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Precisely controlled colloids: a playground for
path-wise non-equilibrium physics

Cai Dieball, a Yasamin Mohebi Satalsari,b Angel B. Zuccolotto-Bernez,b

Stefan U. Egelhaaf, b Manuel A. Escobedo-Sánchez *b and Aljaž Godec *a

We investigate path-wise observables in experiments on driven colloids in a periodic light field to dissect

selected intricate transport features, kinetics, and transition-path time statistics out of thermodynamic

equilibrium. These observables directly reflect the properties of individual paths in contrast to the

properties of an ensemble of particles, such as radial distribution functions or mean-squared

displacements. In particular, we present two distinct albeit equivalent formulations of the underlying

stochastic equation of motion, highlight their respective practical relevance, and show how to

interchange between them. We discuss conceptually different notions of local velocities and interrogate

one- and two-sided first-passage and transition-path time statistics in and out of equilibrium. Our

results reiterate how path-wise observables may be employed to systematically assess the quality of

experimental data and demonstrate that, given sufficient control and sampling, one may quantitatively

verify subtle theoretical predictions.

1 Introduction

Colloidal particles, due to their high susceptibility to external
fields, can be precisely manipulated using light,1–12 electrical and
magnetic fields,1,13–15 or microfluidic devices.16 This makes them
an ideal platform to validate fundamental physical theories of soft
matter with a high degree of accuracy. Over the years, substantial
effort has been made in colloidal soft matter to explore various
aspects of both stochastic dynamics17–20 and stochastic
thermodynamics.21,22 In fact, colloidal systems have always served
as a paradigm for stochastic thermodynamics,21,22 which gener-
alizes the notion of thermodynamic observables to individual
stochastic paths. Many fundamental kinetic and thermodynamic
properties have been discovered and verified using colloids,
including the statistics of work performed on23,24 and heat
dissipated by24 a driven colloid, detailed25 and transient26 fluctua-
tion theorems, realizations of heat engines,6,11,12 as well as first-
passage8,27,28 and transition-path time statistics,29–33 to name a
few. Notably, these are properties of individual stochastic paths,
so-called functionals, which inherently provide much deeper
insight into the underlying dynamics than their ensemble-average
counterparts.34–40

Despite decades of intensive research leading to numerous
significant discoveries, the potential of driven and controlled

colloids to reveal fundamental physical laws remains far from
exhausted. On the one hand, this may be because advances in
abstract theory (e.g., functional fluctuation relations,39,41,42

speed limits,43–46 thermodynamic uncertainty relations45,47–56)
do not so easily proliferate to experiments or require excellent
statistics. On the other hand, reciprocal-space-based techniques
(e.g., dynamic light scattering, neutron or X-ray scattering, differ-
ential dynamic microscopy and variants)57–60 are only beginning
to be considered in the theory of stochastic thermodynamics.46

To go beyond the state-of-the-art in particle-tracking analysis
we focus on path-wise observables that directly reflect properties of
entire individual paths rather than properties of the probability
density of an ensemble of particles, such as radial distribution
functions or mean-squared displacements. Path-wise refers to those
functionals of particular realizations of trajectories that map entire
trajectories (Xt)0rtrt or large parts of them to some f [(Xt)0rtrt], as
opposed to observables depending only on the value at some fixed
set of times, e.g., f (Xt1

,Xt2
). A particular class of insightful path-wise

observables is first-passage time,61,62 which is the stochastic time it
takes for a trajectory to reach a prescribed target (position) for the
first time, e.g., f [(Xt)0rtrt] = arg min0rtrN(Xt = a) for a target at a.
For example, first-passage time statistics have been shown to
provide a deeper understanding of the origin of sub-diffusion than
mean-squared displacements.63 Moreover, they can distinguish
processes with equal transition probability densities,64 unravel
the number of intermediate states,28 and reveal fractal dynamics of
colloids.8 Related, albeit quite different, path-wise observables are
transition-path times defined as the stochastic duration of success-
ful transitions, whereby ‘‘successful’’ reflects that the particle does
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not return to its original position before arriving at a predefined
target point.65–68 Under typical conditions, transition-path times
obey a surprising symmetry,65 and violations of this symmetry may
be used to gain intriguing insights.31

The ‘‘inherent’’ sensitivity of the selected observables is such
that they can be systematically used to assess and critically verify
the quality of experimental data. In this study, we conduct precise
experiments on colloids driven through a periodic light field to
investigate fundamental and complex aspects of transport, along
with first-passage and transition-path times in out-of-equilibrium
conditions. Our results reiterate how given sufficient control and
sampling even the most subtle theoretical predictions may be
verified quantitatively, which will hopefully reinforce the motiva-
tion in the field of experimental soft matter to test and further
increase the quality of experimental data.

1.1 Structure of the paper

In the first part, we present two different ways to write the
underlying stochastic equation of motion on a trajectory-based
level and show how to interchange between the two in theory
and practice. We highlight the necessity of knowing both
representations by connecting them to essential dynamic and
thermodynamic properties. Based on these representations, we
discuss conceptually different notions of local velocities, whose
interrelations are a priori not obvious. Next, we investigate first-
passage time statistics for barrier-crossing events and show
how these are linked to the local mean velocity (using ref. 69).
Finally, we verify (and slightly extend to periodic systems) the
transition-path time symmetry predicted in ref. 65,68. All of
the aforementioned aspects are confirmed and supported by
experimental data on both equilibrium (passive) and driven
experiments. We conclude with a perspective on further
research directions and open questions.

2 Materials and methods

In this study, the applied potential is periodic in the x-direction
and originates from the optical force resulting from the inter-
action of particles with a periodic light field with period
L = 4.135 mm.

2.1 Sample preparation

We prepared a dilute colloidal dispersion containing polystyr-
ene Sulfate latex particles of 1.5 mm radius with a polydispersity
of 4% (Thermo Fisher Scientific, batch number 1660463). The
particles were suspended in ultra-pure water with a resistivity of
18.2 MO cm (Purelabs Flex, Elga). The dispersion was confined
to quasi-two-dimensional (2D) sample cells, which were
assembled as follows: 2.3 mL of the dilute colloidal dispersion
was placed on top of a 22� 50 mm cover slip, then a 22� 22 mm
cover slip was carefully placed on top, and the slides were glued
together using UV-curing glue (NOA61, Norland Products Inc.).
We mounted the assembled cell on a microscope slide. To avoid
the two glasses to get too close to each other (by capillary forces)
and pinning the particles, we have used the polydispersity of the

sample, i.e., the larger sizes in the dispersion (particles of around
2 mm in radius), as spacers. All sample cells were left to reach
equilibrium in a laboratory environment at 20 1C for two days.
The area fraction was ja C 1%.

