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The urgent need for sustainable electricity has driven progress in solar technologies, with perovskite
photovoltaics standing out as a top contender. However, the presence of toxic lead in current perovskite
devices necessitates the exploration of alternative materials. This study addresses the challenges
associated with tin perovskite fabrication and the industrial scale-up of this lead-free technology. It
introduces a new approach to regulate the key process of crystallization, involving a combination of new
additives and a gas pulse to trigger and subsequently control nucleation and crystal growth. In situ
optical spectroscopy probed the crystallization and enabled the optimization of the printing conditions.
Solar cells were fabricated with a power conversion efficiency of 5.38% for 0.1 cm?, 4.02% for 1 cm? and
2.31% for 5 cm? devices. They were tested under indoor lighting conditions and functioned at similar

efficiency levels, thereby demonstrating the potential of this technology for commercial applications.
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based solar cell via slot-die coating, which is ideally suited for roll-to-roll manufacturing. This innovation

DOI: 10.1039/d4se01321b opens new avenues for the development of fully printed lead-free perovskite photovoltaics, contributing
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Introduction

Metal-halide organic-inorganic perovskite solar cells have
become the most popular emerging solar cell technology
because of their potential to expand the number of applications
for solar cells, enabling simpler manufacturing and increasing
the efficiency of silicon devices. However, there are bottlenecks
for their commercialization due to environmental concerns and
health issues related to the presence of soluble Pb in the
structure.’ Sn is considered the most promising substitute for
Pb in the perovskite crystal structure, as it offers similar elec-
tronic properties but potentially a lower toxicity and a smaller
environmental impact.> Furthermore, Sn perovskites and
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specifically the popular formamidinium Sn iodide (FASI) have
a smaller bandgap (1.3 eV) and can reach 33% power conversion
efficiency (PCE), which is higher than Pb-perovskite (31%)
according to the Shockley-Queisser limit.> The highest effi-
ciency achieved thus far for Sn-based perovskite solar cells is
16.05%,* compared to 26.7% for single-band gap Pb-based
perovskite devices and 34.6%>® for Pb perovskite/silicon
tandem monolithic devices.

Sn-perovskite films have mostly been deposited via spin
coating, which is a solution deposition technique used in
conjunction with an antisolvent treatment and a heating step to
fully convert the wet thin film into a perovskite semiconductor.
A key feature of the fabrication process is that Sn perovskite
crystallization is ultrafast, which is due to the greater Lewis
acidity of Sn>* compared to Pb>*, leading to uncontrollable film
nonuniformities.” Slowing down crystallization has been key to
achieving a broader processing window and better-quality
films.”® One way to make this possible has been solvent
engineering.>** For example, Nasti et al. reported 4-(tert-butyl)
pyridine (¢BP) as a host solvent replacing the oxidative dimethyl
sulfoxide (DMSO) to form a stable intermediate state that
retards crystallization."” Another popular approach is based on
using additives as regulators of the crystallization dynamics,
such as Sn halides.® Both, SnCl, (ref. 13) and SnF, (ref. 14-16)
form a Sn-rich environment that compensates for Sn vacancy
defects and minimizes the oxidation of Sn**, thus achieving
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efficient devices. Due to the size difference between ClI~ and 1",
the C1™ ion is pushed to the surface of the perovskite crystallites
during crystallisation also causing a Sn-rich environment, while
favourably changing the energy level alignment and improving
charge collection'” by directing the growth of larger grains for
better film coverage.’® Despite the advances in controlling
crystallisation, the reports on printed Sn perovskites has been
scare.””*® This is unlike Pb perovskite solar cells which have
been printed with PCE reaching over 20%.

