Qn + q) 4 0, the
curves look similar to the diagonal elements of the ISF, where a
simple plateau emerges, see Fig. 5(a). The slowing down of the
relaxation towards the plateau or maximum as the potential
amplitude grows, is captured as well by t p 1/U1.

Finally, it is important to emphasize that, although experi-
mental factors cause deviations at short and intermediate
times, normalization effectively accounts for these variations,

Fig. 3 Diagonal ISF for various mode indices m = n and wave numbers q
and three different amplitudes U1, (a)–(c). Full colored lines correspond to
the theory and colored squares to the experimental results. Black circles
represent the simulation results. The dotted lines represent the harmonic
approximation.
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leading to excellent agreement between theory, simulations
and experiments.

4.3 Low-order moments of Dx(t): MSD, diffusivity and non-
Gaussian parameter

The dynamics previously discussed in terms of the ISF, can also
be found in the standard observables. Therefore, the discussion

Fig. 4 Off-diagonal ISF for n a m and U1 = 0.99kBT for different mode
indices (m, n) and wave numbers q, (a)–(c). Full colored lines correspond to
the theory and squares to the experimental results. Black circles represent
the simulation results. In panel (a) at the edge of the Brillouin zone, q = p/L,
for (m, n) = (1, �1) and (0, �2) coincide, as well as the ones for (1, 0) and (�1,
�2). In panel (c) for wave numbers q - 0 the curves of (m, n) and (�n, �m)
approach each other, where m, n A Z.

Fig. 5 Off-diagonal ISF for different amplitudes U1 for wave number q = p
three different mode indices (m, n), (a)–(c). Full colored lines correspond to
the theory and squares to the experimental results. Black circles represent
the simulation results and dotted lines the harmonic approximation.
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will be kept rather brief. The MSD, Fig. 6(a), is plotted for
various amplitudes U1 of the external potential. For short times,
t { (L2/4p2D)(kBT/U1), with U1 \ kBT or for times t { L2/4p2D
for very low amplitudes, U1 { kBT, we observe the expected
linear increase of the MSD, characteristic of free diffusion. For
higher potential barriers, however, a plateau emerges around
t E (L2/4p2D)(kBT/U1), corresponding to the time scale at which
the particle becomes temporarily trapped. At longer times, p
exp(2U1/kBT), the particle eventually overcomes the barrier and

resumes diffusion, with a reduced diffusion constant for higher
amplitudes compared to lower ones. This behavior is
further highlighted in the time-dependent diffusion coefficient,
eqn (51). We find that the long-time diffusion coefficient
decreases as U1 increases, see Fig. 6(b). There we also report
good agreement with the known values of the long-time diffu-
sion coefficient. As expected, the harmonic approximation
captures the behavior of the relaxation towards the plateau
increasingly better for higher amplitudes.

Furthermore, we analyze the non-Gaussianity of the particle
displacements using the parameter defined in eqn (53).
As expected, for higher barriers, the particle dynamics become
increasingly non-Gaussian, see Fig. 6(c). We observe that both
very small and very large amplitudes pose challenges in experi-
ments. For small amplitudes, it is difficult to distinguish the
dynamics from those of a free particle, as the external potential
has little effect. Conversely, for very large amplitudes, the low
diffusivity makes it challenging to sample a sufficient number of
particles that successfully hop over a barrier within the experimental
observation time. However, the experimental results show excellent
agreement with both simulations and analytical predictions.

5 Conclusion

In this work, we investigated the dynamics of dilute colloidal
suspensions in the presence of a periodic potential. Our approach
combined theoretical analysis, Brownian-dynamics simulations,
and experimental measurements. By evaluating the spatio-
temporal dynamics, we demonstrated that the behavior of a
colloid in a periodic potential can be accurately described by
analytical solutions of the Smoluchowski equation. This was
achieved through the analysis of a generalized ISF, which captures
how particle positions are correlated in a periodic system. Low-
order moments were derived, with a focus on the MSD, time-
dependent diffusion coefficient, and non-Gaussian parameter.

Based on the Smoluchowski equation reformulated in a
Hermitian Schrödinger form, we found formal expressions in
terms of a spectral-theoretical approach. The eigenfunctions
were expressed in Bloch form, to make use of the periodic
nature of the system. We found an analytic expression for the
generalized ISF, Fmn(q,t). By using the time-dependent perturba-
tion theory and Taylor expansion of the ISF we computed lower-
order moments. In our system, without memory effects, the ISF
effectively captures the full dynamics of colloidal particles in
periodic potentials, revealing both short- and long-time diffu-
sive behavior and trapping at intermediate times.