2.2 Experimental setup

In this study, the periodic light field is created by the inter-
ference of two laser beams.70 A laser beam (Cobolt 05-01 Samba
1.5 W) of 532 nm wavelength, is expanded and then split into
two parallel beams using a Köster prism. Using a lens and a
dichroic mirror the beams are guided to interfere on the
microscope sample plane, creating a fringe pattern. The period
(L, dark-bright fringe) can be changed by moving the Kösters
prism position. The laser beams are removed from the image
path (with a dichroic mirror) and a CMOS camera (Mako U-130B)
is used as sensor to record images. The sample cell sits on a
piezo nanopositioner stage (Mad City Labs, Nano-BioS300),
which is used to move the sample. A schematic representation
of the experimental setup is shown in Fig. 1. For details on the
extraction of the period L and amplitude of the potential, see
Appedix A.

2.3 Optical microscopy and particle tracking

All experiments were performed with the colloidal particles
under the effect of the periodic light field.

Equilibrium state (not driven). We used an inverted bright-
field microscope (Nikon, Ti-E) with a 20� objective (Nikon, Plan
Flour, 0.5NA) and a light-emitting diode (Thorlabs M455L4) as
an illumination source. The images were recorded with a CMOS
camera (Mako U-130B) at a resolution of 1280� 1024 pixels

Fig. 1 Schematic representation of the experimental setup. A laser beam
is expanded using a beam expander (BE) and directed to a Kösters prism
(KP) to create two parallel beams. The laser beams are focused (using L1
and D1) in the sample plane to create the periodic light field. Dichroic
mirrors D1 and D2 transmit the LED and reflect the laser wavelength. The
sample cell is mounted on a piezo nanopositioner stage (S).
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utilizing the full field of view of the camera. The pixel pitch was
0.24 mm px�1. The data acquisition was performed at 25 frames
per second and an exposure time of 1 ms, with 90 000 images
per measurement. This corresponds to a total measurement
duration of 1 hour. We conducted several experiments that
reached a total collection of 1224 trajectories. We used modified
MATLAB-based particle tracking routines based on those of
D. Blair and E. Dufresne71 to accurately determine the position of
the colloids. Additionally, by following the Michalet algorithm,72

we estimated the localization uncertainty to be �2 nm. For a
direct comparison to the driven state experiments, we treated
the 1224 trajectories as 2448 trajectories with a duration of
30 minutes each.

Driven state. We used a piezo nanopositioner stage to apply
a driving force to the colloids by dragging the sample cell
through the potential. The stage was programmed to move
139 mm in 65 500 steps, with a 40 ms pause between each step.
Optimizing these values allowed us to drag the sample cell at a
controlled velocity of v0 = (0.053 � 0.002) mm s�1. We recorded
images at 25 frames per second, each measurement containing
45 000 images, for a total measurement time of 30 minutes.
In total, we acquired 1168 trajectories.

3 Overdamped Langevin dynamics
in a periodic drift field
3.1 Equilibrium dynamics

The dynamics of colloidal particles are generically overdamped
on the observed scales.17 Thus, we consider the stochastic
dynamics in one-dimensional space of a colloidal particle with
position Xt connected to a thermal bath with temperature T,
governed by the overdamped Langevin equation

dXt ¼ �
D

kBT
@xU Xtð Þdtþ

ffiffiffiffiffiffiffi
2D
p

dWt; (1)

where kB denotes the Boltzmann constant, D p T is
the diffusion constant, dWt is the increment of the fluctuating
thermal force (Wiener process), and U(x) is a potential,
with units of energy. The force arising from the potential is
�qxU(x) which results in the drift field �DqxU(x)/kBT (i.e., the
fluctuation–dissipation theorem yields the mobility m � D/kBT).
On the level of probability densities of particle positions, the
dynamics in eqn (1) is described by the Fokker–Planck
equation73,74 qtp(x,t) = �qx{[�DqxU(x)/kBT � Dqx]p(x,t)}. How-
ever, we mainly use eqn (1) to stay closer to the path-wise
description.

As mentioned in Section 2, in this study, the potential U(x) is
periodic in the x-direction with a period L. An experimental
trajectory is shown in Fig. 2. Note that the motion in the
y-direction will only correspond to a free Brownian motion, as
there is no force coming from U(x) in this direction. The latter
is illustrated in Fig. 2(a) where the effect of U(x) constrains the
movement in the x-direction, contrary to the y-direction where
it is allowed to move freely.

In Fig. 2(b) and (c), we therefore focus onXt, where in (c) we show
xt which is defined as Xt projected onto a single period [0,L), i.e.,
xt� Xt mod L. Accordingly, for U(x) = U(x + L) we may view eqn (1) as L-

periodic dynamics for xt, i.e., dxt ¼�D@xUðxtÞdt=kBT þ
ffiffiffiffiffiffiffi
2D
p

dWt

with the definition xt+dt � (xt + dxt)mod L ensuring that xt remains
confined to [0,L).

If projected on [0,L), the system settles into a Boltzmann
equilibrium density peq(x) p exp(�U(x)/kBT).73

More generally, not all systems settle into equilibrium steady
states. For sufficiently confined systems and drifts without
an explicit time dependence, a steady state is approached for
t - N. Similarly, for space-periodic dynamics treated as if they
evolve in a single period, i.e., projected onto a single period, a
steady state is approached for long times, assuming no explicit
time dependence in the drift and diffusion. However, here, a
stationary current emerges if the system is driven out of equili-
brium by a non-conservative drift; see below.

3.2 Driven dynamics

While equilibrium dynamics are interesting and important,
they are relatively well understood. However, they do not apply

Fig. 2 Exemplary trajectory (a), and corresponding projection onto the
x-axis (b) and (c) where time runs from dark to bright. (c) The period is always
chosen as L = 4.135 mm. The dataset comprises 2448 such trajectories.
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to irreversible (e.g., living) systems since these are inherently
out of equilibrium, e.g., driven by non-conservative flows (i.e.,
shear) or ATP hydrolysis. Note that the theory presented here is
not new but is simply presented in a comprehensive manner
and in a potentially new logical order to stay close to the
experiment. To address driven dynamics, we consider the
simplest situation in which we add a constant bare velocity v0

in the x-direction to the Langevin eqn (1), yielding

dxt ¼ � D

kBT
@xU xtð Þ þ v0

� �
dtþ

ffiffiffiffiffiffiffi
2D
p

dWt: (2)

In the experiments, v0 is introduced by dragging the sample
cell with a constant velocity �v0 along the periodic direction of
U(x) using the piezo nanopositioner stage. For a sample trajec-
tory in this driven setting, see Fig. 3. Note that, as before, the
motion in the x- and y-directions decouples and that the
motion in the y-directions remains equilibrium Brownian
motion only, see Fig. 3(a).

