Open Access Article. Published on 14 Qado Dirri 2025. Downloaded on 13/02/2026 9:01:49 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical
Science

EDGE ARTICLE

i '.) Check for updates ‘

Cite this: Chem. Sci., 2025, 16, 14988 1 3
8 All publication charges for this article ! e nyn eST
have been paid for by the Royal Society
of Chemistry

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online
View Journal | View Issue

Cu(l)-catalyzed enantioselective and stereospecific
borylative annulation of cyclic 1,3-dione-tethered

G. Raghu Ramudu, 3 Vaibhav B. Patil,1* Jagadeesh Babu Nanubolu & °°

and Rambabu Chegondi & *2©

A copper()-catalyzed, highly enantioselective, and diastereoselective borylative cyclization of prochiral

cyclic 1,3-dione-tethered 1,3-enynes is reported. This stereospecific transformation exhibits a broad

substrate scope, enabling access to bicyclic organoboron products containing four contiguous

stereocenters with excellent enantioselectivity. Notably, the reaction rate is significantly influenced by
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the substrate's stereochemistry, with the (2)-isomer undergoing borylative cyclization much faster than

the (E)-isomer due to reduced steric interactions during C—C bond formation. Furthermore, treatment of

DOI: 10.1039/d5sc03007b

rsc.li/chemical-science enantiomeric excess.

Introduction

Conjugated enynes are highly reactive and valuable substrates
in modern organic chemistry, widely utilized in the synthesis of
complex aromatic molecules and materials." While 1,3-enyne
motifs can be readily accessed through several efficient
methods, the catalytic cross-coupling of terminal alkynes
stands out as the most convenient approach.” Recently, copper-
catalyzed hydro- and borofunctionalizations, multicomponent
reactions, radical functionalizations, and cyclizations of these
T-systems have garnered significant attention from organic and
medicinal chemists.> Among these methods, enantioselective
Cu-catalyzed borylation of 1,3-enynes has also emerged as an
elegant strategy, providing access to a diverse range of chiral
organoboranes.* The resulting C-B bonds can be conveniently
converted into C-C, C-O, and C-N bonds through stereospecific
1,2-migration.” However, achieving asymmetric chemo- and
regioselective borylative difunctionalization of 1,3-enynes
remains highly challenging due to the presence of multiple
reactive sites.
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the resulting products with sodium perborate yields the corresponding alcohols without compromising

In general, two pathways are possible for 1,3-enynes during
hydro- or borofunctionalization. The reaction at the olefin can
yield propargyl or allene products via the ene-pathway (Scheme
1a), whereas the reaction at the alkyne results in diene products
through the yne-pathway.® In 2011, Ito and co-workers reported
that the regioselectivity of borocupration is influenced by the
nature of the ligand employed in the reaction and steric
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Scheme 1 Cu()-catalyzed borylative functionalization of 1,3-enyes.
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hindrance around the olefinic functionality of the enyne.® The
first enantioselective Cu-catalyzed borylative 1,2-difunctionali-
zation of 1,3-enynes was reported by the Hoveyda group in 2014
via the ene-pathway (Scheme 1b).” The borocupration of 1,3-
enynes enables the formation of a chiral allenylcopper complex,
which is readily captured by aldehydes to provide propargylated
products with excellent diastereo- and enantioselectivities. In
light of this report, Yin and co-workers disclosed similar
consecutive protocols on ketones.® Later, Procter and co-
workers disclosed a highly enantio- and diastereoselective bor-
ylative 1,2-coupling of 1,3-enynes with imines to provide chiral
homopropargyl amines with excellent diastereo- and enantio-
selectivity.” Recently, Yun and co-workers reported a highly
enantioselective 1,2-borylation/conjugate addition with f-
substituted alkylidene malonates, enabling organoboranes
bearing adjacent stereocentres.'® In 2020, Hu, Wang, Liao, and
co-workers developed a cooperative Cu/Pd-catalyzed 1,4-bor-
oarylation, wherein arylation occurs via transmetalation with
palladium to access chiral tri- and tetra-substituted allenes."
Shortly thereafter, Xu et al. reported the 1,4-boroprotonation of
trifluoromethyl-substituted conjugated enynes to access enan-
tioenriched homoallenyboronates.”” Similarly, CuH-catalyzed
hydrofunctionalization of 1,3-enynes also allows the generation
of chiral allenylcopper intermediates, which are readily
captured by various electrophiles to yield the corresponding
propargylic products and allenes with excellent stereo-
selectivities.'>'* Among these elegant methods, 1,2-bor-
ofunctionalization is generally limited to terminal 1,3-enynes,
with only two reports®*® exploring internal enynes due to their
lower reactivity and other challenges related to regioselectivity
and stereoselectivity. Here, E/Z-selectivity of the double bond
controls the diastereoselectivity of the corresponding product in
a stereospecific manner.