LaMer theory is the most used model to describe the
nucleation and growth of crystalline materials from solution.*®
According to this theory, after coating, the wet perovskite film
undergoes four phases, as depicted in Fig. 1a. Initially, the
solute concentration is lower than the saturation limit and the
solution is in its stable phase. Over time, an increasing amount
of solvent is removed from the thin film by evaporation or
extraction, and the concentration of the solution overcomes the
saturation threshold. In this metastable phase, the solutes can
thermodynamically form nuclei, but the film remains liquid, as
it is kinetically stable. If the concentration of the solution is
allowed to increase further, the thin film undergoes sponta-
neous burst nucleation. As the number of nuclei increases the
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Fig.1 (a) Representation of La Mer theory of crystallization (precursor
concentration vs. time) showing the four fundamental phases of
crystallization: stable, metastable, nucleation burst, and growth; (b)
pictorial representation of the grain morphology of perovskite films
formed via three different crystallization modes: fast solvent evapo-
ration, slow solvent evaporation, and triggered crystallization. SEM
micrography of grain morphologies; (c) without and (d) with crystal-
lization triggering investigated in this study.
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concentration of the thin film decreases leading to the fourth
phase of crystal growth. This general picture can be slightly
modified to consider the kinetics of the process. If the rate of
solvent evaporation increases during the first two phases, the
slope of the curve increases, as shown in Fig. 1b. This can be
achieved by changing external process parameters, such as
higher substrate temperature or higher convective flux (i.e., spin
coater rotation speed), or as mentioned above by solvent or
additive engineering. Although the slope and shape of the curve
change, the saturation threshold remains unaffected, as it is
a thermodynamic parameter of the system; however, the
minimum concentration for spontaneous nucleation
increases.” The effect of this change is two-fold: the number of
nuclei formed is higher due to higher supersaturation; the
decrease in the solution concentration is faster because of the
larger number of crystallization centers. The overall effect on
perovskite crystallization is that a faster evaporation rate leads
to a larger number of small grains, which is considered a sub-
optimal morphology for perovskite solar cells due to high
grain borders and, therefore, defects. However, a slow rate of
solvent evaporation leads to a small number of nuclei, which
grow slowly and form wundesirable isolated dendrite
structures.®

In this work, we introduce a new antisolvent-free approach
for Sn perovskite film crystallization that utilizes a short gas
pulse as a nucleation trigger and new additives that optimize
the metastable and nucleation burst rates, leading to high-
quality perovskite film formation. This enabled us to fabricate
the first Sn perovskite films printed successfully via an indus-
trially scalable slot-die coating technique. High-quality films
were printed on 25 mm X 75 mm and 50 x 50 mm substrates.
In situ photoluminescence (PL) and transmission spectroscopy
were used to probe the crystallization dynamics and enabled us
to compare the additives and conditions to achieve compact
and pinhole-free films via slot-die coating. The champion
printed device has 5.38% PCE for 0.1 cm? active area and 4.02%
for 1 cm? active area and uses the new perovskite additive
MASNCIl;. This is the first report of a slot die-coated Sn-
perovskite solar cell, demonstrating that despite its ultrafast
crystallization kinetics roll-to-roll production using this tech-
nology is entirely possible. To further explore its potential
technological applications at scale, we also demonstrate the
feasibility of using Sn-perovskite solar cells for indoor
photovoltaics.

Slot-die coated films, optimising crystallization via in situ
optical analysis

In the crystallization mechanism shown in Fig. 1a, the
nucleation-growth process can be controlled using a triggering
action during the metastable phase of the thin liquid film.?® For
Pb-perovskites, the most common trigger is the dripping of an
antisolvent, whereas for single step Sn perovskite coating this
has been the only option. Here we tested a trigger based on
a short pulse of inert gas instead of antisolvent on slot-die
coated films on 25 mm x 75 mm glass substrates. The
precursor solution was made of FAI and SnI, dissolved in DMF :