What can we say about the driven dynamics? First, the
dynamics projected onto a single period, see Fig. 3(c), still

settles into a steady state—a non-equilibrium steady state
(NESS)—with density ps(x), which, however, no longer has a
Boltzmann form. Instead, the shape of ps(x) is skewed in the
direction of sign (v0).

The first question that arises is, given eqn (2), what is ps(x)
for a given bare velocity v0 a 0? The second question refers to
the movement (i.e., probability current) of the driven particle;
see Fig. 3(b). This question is non-trivial, and compared to the
bare velocity v0, the particle is expected to slow down by the
barriers of U(x). Thus, one naturally wonders what theoretical
velocity is implied by the equation of motion in eqn (2).

Both questions can be answered by rewriting eqn (2) into an
alternative form

dxt ¼ D@x ln ps xtð Þ þ
js

ps xtð Þ

� �
dtþ

ffiffiffiffiffiffiffi
2D
p

dWt: (3)

In the following subsection, we will show how to derive it.
First, we will discuss the properties and usefulness of this
rewriting. Here, js is the steady-state probability current and
ns(x) � js/ps(x) is the ‘‘local mean velocity’’.22 The latter has to
fulfill qx[ns(x)ps(x)] = 0 to ensure that ps(x) is indeed the steady
state density, which is seen by requiring that qtp(x,t) = 0 for
p(x,t) = ps(x), where p(x,t) is the probability density goverend by
the Fokker–Planck equation,73,74

qtp(x,t) = �qx{[�DqxU(x)/kBT + v0 � Dqx]p(x,t)}

= �qx{[Dqxln p(x,t) + n(x,t) � Dqx]p(x,t)}

= �qx[n(x,t)p(x,t)]. (4)

In one-dimensional space, this directly implies that there is
a constant probability current js with ns(x) = js/ps(x). For
equilibrium dynamics v0 = 0, js = 0, and thus both presentations
eqn (2) and (3) agree, since for the equilibrium density peq(x) we
have qxln peq(x) = �qxU(x)/kBT. Thus, both can be seen as a
direct extension of eqn (1).

Eqn (3) is particularly insightful when considering micro-
scopic reversibility (i.e., detailed balance) and its generaliza-
tions. Namely, if we let Gns(x,t|x0) denote the two-point
conditional probability density of xt (which is the Green’s
function of the Fokker–Planck eqn (4), i.e., qtG

ns = �qx[�Dqxln
ps(x) + ns(x)]Gns with Gns(x,0|x0) = d(x � x0)), then detailed
balance corresponds to

G0(x,t|x0)ps(x0) = G0(x0,t|x)ps(x). (5)

This indeed holds if and only if ns(x) = 0 (i.e., js = 0). In
contrast, the generalization of eqn (5)–the so-called ‘‘dual
reversal’’ symmetry-corresponds to40

Gns(x,t|x0)ps(x0) = G�ns(x0,t|x)ps(x). (6)

Note that the dual reversal symmetry eqn (6) and symmetries
of dynamical functionals of xt (see ref. 40) are only applicable to
the steady-state local mean velocity ns(x) in eqn (3) but not to
the bare velocity v0 in eqn (2). On the other hand, the potential
U(x) that enters thermodynamic potentials only appears in the

Fig. 3 Example of a trajectory that is driven by n0, see eqn (2), (a), and
corresponding projection onto the x-axis (b) and (c) where time runs from
dark to bright. (c) The period is always chosen as L = 4.135 mm. The dataset
comprises 1168 such trajectories.
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first form (2). The main difference between the representations
eqn (2) and (3) is that the additional term ns(x) = js/ps(x)
(unlike v0) does not alter the steady-state density ps(x), irrespec-
tive of the value of the constant steady-state current js.

When discussing the velocity of the driven system, we must
note that :xt does not exist in a mathematical sense for overdamped
motion as in eqn (2) and (3) [technically Prob(|:xt| o C) = 0 for all
C o N] and that there are, in fact, different notions of velocity.
The bare velocity v0 and the drift velocity vdrift(x) (where h�|xt = xi
denotes the average conditioned on xt = x for any t A [0,t]),

dxtjxt ¼ xh i
dt

¼ vdriftðxÞ � D@x ln psðxÞ þ nsðxÞ
¼ �@xUðxÞ=kBT þ v0; (7)

are directly accessible from eqn (2). In contrast to v0 and vdrift(x),
the local mean velocity ns(x) and the mean velocity �n,

�v � dxth is
dt

¼
ðL
0

dx D@x ln psðxÞ þ nsðxÞ½ �psðxÞ

¼
ðL
0

dx D@xpsðxÞ þ js½ � ¼ Ljs;

(8)

[where h�is denotes the expectation over paths generated by eqn (2)
evolving from ps(x0)], are obtained from the second form of the
equation of motion (3). Note that for initial conditions other than
ps(x0), a mean velocity defined as hdxti/dt would not be constant in
time but only relaxes towards the above �n as t - N. Moreover,
note that for a periodic U(x) (with known period L), the mean
velocity is equivalently characterized by the following expressions
(recall that Xt is the full dynamics and xt � Xtmod L),

�v � dxth is
dt

¼ vdrift xtð Þh is¼ nsðxtÞh is¼ Ljs

¼
Xt2 � Xt1

� �
s

t2 � t1
¼ L

tðx! xþ LÞh is
;

(9)

for any times t1, t2 and for any x, and we used @x ln ps xtð Þh is¼

Ð L
0

@xpsðxÞ
psðxÞ

psðxÞdx ¼ psðLÞ � psð0Þ ¼ 0 to show hvdrift(xt)is = hns(xt)is

as well as Xt2 � Xt1

� �
s
¼

Ð t¼t2
t¼t11 � dXt

D E
s
¼
Ð t
0dt
Ð L
0 dx1js ¼ tLjs

(see, e.g., ref. 40 for details). The term t(x - x + L) in eqn (9)
denotes the first-passage time from x to x + L, i.e., the (stochastic)
time that a trajectory (Xt)0rtrt starting at position x takes to reach
position x + L for the first time, see also Fig. 7. The last equality in
eqn (9) is shown in ref. 69 and will be revisited later in this work.
Before we demonstrate and verify the different notions of velocities
from the experimental data, we first need to find a way to swap
between the representations, that is, from eqn (2) to eqn (3) and vice
versa.