We performed experiments on 2D dilute colloidal suspen-
sions subjected to a periodic potential generated by two inter-
fering laser beams. Using particle tracking, we obtained particle
trajectories and averaged them to extract relevant observables.
The laser power was calibrated to its corresponding amplitude
value using two theoretical predictions (eqn (48) and (52)).
From our experimental data, we extracted the observables of
interest and compared them to our analytical solutions and
Brownian-dynamics simulations. We compared the results for

Fig. 6 (a) MSD, (b) time-dependent diffusion coefficient, and (c) non-
Gaussian parameter for different potential amplitudes U1. Full colored lines
correspond to the theory and squares to the experimental results. Black
circles represent the simulation results and dotted lines the harmonic
approximation. The dashed lines in (b) display the theoretical long-term
limit.
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various strengths of the amplitude of the potential and found
excellent agreement between the theoretical description and
experiments. The most sensitive observables were the off-
diagonal elements of the generalized ISF, where slight differ-
ences in the experimental setup were amplified in the curves. It
was crucial to ensure equivalent experimental conditions,
minimizing variations in periodicity, potential amplitude, and
confinement effects. To obtain good agreement with the analy-
tical predictions, a normalization was necessary.

We have carried out a comprehensive test of the underlying
fundamental dynamics of colloidal dynamics in a structured
environment, combining theory, simulations, and experiments.
By analyzing the generalized ISF, we identified new observables
with distinct features, including a non-vanishing long-time
limit. We provide a detailed theoretical framework and ratio-
nalize our findings through a harmonic approximation. Devel-
oping an explicit formula for the whole-time dependence of the
ISF allowing for a comprehensive description of colloidal
motion across all time scales. Furthermore, we introduced a
new approach for calibrating the experiment using these obser-
vables, offering a reciprocal space alternative to conventional
calibration methods. Comparing the results to a harmonic
approximation, we confirm that the Brownian particle first
diffuses freely, before it is temporarily trapped in the minima
of the periodic cosine potential. For these times the dynamics
are well approximated by a harmonic potential for large enough
amplitudes, and only at longer times it hops over the potential
barriers and once again exhibits diffusive behavior.

The analytical and experimental framework presented can be
extended to more complex systems. Although this work focused
on dilute suspensions, exploring more dense systems would allow
us to study particle interactions and many-body effects. A possible
other extension is the study of periodic lattices, where higher-
dimensional effects and collective behavior become important.
Investigating tilted washboard potentials could provide further
insight into driven transport. Our framework is also applicable to
a wide range of periodic systems beyond simple cosine potentials.
Experimentally, the new observables could also be measured
using differential dynamic microscopy.
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Appendices
A. Calibration

The precise determination of the periodic potential amplitude
(U1/kBT) as a function of laser power is a fundamental step
in experiments involving colloidal particles confined in optical
potentials. In this work, we perform both the traditional
diffusion-based calibration and a novel approach utilizing the
generalized intermediate scattering function (ISF). The conven-
tional approach to calibrating periodic potentials relies on
measuring the normalized long-time diffusion coefficient
(DN/D) as a function of laser power. As shown in the central
panel of Fig. 6, the diffusivity of particles decreases as the
potential amplitude increases, since energy barriers progres-
sively hinder diffusive motion. For a simple cosine potential,
U(x) = U1 cos(2px/L), the analytical relationship between the
normalized diffusion coefficient and the potential amplitude is
given by eqn (52).

Our alternative calibration method utilizes the generalized
ISF, specifically its asymptotic behavior, which explicitly
depends on the potential amplitude. For a simple cosine
potential and q = 0, the long-time limit of the generalized ISF
is analytically described by eqn (48), where the dependence on
the potential amplitude, U1, is evident. Specifically, for m = n = 1,
eqn (48) (F11(0,t)) evaluates the characteristic wave number
imposed on the system by the periodic potential, i.e., Qm =
Qn = 2p/L. In the top panel of Fig. 7 we plot F11(0,t), which
exhibits an opposite trend to diffusivity, with higher plateaus as
laser power increases. It is important to note that this approach
utilizes equilibrium correlation properties instead of transport
characteristics, providing complementary insights into the system.