This journal is © The Royal Society of Chemistry 2025
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tBP 6:4 volume ratio. tBP was used as a complexing agent to
slow down the dynamic of crystallisation via formation of
intermediate phases.”” We observed that the brief blow of N,
successfully triggers perovskite nucleation (Fig. 1b) to produce
a morphology consisting of compact and large grains (Fig. 1d),
instead of the dendritic structures seen without the gas pulse
trigger (Fig. 1c). Printed films appeared red after the gas pulse
but after annealing on a hot plate at 140 °C converted to black.
In Pb perovskites, the timing of the nucleation trigger is known
to be crucial for achieving dense and uniform films with well-
orientated and large grains.’*® Here, too, the timing of the gas
pulse had to be optimized, as otherwise films were found to
eventually crystallize without the outside trigger and produce
very poor morphologies unsuitable for device fabrication, as
shown in Fig. S1.{

Additives were introduced to the precursor solution to
change the slope of the crystallization curve (Fig. 1b). Initially
three additives were tested (2.5 mol% concentration): SnCl,,
a popular additive for Sn perovskites;'* MACI, a popular additive
for FAPbI; systems because of its ability to induce intermediate
phases;®* and SnF,. The Sn-perovskite films with the corre-
sponding additives are denoted as FASI-SnCl,, FASI-MACI, and
FASI-SnF,. It was observed from the in situ PL spectra in Fig. 2a
that FASI-SnCl, and FASI-MACI had drastically different crys-
tallization kinetics. Aiming at an intermediate crystallization
rate, a new additive MASnCl; (2.5 mol% concentration) was
then created by mixing equimolar amounts of MACI and SnCl,.
MASNCI; has been reported to have a perovskite structure.?** A
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Fig. 2 (a) In situ PL measurements on slot-die coated films (contour
plots with blue being the zero baseline and red being the maxima)
printed with FASI-SnCl,, FASI-MACL, FASI-MASNCls and FASI-SnF,. For
a better comparison, the intensities of each measurement were
normalized to the maximum PL intensity detected during the entire
experiment. No signal evolution was observed for FASI-MACL The
corresponding in situ (b) PL peak intensity and (c) peak position
changes as a function of time; FASI-MACI was excluded because of
a lack of signal. The results after thermal annealing include the
following: (d) steady-state PL spectra and (e) X-ray diffraction.
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solubility test was carried out for each additive by preparing 1M
stock solutions in DMF, results shown in Fig. S2.1 SnCl, dis-
solved in DMF, while MACI had a low solubility in either DMF or
¢tBP. Since MASNnCl; dissolved fine, we suggest that MACI binds
with SnCl, to dissolve in the precursor solution by forming
MASNCI;.

With the trigger, uniform films were successfully printed.
Without the air pulse trigger, the films with all additives even-
tually self-crystallized and produced poor morphologies that
were unsuitable for device fabrication (Fig. S1t). The final PL
peak energies of the samples (Fig. 2d and Table S1t) indicate
the successful formation of high-quality FASnI; films,** except
for FASI-MAC], which displayed a slightly higher bandgap PL,
possibly owing to distorted structures or vacancies.

Immediately after the slot die coating, the wet film was
placed onto the in situ setup (shown in Fig. S37), and after
a short gas pulse was applied, PL and transmission were
recorded for 120 s (the natural drying time at room temperature
under N, environment) with a 1 s interval time to probe the
effect of the gas pulse on the crystallization kinetics. PL signals
arise from emissive species formed in the film during crystal-
lization, and the PL peak energy is a direct indicator of their
bandgap, while a high PL intensity is linked to high-density and
defect-free crystals.**™° Fig. 2a presents the PL spectra evolution
for all four films before the final thermal annealing (140 °C on
a hot plate). FASI-SnCl,, FASI-MASnCl; and FASI-SnF, each
showed a well-defined PL peak in the range of 1.7-1.8 eV formed
immediately after the application of the gas pulse trigger. We
link the formation of this peak to the burst nucleation of FASnI;
perovskite nanocrystals triggered by the gas pulse, as depicted
in Fig. 1a and b.>***° From the color maps in Fig. 2a, it is evident
that FASI-SnF, exhibits the fastest nucleation and crystal
growth, while FASI-MASnCI; has the slowest evolving PL and
hence slowest crystallization. FASI-MACI did not exhibit PL
evolution until the sample was moved to the hot plate (when
crystallization occurred), indicating that the gas pulse did not
trigger nucleation in this sample. The in situ transmission data
(shown in Fig. S47) is consistent with this observation and show
only precursor absorption from FASI-MACI. Furthermore, both
the PL intensity and energy of FASI-SnF, and FASI-SnCl,
approach a plateau, as expected from the crystallization mech-
anism shown in Fig. 1, where the plateau occurs owing to a drop
in solute supersaturation and termination of the nucleation
process.** These in situ results reveal that additives can be used
to control the crystallization rates of gas-triggered films. They
also reveal that under the studied conditions, a Sn*"-rich envi-
ronment enables faster nucleation, consistent with previous
studies of additives,* while MA" slows down this process likely
due to the formation of a strong MA-SnI;-tBP adduct in addition
to the FA-SnI;-tBP adducts.*>*?