3.3 Swapping representations: From eqn (2) to eqn (3)

On a general note, we emphasize that determining eqn (3)
analytically in a high-dimensional space is generally not feasi-
ble (i.e., it requires solving the stationary Fokker–Planck equa-
tion qtp(x,t) = 0; in practice, one would need to simulate long

trajectories and estimate ps(x) as histograms). However, in the
given one-dimensional scenario with constant bare velocity v0

there is a way to obtain ps(x) and, consequently, eqn (3) from
eqn (2), see ref. 73, which we follow here.

Define the auxiliary function c(x) (here 0 is the left side of
the periodic interval, and x A [0,L]) as

cðxÞ � exp
1

D

ðx
0

vdrift x
0ð Þdx0

� �
¼ exp

Uð0Þ �UðxÞ
kBT

þ v0x

D

� �
:

(10)

The result for ps(x) is

ps(x) = ps(0)c(x)(1 � r(x)[1 � c(L)�1]), (11)

where we introduced

rðxÞ �
Ð x
0c x0ð Þ�1dx0Ð L
0c x0ð Þ�1dx0

2 ½0; 1� for x 2 ½0;L�;

psð0Þ ¼
ðL
0

cðxÞ 1� rðxÞ 1� 1

cðLÞ

� �� �
dx

� ��1
:

(12)

As a consistency check, we note that for v0 = 0 we should
recover the Boltzmann distribution, and indeed we find

Fig. 4 (a) ps(x) in eqn (11) inferred from equilibrium (passive) experiments
and using the value n0= 0.053 mm s�1 of the experimentally fixed velocity,
where we deduced U(x)/kBT up to a constant offset from ln peq, where peq

was estimated as a histogram of the equilibrium dynamics with 60 bins in
[0,L) (setting a limited spatial resolution for the rest of the analysis). Note
that for our experimental setting, U is technically known but involves a
convolution with a Bessel function75,76 and is prone to experimental inac-
curacies. We thus prefer to infer U directly from the equilibrium data. The
diffusion coefficient D = 0.04 mm2 s�1 was fitted from var(dxt)/2dt averaged
over [0,t] and over all trajectories, see eqn (14). The equilibrium density peq is
only shown for comparison and we stress that it, as expected, does not agree
with ps(x). (b) Probability current inferred from the equilibrium data using the
value n0 = 0.053 mm s�1 of the experimentally prescribed velocity as
described in eqn (13) and below. The comparison to the measured value in
the driven data, see eqn (15), shows slight deviations.
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c(x) = exp([U(0) � U(x)]/kBT) such that c(L) = e0 = 1 and ps(x)/
ps(0) =c(x) provides it. Additionally, in Fig. 4(a), we also verify
eqn (3) as its resulting ps (dashed line) overlaps with the ps

measured from a histogram of the driven dynamics (red line)
with experimental data.

To obtain the representation in eqn (3) in full, we are also
required to fit the constant js = ns(x)ps(x). This may be done
either from

js ¼ Dpsð0Þ
cð0Þ�1 � cðLÞ�1Ð L

0c x0ð Þ�1dx0
; (13)

or by equating �DqxU(x)/kBT + v0 in eqn (2) with D@x ln psðxÞ þ

js

psðxÞ
in eqn (3). With ps and js (eqn (11) and (13)) we can finally

transform eqn (2) into eqn (3), as done for the experimental
data in Fig. 4. We stress again that this transformation was only
analytically feasible since we deal with a one-dimensional
system and a constant bare velocity v0. While the inferred
density ps (x) in Fig. 4(a) fits the measurement very well, there
are slight deviations between the current js in Fig. 4(b) inferred
from the equilibrium measurements using the input value of v0

(orange line) compared to the driven measurement (red line) or
to inferring the current by equating the drifts in eqn (2) and (3)
using the input v0 and peq(x) and ps(x) as in Fig. 4(a) (blue line
in Fig. 4(b); note that the blue line should, in principle, be
constant). We speculate that the deviations may be due to very
slight imperfections in the periodicity L that become amplified
since the field of view comprises many periods (about 60L, see
Fig. 10 in the appendix).

3.4 Swapping representations: from eqn (3) to eqn (2)

For completeness, we also consider the reversed mapping, where
we measure the driven data and want to infer the underlying
potential U(x) and bare velocity v0. Note that this is only possible
if we know that the driving arises purely from a constant drift
velocity v0, and we can only infer U(x) up to a constant. Knowing
U(x) is very relevant for stochastic thermodynamics (i.e., for
determining free energy, internal energy, and work, but not
the heat and entropy production or the dynamics). In the present
case, transforming in the reverse direction mainly serves as a
consistency check.

As for peq(x) in the equilibrium setting before, we estimate
ps(x) from an ensemble of NESS trajectories as a histogram with
60 bins, and the diffusion coefficient D from the short-time
fluctuations

D ¼ 1

t

ðt
0

dt
dxt

2
� �

s

2dt
¼ 1

2t

ðt
0

dxt
2

� �
s
: (14)

It turns out (at least from our trajectories length) that the
easiest and most reliable way to obtain js from NESS trajectories
appears to be to use [see eqn (9)]

js ¼
Xt � X0h is

Lt
; (15)

which together with ps(x) yields the form (3). To transform into

eqn (2) we compute the bare velocity v0 [comparing eqn (2) and (3);
note that U(x) is not yet known at this point, but it drops out
upon integration] as

v0 ¼
1

L

ðL
0

dx D@x lnpsðxÞþ
js

psðxÞ
�D@xUðxÞ=kBT

� �

¼ 1

L

ðL
0

dxnsðxÞ ¼
js

L

ðL
0

dx
1

psðxÞ
:

(16)

Now, we can obtain the potential (up to an additive con-
stant) from its derivative [obtained by equating drift terms in
eqn (2) and (3)]

@xUðxÞ ¼ �
kBT

D

D@xpsðxÞ þ js

psðxÞ
� v0

� �
: (17)

This way, one can transform back from eqn (3) to eqn (2). In
practice, this allows us to check whether the driving v0 intro-
duced in the experiment is what we expected (i.e., it serves as
another consistency check in addition to Fig. 4). The potential
U(x) [we set the additive constant to zero, i.e., we chose
minU(x) = 0] and v0 computed this way are compared to the
measured equilibrium (i.e., v0 = 0) and the results are shown in
Fig. 5. As before, we observed slight deviations in velocity and
current, probably connected to slightly washed-out barriers
over the large field of view in the experiment (a tiny error in

Fig. 5 (a) Inferred n0 from driven experimental data compared to the
desired input value n0. Though there are some statistical deviations in the
values for n0 (related to Fig. 4(b)), both obtained values for n0 are well
distinguishable from the mean velocity �n (grey line). (b) The potential U(x)
inferred from the driven data via eqn (17) (black line) matches the potential
measured from the equilibrium data projected on one period [0,L) using
U(x) = �ln(peq(x)) � const. (red line) quite well. The barrier height (difference
between minimum and maximum) is 2.76kBT in the red line and 2.65kBT in
the black line, respectively. It deviates from � log(ps) (grey line) since the
driven data set does not obey a Boltzmann density [see eqn (2) and (3)].
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the value of L can become relevant when projecting on [0,L) via
xt = Xt mod L since the range of Xt comprises a range of about
60L, see Fig. 10 in the Appendix. However, in general the
consistency check gives excellent results.