The calibration is performed for both methods by extracting
plateau values as a function of laser power and solving eqn (48)
and (52) for the diffusivity and generalized ISF methods,
respectively. The calibration results from both methods are
presented in Fig. 7(b), showing the relationship between laser
power and dimensionless potential amplitude U1/kBT. The
remarkable agreement between these independent approaches
validates both the theoretical framework and the experimental
implementation, as seen in the central panel of Fig. 6 and 7(a).
This strong consistency confirms the theoretical predictions
and demonstrates the reliability of this method for calibration
purposes.

B. Light-field spatial characterization

This appendix provides a detailed look at the spatial character-
istics of the laser-induced periodic potential, as observed through
the motion of particles across the experimental field of view. To
determine the spatial periodicity, we follow a similar approach as
described in ref. 53. However, for the estimation of the amplitude,
we used a more direct estimation. Rather than fitting a sine wave
to the derivative of the logarithmic particle density, we extracted
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the amplitude in each window by identifying its maximum and
minimum values. The extracted amplitude of the periodic
potential as a function of the position along the field of view
is shown in Fig. 8(a). The amplitude displays a clear spatial
dependence, which arises from the Gaussian envelope of the
beam.6,54,55 The mean amplitude was measured to U1 = (1.03 �
0.08) kBT, with a coefficient of variation (CV) of 7.76%. The inset
histogram shows the distribution of the measured amplitude
values. Fig. 8(b) shows the spatial periodicity of the laser field in
the same region. In contrast to the amplitude, the periodicity
remains remarkably consistent throughout the field of view, as it
is unaffected by the Gaussian beam envelope. It maintains an
average value of L = (4.15� 0.07) mm, with a very low CV of 1.68%.
The inset histogram confirms this stability by showing a narrow,
normally distributed spread of periodicities. The error bars in
both figures represent variations between different experimental
runs in the same spatial regions.

C. Properties of the Bloch functions

In this appendix, we repeat the argument that the Bloch
function unq(x) to the same wave vector q are orthonormal.

Furthermore, we recall some properties of the Bloch functions,
in particular, for the case of a symmetric potential.

Orthogonality of Bloch functions. The overlap of two wave
function can be simplified using the periodic Bloch functions
and splitting the integral in cells

Cnq0
��Cmq

� �
¼ 1

N

ðNL

0

dxeiðq�q
0Þxunq0 ðxÞ�umqðxÞ

¼ 1

N

XN�1
j¼0

ðð jþ1ÞL
jL

dxeiðq�q
0Þxunq0 ðxÞ�umqðxÞ

¼ 1

N

ðL
0

dxeiðq�q
0Þxunq0 ðxÞ�umqðxÞ

XN�1
j¼0

eiðq�q
0ÞjL:

(64)

Fig. 7 Panel (a) shows the ISF for the wave numbers (m, n, qL) = (1, 1, 0) and
for different amplitudes U1. The markers represent experimental results,
while the solid lines correspond to analytical predictions, with the ampli-
tudes calibrated to match the experimental data. Panel (b) compares two
different calibration methods. One based on the long-time diffusivity DN

and the other on the long-time limit of the ISF, F11(0, t - N). The laser
powers (LP) used in the experiments, for which the calibration was
performed, were 130 mW, 250 mW 400 mW, 500 mW, 800 mW,
1000 mW, 1300 mW, and 1550 mW.

Fig. 8 Panel (a): The spatial variation of the extracted potential amplitude
U1 (orange squares) along the field of view, showing a mean value of U1 =
1.03kBT (red dashed line) with a standard deviation of 0.08 (orange error
bar). Inset: Histogram of the extracted amplitude values fitted with a
Gaussian distribution (red curve). Panel (b): The spatial variation of the
extracted periodicity L (green squares), with a mean value of L = 4.15 mm
(blue dashed line) with a standard deviation of 0.07 (green error bar). Inset:
Histogram of the extracted periodicities fitted with a Gaussian distribution
(blue curve).
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Since

XN�1
j¼0

eiðq�q
0ÞjL ¼

expðiNðq� q0ÞLÞ � 1

expðiðq� q0ÞLÞ � 1
for qaq0

N else

8><
>:

¼ Ndqq0

(65)

for the discrete wave vectors in the Brillouin zone and because
the wave functions are orthonormal hCnq0|Cmqi = dqq0dnm, Bloch
functions to the same wave vector are orthogonalðL