A closer look at the PL intensity and PL energy changes as
a function of time in Fig. 2b-d reveals that there are two distinct
nucleation events in FASI-SnCl, and FASI-SnF, and even in
FASI-MASNCI;. The first stage is complete within 3 seconds of
the gas pulse and driven purely by fast solvent evaporation
forced by the gas blow, while the second stage continues for
tens of seconds and can be linked to the more gradual
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evaporation at room temperature of the more volatile of the two
solvents, DMF. The existence of the two nucleation stages shows
that the slot-die coated wet film is close to the metastable phase
(Fig. 1) right before the gas pulse application (which forces
evaporation and some nucleation likely on the top surface of the
film). Despite the presence of stable nuclei after the gas pulse,
as evidenced by the presence of PL, the second nucleation stage
starts only after approximately 10 seconds when there is
a transition from the metastable to the nucleation burst phase.
The second stage was controlled by the additive, where the rate
of crystallization followed the order: SnF, > SnCl, > MASnCl; >
MACIL. The faster crystallisation for FASI-MASnCl; compared to
FASI-MACI is likely due to MA" binding in the MASnCl; perov-
skite structure and minimising the effect from the MA-Snl;-¢tBP
adducts formation.” The final stage of crystallization occurs
during thermal annealing when the leftover DMF and the
higher-boiling-point ¢BP solvent are evaporated. FASI-SnCl,,
FASI-SnF, and FASI-MASnCl; end up with a PL peak maximum
in between 1.41 and 1.42, indicative of high quality FASnI; films
(Fig. 2d).**** The small peak shift for FASI-MASnCI; could be
due to CI~ and MA" incorporation in the FASnI; crystal structure
forming mixed perovskite. However, FASI-MACI's PL peak is at
1.52 eV, which can be explained by the incorporation of Cl™ in
the crystal lattice.>**