4 Different notions of velocity

To provide more insight into the different notions of velocity in
our system, we compute the bare velocity n0, the drift velocity
vdrift(x) in eqn (7), and the mean velocity �n = hXt � X0is/t in
eqn (9) from the measured trajectories of the driven system.
The results are shown in Fig. 6.

As mentioned above, two constants constitute a notion of
velocity: the bare velocity n0 and the mean velocity �n, see
eqn (9). In addition, there are also local, x-dependent notions
like the local mean velocity ns(x), as well as the drift velocity
vdrift(x) = hdxt|xt = xi/dt, see eqn (7). In equilibrium, only the
drift velocity vdrift(x) deviates from 0. The mean velocity �n can be
computed in different ways; see eqn (9), some of which are also
equivalent from a practical/numerical point of view (depending
on how we choose to infer js). Note that generally, ns(x) a
hns(xt)is a vdrift(x) a hvdrift(xt)is, that is, the different kinds of
velocities indeed have a quite strikingly different meaning,
which must be taken into account when characterizing and
comparing transport properties.

5 First-passage times

In this section, we evaluate the mean first-passage times, that
is, the average time it takes for a particle to reach a certain
point [see Fig. 7; in our case, the average time to cross the
barrier in the potential U(x)] for the first time given some initial
condition,61 using experimental data. The first-passage time for
barrier crossing is an insightful observable, important, for
instance, in the study of chemical reactions kinetics.77 Perhaps
more important in the present context, first-passage observa-
bles are generally much more sensitive dynamics indicators
than propagators, currents, or mean-squared particle
displacement.8,63,64 As such, they are particularly suitable for
critically assessing whether inferred properties of the dynamics
(e.g., the parameters in the equations of motion) are appro-
priate. In particular, first-passage observables may distinguish
between processes with identical transition probability
densities,64 and, in contrast to mean-squared particle displace-
ments, provide insight into the microscopic origin of anom-
alous dispersion in complex media.8,63

Here we focus on two particular first-passage observables,
namely the mean-first passage to transverse a distance equal to
the period length L, ht(x - x + L)i and the two-sided mean exit
time from the interval [x � L,x + L], htE(x � L)i. Note that we do
not consider periodic boundary conditions here, i.e., we con-
sider trajectories (Xt)0rtrt which evolve on the entire space and
not only on [0,L). The chosen first-passage observables have two
advantages. First, for a periodic potential U(x), they are inde-
pendent of the initial position x,69 making them very practical
to infer from experimental data. Second, the mean of its

Fig. 6 (a) Different space-dependent and constant velocities in the NESS.
See eqn (9) for different representations of the mean velocity �n. In
equilibrium, only ndrift(x) deviates from zero. Quantities denoted by
averages over xt are independent of t in the steady state and are here,
for practical reasons to improve statistics, averaged over all t A [0,t].
(b) While �n = hxt+Dt�xtis/Dt for all t and Dt, see eqn (9), the approximation

vN;DtðtÞ ¼
1

N

PN
i¼1ðxitþDt � xitÞ=Dt of this quantity over the finite number of

trajectories N = 1168 as a function of t, as expected, exhibits large
fluctuations for small Dt.

Fig. 7 Pictorial definition of the first-passage time (a) and transition time
(b) to go from x = 126 mm to x = 129 mm. (a) For the trajectory starting at x =
126 mm at t = 0 s, the first time it reaches x = 126 mm is after 46.7 s which is
the value of the first-passage time for this trajectory snippet. (b) A transition
time from x = A to x = B (will be considered in Section 6; here A = 126 mm
and B = 129 mm) is the time from hitting A for the last time before reaching B.
In this example one transition A - B happens, which takes 15.0 s.
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one-sided version, ht(x - x + L)is is directly related to the mean
velocity ht(x - x + L)is = L/�n, see eqn (9).

To recapitulate where the independence comes from, con-
sider t(0 - L) and t(x-x + L) for some xA [0,L]. Since we have
one-dimensional trajectories, x is necessarily crossed in the
transition 0 - L, and by the renewal theorem78,79 (note that we
are dealing with a time-homogeneous Markov process with
continuous paths) we immediately have statistical equality on
the level of t for t(0 - L) = t(0 - x) + t(x - L). Moreover, by
periodicity we obtain t(0 - x) + t(x - L) = t(L - x + L) + t(x - L) =
t(x - L) + t(L - x + L) = t(x - x + L), therefore t(x - x + L)
(and therefore ht(x - x + L)i) is independent of x, and similarly for
tE(x � L). We will exploit this in the notation and drop the
dependence on x, i.e., ht(x - x + L)i- ht(L)i.

The x-invariance helps to check the data for short-time bias
due to under-sampling (see Appendix of ref. 8). Namely, when-
ever we infer t from finite trajectories, say of duration t, starting
at an arbitrary point x0, we estimate a conditional mean first-
passage/exit time, ht(L)|t(L)oti,8 i.e.,

tðLÞjtðLÞo th i �
Ð t
0
tPLðtÞdtÐ t
0PLðtÞdt

; (18)

where PLðtÞ is the probability density of t(L), and the same
holds for the two-sided exit time htE(L)|tE(L) o ti. Obviously,
lim
t!1

tðLÞjtðLÞo th i ¼ tðLÞh i. For a periodic U(x) in the equili-

brium setting n0 = 0, ht(L)i unlike the exit time htE(L)i o N is
infinite, ht(L)i = N since the particle can escape to �N and
thereby may not reach the target at any finite time. However,
by the fundamental property of Brownian motion, in the
equilibrium setting all trajectories eventually hit the target.
Moreover, in the driven setting, we consider a bias towards the
target, such that almost all trajectories reach the target in a
finite time. Hence, we expect ht(L)is o N

61 (this would, of
course, not be the case of a particle biased away from the
target).