0

dxunqðxÞ�umqðxÞ ¼ dnm:

Symmetric band structure. The Hermitian operator L0 is
real. We introduce the eigenfunction Cl(x) to L0Cl(x) =
�lCl(x). Taking the complex conjugate of both sides reveals
that Cl(x)* is again eigenfunction to the same eigenvalue.
Bloch theorem states that eigenfunctions can be expressed as
Cnq(x) = exp(iqx)unq(x) with unq(x) periodic. Hence, un,�q(x)
coincides with unq(x)* up to a phase factor. Without restriction,
the phase factor can be chosen to be real. Therefore, the
corresponding band structure is symmetric with respect to
flipping the sign of the wave vector, ln,q = ln,�q. Furthermore,
the eigenfunctions in the center of the Brillouin zone are real
un0(x) = un0(x)*.

Degeneracies for symmetric potentials. We define the parity
operator P acting on functions PC(x) = C(�x). For a symmetric
potential PU(x) = U(�x) = U(x) and the parity operator commu-
tes with L0. Then, with Cl(x) eigenfunction, we find lPC(x) =
PL0Cl(x) = L0PCl(x). Hence, PCl(x) = Cl(�x) is again eigen-
function to the same eigenvalue. For the Bloch representation
this implies unq(�x) = �un,�q(x). In particular for q = 0 we find
un0(x) is either even or odd. As a consequence all matrix
elements hum0|L0|un0i vanish if the eigenfunctions um0(x),
un0(x) have different parity. In particular, the avoided crossing
theorem does not apply, the eigenvalues at the center of the
Brillouin zone can be twofold degenerate.

Peculiarity of the cosine potential. In general, band cross-
ings at the center of the BZ are allowed for symmetric potentials
since the avoided crossing theorem does not apply, but usually
only some band crossings appear while other bands still avoid
each other. The simple cosine potential is special in the sense
that all eigenvalues to q = 0 are twofold degenerate except for
the ground state l00 = 0.

This property is somewhat hard to see in the representation of
the time-evolution operator in the Schrödinger representation in
the Fourier basis hm|L0|ni. However, the property can be easily
deduced, omitting the gauge transform in the first place, i.e.
representing the dynamics in terms of the non-Hermitian matrix

hmjOjni ¼ �4p
2D

L2
m2dmn þ

m
2
dm;nþ1 � dm;n�1
� �h i

: (66)

This matrix displays the symmetry h�m|O|�ni = hm|O|ni*.
The argument now follows the one of Appendix A of ref. 32.
The matrix hm|O|ni displays a zero row for m = 0 and splits into

a part with entries for m 4 0, n Z 0 and an identical one for
m o 0, n r 0.

The only entries preventing the matrix to split into blocks
with positive/negative m, n are the matrix elements h�1|O|0i.
However, as hl0| = h0| is a left eigenvector to eigenvalue 0,
all eigenvectors |rn0i to non-zero eigenvalues have a zero entry
in their Fourier representation by orthogonality of eigenvectors
0 = hl00|rn0i = h0|rn0i. Therefore, the blocks with both m,n
positive do not communicate with the blocks with both indices
negative. In particular, one can choose eigenvectors with
hm|rni = 0 for m _ 0 or symmetric and antisymmetric eigenfunc-
tions to the twofold degenerate eigenvalue ln0 4 0.

D. ISF and probability density

Starting with the general definition of the ISF, eqn (33), and
inserting the expression for the probability density, eqn (24),
we obtain

Fmnðq;tÞ ¼
ðL
0

dx0

ðNL

0

dxe�i qþQmð Þxei qþQnð Þx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ
peq x0ð Þ

s

� 1

N

X
q02BZ

X
n

e�lnq0 teiq
0 x�x0ð Þunq0 ðxÞunq0 x0ð Þ�peq x0ð Þ

¼
ðL
0

dx0

ðNL

0

dxe�i qþQmð Þxei qþQnð Þx0

� 1

N

X
q02BZ

X
n

e�lnq0 teiq
0 x�x0ð Þunq0 ðxÞu00ðxÞ�unq0 x0ð Þ�u00 x0ð Þ

¼
X
n

e�lnqt
ðL
0

dxe�iQmxunqðxÞu00ðxÞ�
	 


�
ðL
0

dx0e
�iQnx0unq x0ð Þu00 x0ð Þ�

	 
�
:

(67)