Structural characterization

X-ray diffraction (XRD) experiments were conducted to analyze
the crystal structures of the four perovskite films (Fig. 2e and
Table S27). Note that the samples had to be exposed to air for
a short time (<5 min) during sample loading, inevitably leading
to oxidation. For FASnI; films with an orthorhombic (4mm2)
crystal structure, two dominant peaks can be identified, which
are located around 14.0° corresponding to the (100) crystal
plane and 28.22° corresponding to the (200) crystal plane. All
four films showed the above two peaks with some differences in
full width at half maximum, intensity, and peak position, which
originate from their different crystallization kinetics and
compositions. For the FASI-SnCl, films, double peaks at 12.75°
and 12.94° were assigned to the Snl, species,* indicating Sn
oxidation. The FASI-MACI films showed sharp peaks corre-
sponding to the (100) and (200) planes and strong Snl, peaks at
12.87° and 25.53°. The other two peaks at 26.13° could not be
identified, while the low-intensity peak at 31.55° corresponded
to the (122) plane of FASnI;,* suggesting more disordered films
for this sample. The XRD pattern of FASI-MASnCl; has only two
peaks corresponding to the (100) and (200) planes, indicating
preferential perovskite crystallization with a better stability
compared to FASI-SnCl, and FASI-MACI. The small shift in
diffraction peaks for FASI-MASnCl; (similar to FASI-SnCl,)
could be due to Cl™ incorporation in the crystal structure. For
FASI-SnF,, the two main peaks showed lower intensities than
for FASI-MASNCl;, with one extra peak at approximately 12.24°.
The peak positions and the corresponding species are listed in
Table S2.7 Similarly to XRD, SEM images (Fig. S5t on glass and
Fig. S67 on PEDOT/ITO) indicated the presence of either point
defects, undesirable particles, or poor grain boundaries on the
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surface of most samples, except for the best quality films of
FASI-MASnCl; and FASI-SnF, deposited on PEDOT : PSS. From
these data, it can be concluded that all samples produced
predominantly FASnI; with preferential crystallization with
(100) planes parallel to the film surface.*® FASI-MASNCI; had the
cleanest diffraction pattern and surface quality without
contaminants or defects, suggesting the highest quality of
crystals and densely packed films for this sample,*”*** which
agrees with the PL spectral intensities of the annealed films. It
also highlights the importance of controlling the rate of crys-
tallisation that neither too fast nor too slow nucleation is
beneficial for growing high quality perovskite crystals for slot-
die coated films.

Fabrication of slot-die coated devices

FASnI; devices were fabricated by slot-die coating the Sn-
perovskite films with the architecture: glass/ITO/PEDOT : PSS/
FASnI;/Cgo/BCP/Ag. Fig. 3 presents the JV curves of the cham-
pion devices and the distribution of device parameters. FASI-
MASNCI; and FASI-SnF, showed the best J,., corresponding well
to their higher steady-state PL and compact grains, as shown in
Fig. S67 in SEM. FASI-MACI showed a lower J,., which is partly
due to the lower IPCE from 550 to 850 nm (Fig. S77). From IPCE,
the bandgap of all devices could be determined as roughly
1.41 eV (Fig. S71), this is consistent with the bandgap derived
from PL for SnCl,, MASnCl; and SnF,. However, for FASI-MACI
the bandgap derived from PL was 1.52 eV. This suggests an anti-
Stokes shift of more than 100 meV. The spectral shape shift of
the IPCE in FASI-MACI and to an extent in FASI-SnCl, suggests
that different photoactive species are formed. One possible
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Fig.3 Comparison of the performance of FASnls devices printed with
the four additives studied, SNnCl,, MAC|, MASNCls, SnF». (a) JV scans; (b)
light-intensity-dependent photoluminescence quantum yield of each
sample (full device stack); (c) JV performance distribution (F for
forward and R for reverse scans) of each sample.
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explanation is that some MA/FASnCl; was formed at the
expense of FASnI; or greater density of Sn vacancies are present
in the films.*** V. followed the same trend as J,., while the fill
factor remained similar between samples. From the JV data in
Fig. 3, it appears that the best additive is MASnCl; and the FASI-
MASNCI; device reaches = 4.2%.

To investigate recombination in the full device stacks, we
measured the photoluminescence quantum yield (PLQY). The
full spectra of the light-intensity-dependent steady-state pho-
toluminescence are shown in Fig. S8.7 From Fig. 3b, it can be
seen that the PLQY of each sample is independent of light
intensity, which can be explained by the high doping density of
Sn perovskites.*** For a doped semiconductor in low-level
injection, all recombination mechanisms become linear in
charge carrier concentration, so that the PLQY remains
constant.”* Furthermore, the PLQY values are high in compar-
ison to what is expected from the measured V,. values. This
indicates an energetic mismatch in the device.”>™* In reverse, it
follows that the quality of the printed Sn perovskites is higher
than the low V. values suggest. Comparing between additives,
FASI-MASNCI; shows the highest PLQY which is consistent with
its better performance in devices and better film and crystal
quality. Furthermore, the bulk is not primarily responsible for
the V,. loss, which could be reduced by using an ETL with
energy levels that better match the perovskite layer.*> Indeed,
the PLQY is comparable to some high-performance Pb perov-
skite solar cells.>