Any substantial deviations between the conditional and
unconditioned first-passage (and exit times, respectively) reflect
that a significant fraction of trajectories did not yet cross the
barrier to the right of the initial condition and that the
estimated mean first-passage time is statistically unreliable.
The manifestation of this short-time bias in the equilibrium
and driven setting is demonstrated in Fig. 8, where we mimic
the effect of a progressively larger measurement time t in the
experiment by disregarding long-time data. We find substantial
effects of a finite duration of trajectories. In the equilibrium
case, both the mean first-passage and the exit time increase with
the duration t of trajectories, while in the driven case, the mean
first-passage time is progressively approaching the predicted
value. Based on the Langevin dynamics in eqn (2) or (3), the
one-sided mean first-passage time (blue line) is known to diverge
as t - N in the equilibrium setting [see, e.g., �n - 0 in eqn (9)],
while the two-sided version (orange line) must converge. In the
non-equilibrium setting (green line), the mean first-passage time
must converge, and we observe a quantitative agreement with
the theoretical prediction L/�n in eqn (9) (grey line), where the

equality ht(L)is = L/�n is approached for large t. If the deviation of
the green and grey dashed line in Fig. 8(a), does not (approxi-
mately) vanish. We could immediately infer that the measure-
ment time is too short. Equivalently, the fraction of successful
trajectories (see Fig. 8(b)) ought to converge to 1 for the exit from
the interval and generally for the driven setting (and asymptoti-
cally approach 1 for the one-sided first-passage in the equili-
brium setting) if we are to infer a reliable estimate for ht(L)i.
However, note that the additional test with the mean velocity
�n may still be meaningful even if the fraction is already one
(e.g., if one has a limited number of trajectories available or if
one puts in the requirement of crossing the barrier as an
additional condition).

Note that a short-time bias is, in fact, typical. Specifically,
whenever not (almost) all observed trajectories reach the target,
the estimated mean first-passage time (or its inverse, the rate)
will suffer from this bias. This occurs because the first-passage
and the exit time are controlled (essentially dominated) by the
long-time behaviour of PðtÞ.61,80,81

6 Symmetry of transition-path times

An essential and closely related, but fundamentally quite
different, concept to first-passage times is transition-path
times.65–68,82 The transition-path time T A! Bð Þ from a point
A to a point B in (here considered in one-dimensional space) is
defined as the time span between the last time that a trajectory
(xt)tZ0 hits A before hitting B for the first time, see Fig. 7(b).
This observable is deeply related to the concept of mile-stoning

Fig. 8 (a) Conditional mean first-passage times (mFPT) and (b) fraction of
trajectories where the barrier crossing event was realized conditioned on
times until t (i.e., we cut the data at time t to mimic shorter measurements).
The green line approaches 148.8 s, which roughly agrees with the grey line at
146.4 s, confirming the last equality in eqn (9). Shaded regions show the
sample standard deviation over the 11 (equilibrium ‘‘EQ’’) or 13 (NESS) data sets.
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(see, e.g., ref. 68,83–86) and Fig. 7(b), (where the crosses
indicate hits of the milestones). The important difference to
first-passage times t(A - B) is thus that the transition time
T A! Bð Þ does not contain the dwell time around A (see, e.g.,
ref. 68 for details). A practical difference for our analysis is that
we had 0 or 1 samples per trajectory for the first-passage time
(since we always started at t = 0) while a single trajectory
may contain several transitions A - B and B - A, see Fig. 7.

Moreover, we again consider the periodicity in space for the
transition times.

Transition-path times encode subtle and important infor-
mation about violations of the Markov property31,67,68 and are
essential for consistent thermodynamics of non-Markovian
processes.31,68,85,86 A particularly subtle, and at first glance
surprising, property of transition-path times is the forward–
backward symmetry for reversible Markov dynamics discovered in
ref. 65 (for extensions, see ref. 32,68,87,88). It states that for a Markov
process obeying detailed balance, we have the equality in time-
distribution of transition paths, p T A! Bð Þð Þ ¼ p T B! Að Þð Þ.
The surprising aspect is that if A is located in a potential minimum
and B on a potential barrier, the duration of transition paths
‘‘uphill’’’ and ‘‘downhill’’ are statistically identical for any potential.
Note that this symmetry does not hold for first-passage times (since
the dwell times in A and B can be arbitrarily different).

The transition-path time symmetry has seemingly not yet
been experimentally verified (although its violations in multidimen-
sional non-equilibrium systems have already been observed
experimentally31 and by computer simulations88). Here we evaluate
the transition times between two milestones (here points) A and B
(see Fig. 9(a) and (e)) and evaluate frequency histograms of
transition-path times as an estimator of their probability
density for equilibrium (see Fig. 9(a)–(d)) and NESS dynamics
(see Fig. 9(e)–(h)). Note that since the original transition-path time
symmetry does not concern periodic systems, it only holds for
transitions A - B and B - A either passing through the middle
(around x = 2 mm) or passing through the periodic boundary
(x = 0 mm), see overlap of blue and orange in Fig. 9(c) and (d),
respectively. Note that the symmetry is equally expected to hold in
one-dimensional NESS,87 as confirmed in Fig. 9(g) and (h) (it only
breaks down in multidimensional NESS, see ref. 31). Nevertheless,
we see in Fig. 9(b) that the symmetry also holds for ‘‘mixed’’’
transitions between A and B, i.e., if we consider all transitions
indifferent to whether they do or do not make use of the periodic
boundary. This is generally the case for periodic equilibrium
dynamics (given 1d Markov) since orange and blue in Fig. 9(b) are
a weighted average of orange and blue in Fig. 9(c) and (d) where both
colours are weighted with the same proportions [different weights
cannot occur in equilibrium since this would lead to a contraction as
it implies directed motion ( js a 0)]. The symmetry is violated for
mixed transitions in Fig. 9(f), since the weighting of Fig. 9(g) and (h)
to obtain Fig. 9(f) is not the same for orange and blue.

To summarize, Fig. 9 demonstrates the validity of the predicted
transition-path time symmetry between two milestones (Fig. 9(c),
(d), (g) and (h)). While the transition-path time symmetry does not
apply to periodic NESS dynamics (Fig. 9(f)), it holds true (in
addition to the ‘‘unmixed’’ transitions in Fig. 9(c), (d), (g) and (h))
for periodic equilibrium dynamics (Fig. 9(b)).