Here in the second equality we used that the Bloch function to
wave vector zero at the lowest band is related to the equilibrium

density u00ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
peqðxÞ

p
. Furthermore, we observed that the inte-

gral vanishes for q a q0 due to the periodicity of the Bloch functions.
We can make further progress by using the Fourier modes as

basis functions, eqn (29). By expanding the Bloch functions
we obtainðL
0

dxe�iQmx0unqðxÞu00ðxÞ� ¼
ðL
0

dxe�iQmxunq x0ð Þ
X
s2Z

eiQsxffiffiffiffi
L
p s u00jh i

" #�

¼
X
s2Z

u00jsh i
ð
dxffiffiffiffi
L
p e�iQmþsxunqðxÞ ¼

X
s2Z

u00jsh i mþ s unq
��� �

:

(68)

Collecting terms, we find the expression for the ISF

Fmnðq; tÞ ¼
X
n

e�lnqt
X
s;t2Z

u00jsh i mþ s unq
��� �

unq
��n þ t

� �
t u00jh i:

(69)

This relation is eqn (41) in the main text.
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We also derive how the probability density can be obtained
from the intermediate scattering function

1

NL2

X
mn2Z

X
q2BZ

Fmnðq; tÞei qþQmð Þxe�i qþQnð Þx0

¼ 1

NL2

X
mn2Z

X
q2BZ

e�i qþQmð Þ½xðtÞ�x�ei qþQnð Þ xð0Þ�x0½ �
D E

¼ 1

NL2

X
mn2Z

X
q2BZ

X
q02BZ

e�i qþQmð Þ½xðtÞ�x�ei q0þQnð Þ xð0Þ�x0½ �
D E

¼ N

ð
dq

2p

ð
dq0

2p
e�iq½xðtÞ�x�eiq

0 xð0Þ�x0½ �
D E

¼ N d½x� xðtÞ�d x0 � xð0Þ½ �h i ¼ peq x0ð ÞP x; t x0jð Þ:

(70)

This is eqn (34) of the main text.

E. Harmonic approximation

The harmonic approximation of the Langevin equation, eqn (2),
is given by

d

dt
�xðtÞ ¼ �DuQ1

2�xðtÞ þ ZðtÞ; (71)

where the first term on the right-hand side is the restoring
force, and the second term is the random force of the Brownian
motion. The equation is expressed by the shifted position, %x :=
x � L/2, so that the potential minimum is at the center. The
Smoluchowski equation to solve for the propagator P := P(%xt|%x0)
is given by

@tP ¼
@

@�x
DuQ1

2�xP
� �

þD
@2

@�x2
P (72)

with the harmonic-well relaxation time t = 1/DuQ1
2. The

solution is known as the Ornstein–Uhlenbeck process36 and
we find the propagator

P �xt �x0jð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pVðtÞ

p exp �
�x� �x0e

�t=t� �2
2VðtÞ

" #
; (73)

with V(t) = Dt[1 � exp(�2t/t)], and the stationary solution as the
long-time limit of the propagator

peq �x0ð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pDt
p e��x0

2=2Dt: (74)

We can readily compute the generalized ISF by using the
definition of the main text, eqn (33), and by extending the
integrals to infinity

Fmnðq; tÞ ¼
ð1
1
d�x

ð1
1
d�x0e

�i qþQmð ÞðxþL=2Þei qþQnð Þ x0þL=2ð Þ

� P �x; t �x0jð Þpeq �x0ð Þ:
(75)

Solving the integrals then yields the ISF

Fmnðq; tÞ ¼ exp �Dt
2

qþQm
� �2�2 qþQm

� �
qþQnð Þe�

t
t

h	

þ qþQnð Þ2
i
� iL

2
Qm �Qn
� �


:

(76)

We further calculate the ratio

Fmnðq; t!1Þ
Fmnðq; tÞ

¼ exp � kBT

U1Q1
2
qþQm
� �

qþQnð Þ
	 


: (77)

We also readily find the MSD

DxðtÞ2
� �

¼
ð1
1
d�x

ð1
1
d�x0 x� x0ð Þ2�P �x; t �x0jð Þpeq �x0ð Þ

¼ 2Dt 1� e�t=t
� �

;

(78)

and time-dependent diffusion coefficient

D(t) = De�t/t. (79)
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J. M. Rubi and A. Pérez-Madrid, Phys. Rev. E:Stat., Nonlinear,
Soft Matter Phys., 2002, 65, 031104.

19 P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi,
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