The MASnCl; molar concentration was optimized to further
improve the performance. The results (Fig. S9t) show that
7.5 mol% is the optimal molar concentration. We suggest that
up to 7.5 mol%, MASnCl; can be incorporated into the FASnI;
structure and form a mixed perovskite phase, which causes the
small PL peak shift and broadening. It appears that a phase
separation occurs between 7.5 mol% and 10 mol%, where due
to energy level misalignment, the MASnCl; phase starts to form
a blocking layer and at 12.5 mol%, it becomes a blocking layer
causing decreased shunt resistance hindering the extraction of
charge carriers. Simultaneously, the series resistance, derived
from the slope dV/dJ at V,., increased as the additive concen-
tration increased from 7.5 to 10%. If a new phase with a larger
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bandgap is formed, then the increase in J;,. with MASnCl; is
impressive, as it means that the mixed phase also has a better
charge carrier extraction capability. For 7.5 mol% MASnCI;
added devices, the best pixel had J,. = 16.64 mA cm 2,V . =
0.49 V, and FF = 65.85%. The device efficiency was 7 = 5.38%
for an area of 0.1 cm”.

To demonstrate the potential for large-area devices, 50 mm
x 50 mm substrates were used to make another batch using
optimized parameters from the results shown above. We first
performed photoluminescence imaging (PLI) on the ITO/
PEDOT : PSS/FASnI; films. The results are shown in Fig. S10.t
The uniform PL intensity distribution suggests a uniform
FASnI; film was formed from the slot-die coating on the large
substrate. A batch of devices was subsequently fabricated with
a1 cm? and 5 cm? device area. For the champion pixels, 1 cm?
pixel demonstrated values of J;. = 20.1 mA cm ™2, V. = 0.42 V,
FF = 45.7% and 1 = 4.02%, while a 5 cm® pixel demonstrated J,.
=15.83 mA cm ™2, V,. = 0.44 V, FF = 32.68%, and 7 = 2.31%.
The low FF was attributed to the lack of an optimised testing
setup, as two crocodile clips were used to make contact, leading
to poor charge extraction during the measurement. Neverthe-
less, both PLI and solar cell performances demonstrated the
potential and reproducibility for large-area FASnI; deposition
with the slot die coating technique, especially considering that
the large-area devices were fabricated at a different laboratory
with different equipment compared to the smaller 0.1 cm? slot
die coated devices.

Slot-die coated Sn-perovskite PV for indoor applications

One possible application for printed Sn perovskites is indoor
PV, where its potentially lower toxicity compared to Pb perov-
skites can be beneficial. We tested the FASI-MASnCIl; devices
with different MASnCl; concentrations using LED light to
simulate indoor conditions. As shown in Fig. 4, FASI-7.5 mol%
MASNCI; exhibited the best performance across a range of light
intensities. At 0.03 sun, it obtained 7 = 5.4%. Fig. S11f presents
the V,. changes at the LED intensities studied. The combination
of a lead-free device and deposition via slot die coating is
a promising breakthrough for indoor PV applications.
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Fig. 4
different mol% concentration of MASNCls.
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Conclusion