7 Conclusions

We interrogated path-wise properties of driven colloids in a
periodic light field to experimentally demonstrate some highly
intricate and insightful features of transport, kinetics, and

Fig. 9 (a) Periodic potential for the equilibrium data and chosen mile-
stones A and B. (b) Probability of transition times for A - B and B - A,
respectively. Error bars show the sample standard deviation over the
different data sets. (c) and (d) As in (b) but resolving for the direction of
transitions. For both A - B and B - A, about 70% of the transitions belong
to panel (c) and 30% to panel (d). Since the histograms in (c) and (d)
contribute to A - B and B - A with equal weights, the symmetry also
holds in (b). (e)–(h) As in (a)–(d) but for the driven data. The black line in (e)
is now only a pseudo potential. The symmetry of (g) and (h) does not imply
symmetry in (f) since the weights of (g) and (h) are 96% and 4% for A - B,
and 12% and 88% for B - A, respectively.
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transition-path time statistics out of equilibrium. Our main goal
was to emphasize how these observables can be systematically
utilized to critically assess and verify the quality of the experi-
mental data. We have reiterated that, with sufficient control and
sampling, even subtle theoretical predictions can be rigorously
tested and quantitatively validated. We hope this will motivate
the experimental soft-matter community to undertake such tests
and further enhance the quality of experimental data.

Beyond the previous analyses of first-passage observables in
experimental data8,28 we compared the mean particle velocity with
the corresponding first-passage result69 to check for short-time
biases in non-equilibrium steady states. Despite the measure-
ment time being long enough for trajectories to equilibrate
within one period [0,L), we illustrate that observables, such as
the one-sided mean first-passage time in equilibrium, (have not
yet converged, highlighting the intricate features of first-passage
times and more generally, path-based observables). That is,
small statistical fluctuations (i.e., small error bars) do not
necessarily imply a sufficient quality of data as exemplified by
the short-time biases in Fig. 8. From a practical perspective, our
results show that first-passage analysis can be used to system-
atically test experimental data for short-time biases.

Moreover, we verify and extend predicted symmetries for the
more subtle transition-path times. By showing that the symmetry
persists in effectively one-dimensional non-equilibrium systems, we
underscore the usefulness of violations of the transition-path-time
symmetry to infer simultaneously broken time-reversal symmetry
and the presence of multiple transition pathways.31,87

We also highlighted two well-established but distinct,
yet mathematically equivalent, formulations of the Langevin
equation of motion for colloidal particles. Notably, the second
formulation, while less commonly employed in experiments,
provides a more thermodynamically expressive framework. We
hope this will encourage further integration between soft-
matter experiments and stochastic thermodynamics, particu-
larly in advancing thermodynamic inference using speed limits
and thermodynamic uncertainty relations.

Author contributions

AG and SUE conceptualized the project, MAES and AG were
responsible for the administration. SUE and AG provided the
resources and acquired the funding for the experimental and
theoretical work, respectively. CD and AG developed the theory.
CD, YM, ABZB and MAES performed the investigations and
validation. MAES and CD developed the software. ABZB and YM
worked on the experimental setup. YM, CD and MAES worked
on the methodology, data curation, and visualization. CD and
AG wrote the original draft. CD, AG, ABZB, YM and MAES
reviewed and edited the final version of the manuscript.

Data availability

Data for this article, including all particle trajectories analyzed
in the manuscript, are available at Zenodo at https://doi.org/
10.5281/zenodo.13908799.

Conflicts of interest

There are no conflicts to declare.

Appendix
Details on the periodic potential

For the above analysis, we determined period L by comparing
histograms for xt � Xt mod L over the left and right half,
respectively, of particles in the field of view. The chosen value
correct value of L was optimized such that the two histograms
optimally agree. While this does not rely on any assumptions
about the exact shape of the potential (the shape was only later
inferred from histograms; we only assumed that there is one
barrier per period to remove ambiguity, since any L-periodic
system is, e.g., also 2L-periodic), this procedure may generally
only serve as a fine-tuning for the value for L. Therefore, we here
also present an alternative, more systematic, approach to infer
L using an approximation for the shape of U(x). Moreover,
while the theory and inference of U(x) in the main part of the
paper address general periodic potentials, the experimentally
realized U(x) is well approximated by a cosine. To elaborate on
the discussion of the inference of U(x), and to show the spatial
variation that is not investigated in the paper (since it is lost
after projecting onto one period; as done, e.g., to arrive at
Fig. 5(b)), in this Appendix we also show a complementary
approach, where we assume a cosine-shape and infer the
amplitude and its spatial variation. Following earlier experi-
ments with comparable setups, we assume that the effective
potential induced by the periodic light field can be well
approximated by,2,70 U(x) = U0cos(kx) + Ubg, with k = 2p/L, U0

the potential amplitude and Ubg a constant background con-
tribution. The potential background Ubg becomes irrelevant as
it is neglected by the derivative in eqn (1). Over the whole field
of view, particle density profiles r(x) for the equilibrium trajec-
tories were analyzed to extract the periodicity and amplitude of
an underlying potential via r(x) p exp[�U(x)/kBT]. The natural
logarithm of the density, ln(r(x)), was evaluated, and its deri-

vative,
d

dx
lnðrðxÞÞ, to remove any background contributions.

We used a sinusoidal function to fit the derivative for a window
consisting of two periods and performed the same analysis for
the entire dataset, covering 30 windows. Averaging the results
across all windows we estimate the periodicity and potential
amplitude of the light field. The insets in Fig. 10 show histo-
grams of the periodicity and amplitude values, with the fre-
quency count plotted versus the extracted periodicity and
amplitude for all measurements. The red curve represents a
Gaussian fit to the histogram. This allows for a statistical
summary with the mean and standard deviation extracted from
the fit, and in particular shows the spatial variation. The error
bars in the plot represent the standard deviation of the
extracted periodicity values within each window. The results
of the inference of L in Fig. 10(a), based on approximating U as
a cosine, are in excellent agreement with the value L = 4.135 mm
chosen in the main part by matching histograms in different
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parts in the field of view without assuming the shape of U(x).
Moreover, the amplitude inferred in Fig. 10(b) match closely
with the barrier heights of 2.76kBT and 2.65kBT in Fig. 5(b),
keeping in mind that the barrier (difference of maximum and
minimum) in the cosine potential is 2V0.

Acknowledgements

Financial support from the European Research Council (ERC)
under the European Unions Horizon Europe research and
innovation program (grant agreement no. 101086182 to AG)
and from the Deutsche Forschungsgemeinschaft (DFG), project
number 459399860 (to SUE and MAES), is gratefully acknowl-
edged. This work is dedicated to the memory of our friend,
mentor and colleague, Stefan U. Egelhaaf. Open Access funding
provided by the Max Planck Society.