Sn perovskite solar cell efficiencies have increased significantly
recently and are now reaching 14%. However, roll-to-roll
printing of FASnI; solar cells has not yet been achieved. Here,
we address the key challenge of uncontrolled crystallization in
this material to successfully print Sn-perovskite solar cells via
slot-die coating. A novel crystallization approach was applied
with a combination of solvent and additive engineering and
a gas pulse trigger for Sn perovskite nucleation in the slot-die-
coated wet films. FASnI; films were coated on different area
substrates using a DMF : t{BP solvent mixture, avoiding the use
of oxidative DMSO while slowing down crystallisation via a tBP-
based intermediate phase. The rate of crystallization was
controlled using the additives SnCl,, SnF,, MACI, and MASnCl;.
In situ PL and transmission measurements performed during
and after gas pulsing showed that finding an optimal kinetics of
nucleation is extremely beneficial for producing high quality
solar cell devices. The best perovskite films were fabricated with
MASNCI; as an additive, showing intermediate crystallisation
kinetics amongst the studied systems, leading to a pinhole-free
morphology, highest PLQY. This result is consistent with the
need to create a Sn-rich environment to compensate for Sn
vacancy defects and minimize Sn** oxidation during crystal-
lisation, and the usefulness of Cl™ to favourably direct crystal
growth and in improving charge collection, and the role of MA"
in slowing down crystallisation through intermediate adduct
formation. Optimisation of the FASI-MASnCl; composition led
to the fabrication of devices achieving 1 = 5.38% for 0.1 cm?®
and 7 = 4.02% for 1 cm? and 7 = 2.31% for 5 cm? device area.
The device was also tested under indoor light conditions and
demonstrated a similarly high performance. Therefore, we
report the first lead-free Sn perovskite solar cells achieved via an
antisolvent-free and entirely scalable method that is suitable for
roll-to-roll production, demonstrating the potential of this
technology for future PV applications.

Methods section
Materials

Unless otherwise specified, the chemicals were used as received
without further purification. Tin(u) iodide (Snl,), ethyl-
enediammonium diiodide (EDAL,, >98%), N,N-dimethylformamide
(anhydrous, 99.8%), 4-(tert-butyl) pyridine (98%), bathocuproine
(BCP), and silver beads were purchased from Sigma-Aldrich and
used as received. Formamidinium iodide (FAI, >98%) was
purchased from Dyenamo. Patterned ITO glass slides were
purchased from Ossila. PEDOT : PSS polymer dispersion in both
water and toluene (CLEVIOS™) was purchased from Heraeus.

Perovskite solution preparation

A solution of Snl, was dissolved in pure DMF first. The solution
was kept under shaking at ambient temperature for one hour to
dissolve the tin salts completely. FAI powder was scaled in a new
vial, and the proper amount of the Snl, solution was added to the
powder, leading to a desired FA : Sn molar ratio. The solution was
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kept under shaking for an hour at ambient temperature for the
complete dissolution of FAI. Afterwards, tBP was added to ach-
ieve the desired volume ratio between DMF and ¢BP (6 : 4 for slot
die coating). EDAL,, SnCl, and MASnCl; were dissolved in sepa-
rate vials with pure DMF to make a 1M stock solution. MACI and
SnF, were added as powers due to poor solubility in DMF. Finally,
the FASnl; solution (0.6 M for slot die coating) with different
additives was achieved by adding the corresponding additives
and further shaking for one hour. All additives were 2.5 mol% in
the final solutions. For the investigation of MASnCl; concentra-
tion, five solutions were prepared: 2.5 mol%, 5 mol%, 7.5 mol%,
10 mol% and 12.5 mol%. The solution was filtered with a 0.2 um
PTFE filter before use.

Solar cells fabrication

An inverted structure was chosen for the PSCs fabricated with the
following stacking: glass/ITO/PEDOT : PSS/FASnI;/Ceo/BCP/Ag.
Patterned indium tin oxide (ITO) coated glasses were first
washed in an ultrasonic thermal bath at 40 °C with the following
procedure: 15 minutes with a liquid detergent dissolved in
deionised water (2% V/V); rinsed in deionised water and soni-
cated for 5 minutes; rinsed in acetone and then sonicated for 15
minutes; rinsed in ethanol and then sonicated for 15.