Notes and references
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27 A. Magazzù, A. Callegari, J. P. Staforelli, A. Gambassi,
S. Dietrich and G. Volpe, Soft Matter, 2019, 15, 2152–2162.

28 A. L. Thorneywork, J. Gladrow, Y. Qing, M. Rico-Pasto,
F. Ritort, H. Bayley, A. B. Kolomeisky and U. F. Keyser, Sci.
Adv., 2020, 6, eaaz4642.

29 N. Zijlstra, D. Nettels, R. Satija, D. E. Makarov and
B. Schuler, Phys. Rev. Lett., 2020, 125, 146001.

Fig. 10 (a) Extracted periodicity L(x) as a function of position x with error
bars representing the standard deviation of L(x) within each window. The
dashed lines indicate the average value of the periodicity (L = 4.139 mm)
plus and minus one standard deviation (�0.113 mm). The inset shows the
histogram of the L(x) values across all windows, with a Gaussian fit
illustrating the distribution. The coefficient of variation (CV) is 3%. (b)
Extracted potential amplitude V0/kBT with error bars showing the standard
deviation within each window. The dashed lines represent the average
amplitude (V0 = 1.395kBT) plus and minus one standard deviation
(�0.123kBT). The inset displays the histogram of values across all windows,
fitted with a Gaussian distribution. The coefficient of variation is 8%.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
K

ud
o 

20
25

. D
ow

nl
oa

de
d 

on
 1

4/
11

/2
02

5 
10

:3
1:

23
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm01189a


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 2170–2181 |  2181

30 K. Neupane, D. B. Ritchie, H. Yu, D. A. N. Foster, F. Wang
and M. T. Woodside, Phys. Rev. Lett., 2012, 109, 068102.

31 J. Gladrow, M. Ribezzi-Crivellari, F. Ritort and U. F. Keyser,
Nat. Commun., 2019, 10, 55.

32 R. Satija, A. M. Berezhkovskii and D. E. Makarov, Proc. Natl.
Acad. Sci. U. S. A., 2020, 117, 27116–27123.

33 F. Sturzenegger, F. Zosel, E. D. Holmstrom, K. J. Buholzer,
D. E. Makarov, D. Nettels and B. Schuler, Nat. Commun.,
2018, 9, 4708.

34 S. N. Majumdar and A. Comtet, Phys. Rev. Lett., 2002,
89, 060601.

35 G. Bel and E. Barkai, Phys. Rev. Lett., 2005, 94, 240602.
36 A. Rebenshtok and E. Barkai, J. Stat. Phys., 2008, 133, 565.
37 S. Sabhapandit, S. N. Majumdar and A. Comtet, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2006, 73, 051102.
38 A. Lapolla, D. Hartich and A. Godec, Phys. Rev. Res., 2020,

2, 043084.
39 C. Dieball and A. Godec, Phys. Rev. Lett., 2022, 129, 140601.
40 C. Dieball and A. Godec, Phys. Rev. Res., 2022, 4, 033243.
41 M. Baiesi, C. Maes and B. Wynants, Phys. Rev. Lett., 2009,

103, 010602.
42 A. Dechant and S.-i Sasa, Proc. Natl. Acad. Sci. U. S. A., 2020,

117, 6430.
43 N. Shiraishi, K. Funo and K. Saito, Phys. Rev. Lett., 2018,

121, 070601.
44 V. T. Vo, T. Van Vu and Y. Hasegawa, Phys. Rev. E, 2020,

102, 062132.
45 T. Van Vu and K. Saito, Phys. Rev. X, 2023, 13, 011013.
46 C. Dieball and A. Godec, Phys. Rev. Lett., 2024, 133, 067101.
47 A. C. Barato and U. Seifert, Phys. Rev. Lett., 2015,

114, 158101.
48 J. M. Horowitz and T. R. Gingrich, Nat. Phys., 2019, 16, 15.
49 K. Macieszczak, K. Brandner and J. P. Garrahan, Phys. Rev.

Lett., 2018, 121, 130601.
50 T. Koyuk and U. Seifert, Phys. Rev. Lett., 2019, 122, 230601.
51 T. Koyuk and U. Seifert, Phys. Rev. Lett., 2020, 125, 260604.
52 A. Dechant and S.-i Sasa, Phys. Rev. X, 2021, 11, 041061.
53 G. Falasco and M. Esposito, Phys. Rev. Lett., 2020,

125, 120604.
54 R.-S. Fu and T. R. Gingrich, Phys. Rev. E, 2022, 106, 024128.
55 T. Koyuk and U. Seifert, Phys. Rev. Lett., 2022, 129, 210603.
56 C. Dieball and A. Godec, Phys. Rev. Lett., 2023, 130, 087101.
57 R. Cerbino and V. Trappe, Phys. Rev. Lett., 2008, 100, 188102.
58 M. A. Kamal, M. Brizioli, T. Zinn, T. Narayanan, R. Cerbino,

F. Giavazzi and A. Pal, J. Colloid Interface Sci., 2024, 660,
314–320.

59 F. Giavazzi and R. Cerbino, J. Opt., 2014, 16, 083001.
60 M. A. Escobedo-Sánchez, J. P. Segovia-Gutiérrez, A. B. Zuccolotto-

Bernez, J. Hansen, C. C. Marciniak, K. Sachowsky, F. Platten and
S. U. Egelhaaf, Soft Matter, 2018, 14, 7016–7025.

61 S. Redner, A Guide to First-Passage Processes, Cambridge
University Press, 2001.

62 R. Metzler, G. Oshanin and S. Redner, First-Passage Phenom-
ena and Their Applications, World Scientific, 2013.

63 S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou and
J. Klafter, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5675.

64 Y. Meroz, I. M. Sokolov and J. Klafter, Phys. Rev. Lett., 2011,
107, 260601.

65 A. M. Berezhkovskii, G. Hummer and S. M. Bezrukov, Phys.
Rev. Lett., 2006, 97, 020601.

66 R. Satija, A. M. Berezhkovskii and D. E. Makarov, Proc. Natl.
Acad. Sci. U. S. A., 2020, 117, 27116–27123.

67 A. M. Berezhkovskii and D. E. Makarov, J. Phys. Chem. Lett.,
2018, 9, 2190–2195.

68 D. Hartich and A. Godec, Phys. Rev. X, 2021, 11, 041047.
69 P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi,
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