For slot die coating, clean substrates were treated using UV
ozone cleaner (Ossila) and aqueous PEDOT was deposited in
ambient conditions. The deposition remained the same. Films
were annealed at 120 °C for 20 min. After moving the substrates
into the glovebox, substrates were placed on a slot die coater
(Ossila) for perovskite deposition. The stage was kept at 40 °C
during the coating. The moving speed was set at 5 mm s~ '; the
dispense rate was set at 1 uL s~ *. After the coating, the substrate
was removed from the stage, and a handheld air blow gun was
used to blow the surface at a distance of 10 cm quickly. Ideally, an
automated air knife could be fitted inline so the gas pulse
happens during the coating. This could not be achieved because
the stage has no vacuum suction function to fixate the substrate
or enough coating distance (maximum 10 c¢m) to fit the air knife.
After the quick blow, the film turned red and was immediately
placed onto a hot plate for annealing at 140 °C for 20 min.

The gas blow was applied with a 5 bar N, gas gun in the
glovebox from a 10 cm distance above for all perovskite depo-
sition experiments.

The ETL and the silver electrode were deposited using
a thermal evaporation chamber at a high vacuum (<10~° bar).
The thickness of the three layers, Cgo, BCP and Ag, were 75, 7
and 150 nm, respectively.

For slot die coating of large area (50 x 50 mm) devices, the
process was repeated at a different lab with same deposition
parameters. All equipment remained the same except the slot
die coating was performed on the larger FOM alphaScC slot die
coater and a Keithley 2400 was used for measurement with
a WAVELABS Sinus LED solar simulator.

In situ PL and transmission measurement

The in situ PL and transmission measurement was conducted in
a Ny-filled glovebox. The excitation was provided by Avantes

This journal is © The Royal Society of Chemistry 2025
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portable LED laser (AvaLight-HPLED, 3.4 mW, 405 nm). A
Wasatch /2 high throughput spectrometer (WP-VISNIR-R-S-50)
captured the PL response. Thorlabs Reflection probe RP23 was
used for the measurement at reflection mode. For transmission,
Avantes AvaLight-DHc was used as light source, Avantes
AvaSpec-ULS2048CL-EVO was used as the spectrometer, SMA-
905 optic fibres and M6 tapped optical breadboards were
purchased from Thorlabs. The set-up is illustrated in Fig. S3.}

PLQY measurement

The photoluminescence quantum yield was measured with
a calibrated Quantum Yield Berlin LuQY Pro setup. The samples
were illuminated in an integrating sphere with a 532 nm laser
with intensities between 0.05 and 1 sun equivalence. For each
illumination intensity, five spectra were recorded and averaged.

Photovoltaic characterisation

The multimodal Arkeo machine from Cicci Research s.r.l. was
used to characterise the solar cell performance in the glovebox.
The device's current density-voltage (J-V) characteristics were
tested using a 12 LED solar simulator with a calibrated optical
power density of 100 mW cm > PSC J-V characteristics were
measured every 10 mV with a sample rate of 100 mV s~ . Inci-
dent photon to current conversion efficiency (IPCE) were
measured using a commercial apparatus (Arkeo-Ariadne, Cicci
Research s.r.l.) based on a 300 Watt Xenon lamp. The mono-
chromatic light intensity was calibrated using a Hamamatsu
S1337 Si-calibrated photodiode.

Structural characterisation

Scanning electron microscopy (FEI inspect F) was used for
observing perovskite morphology and device architecture. X-ray
diffraction was performed using a Siemens D5005 diffractom-
eter from 5° to 70° using Cu K, radiation. Crystal peaks were
identified using the International Centre for Diffraction Data
(ICDD) database.

Photoluminescence imaging (PLI)

PL imaging was done with a camera using a silicon CCD
detector. As excitation source an array of 520 nm LEDs were
used to provide homogeneous illumination over the whole
imaged area. The integration time was optimized for each
sample to make maximal use of the 16 bit dynamic range of the
CCD detector. Additionally, a 700 nm long pass and an 850 nm
short pass filter were used between sample and camera.

Data availability

All data from the manuscript, scalable slot-die printing of lead-
free tin perovskite solar cells via controlled crystallization, is
freely available upon request from the authors.
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