To the best of our knowledge, there are no intramolecular
cyclizations reported via Cu-catalyzed borylative 1,2-difunc-
tionalization of 1,3-enynes with internal electrophiles. Based on
our interest in the area of enantioselective Cu-catalysis,*
herein, we report a stereospecific annulation of 1,3-enyne-
tethered cyclic 1,3-enones (Scheme 1c). This work describes
an unprecedented intramolecular Cu(i)-catalyzed borylative
difunctionalization of 1,3-enynes, delivering products with
excellent diastereo- and enantioselectivity. The E/Z configura-
tion of the substrates significantly influences the reaction rate
and diastereoselectivity of products. We envisioned that
stereospecific syn-addition of a borylcopper(1) intermediate on
the double bond of (Z/E)-1 could provide intermediate A/B.
Subsequent intramolecular nucleophilic attack of organo-
cuprate A/B could afford the corresponding product anti-2 or
syn-2, respectively with the retention of the configuration at the
C-B bond. Notably, the reaction proceeds through highly
regioselective 1,2-borocupration on the double bond adjacent to
the sterically demanding quaternary prochiral center.

Results and discussion

We began our investigation on Cu(i)-catalyzed borylative cycli-
zation of Z-selective 1,3-enyne 1a as a model substrate in the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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presence of bis(pinacolato)diboron as the borylation source
with various chiral bidentate phosphine ligands (Table 1). The
reaction was initially conducted with 2.5 mol% of Cu(CHj;-
CN),4PFs, 5 mol% of ligand, and 2.0 equivalents of base in THF
at —78 °C for 2 hours. Notably, the BINAP ligands provided the
desired product anti-2a in moderate yield with enantiose-
lectivity ranging from 37% to 92%, whereas SEGPHOS ligands
resulted in only trace amounts of the product (entries 1-5). In
addition, the BDPP ligand L6, DUPHOS ligand L7, BIPHEP
ligand L8, and iPr-BPE ligand L9 proved ineffective in the model
reaction, resulting in no product formation. Fortunately, the
reaction with (S,S)-Ph-BPE ligand L10 afforded 2a in high yield
with excellent enantioselectivity (>99% ee). The exclusive dia-
stereoselectivity suggests that the borylative cyclization of (2)-1a
proceeds with high stereocontrol. The relative stereochemistry
of anti-2a was confirmed by single crystal X-ray diffraction
analysis (see Table 2).*

Table 1 Optimization of reaction conditions®?<4

o CU(CH4CN)4PFg 0 e
Me (2.5 mol%)
N ligand (5 mol%) -+Bpin
0 | | Bypin,, LIOBu, ‘BuOH OH \\
THF, -78°C, 2 h

(2-1a Ph anti-2a py,
Entry Ligand Yield [%] 2a (ee)
1 (R)-SEGPHOS, L1 <5 —
2 (S)-BINAP, L2 54 92%
3 (R)-Tol-BINAP, L3 36 69%
4 (S)-DM-SEGPHOS, L4 <5 —
5 (R)-DM-BINAP, L5 31 37%
6 (S,S)-BDPP, L6 <5 —
7 (R,R)-Me-DUPHOS, L7 — —
8 (R) -Cl-MeO-BIPHEP, L8 — —
9 (S,S)-"Pr-BPE, L9 — —
10 (S,S)-Ph-BPE-L10 82% >99%

C O PPh;

(S)-BINAP, L2

PPh,
PPh,

R) SEGPHOS, L1

Me Me

O e

P(Tol), O /@
OO P(Tol), <o O p Ve
o P Me

(R)-Tol-BINAP, L3 < \Q

Me

Me’ Me

(S)-DM-SEGPHOS, L4

@ e
o0

(S,S)-BDPP, L6 (R R)-Me-DUPHOS, L7

. (- (-
O PrNps P Ph"Np”~Ph

MeO PPh, H
MeO. PPh,

O iPrac PN, Pr Phau PN . iPh
o ~0 O

(R-C-MeO-BIPHEP, L8~ (S,S)-Pr-BPE,L9  (S,S)-Ph-BPE, L10

Me Me
\Q/ Me
CO P i Me
SepNsg
ax
Me’ Me

(R)-DM-BINAP, L5

“ Reaction conditions: 1a (50 mg, 0.2 mmol), B,(pin), (60 mg, 0.24

mmol), Cu(CH;CN),PF, (1.9 mg, 2.5 mol%), ligand (5.0 mol%), ‘BuOH

(38 uL, 0.4 mmol), LiO'Bu (36 uL, 0.4 mmol, 1.0 M THF solution), in

THF solvent (3 mL, 0.1 M). ? Isolated yields Enantiomeric ratio (er)

was determined by HPLC ana1y51s using a chiral stationary phase.
4>20:1 dr was observed from "H NMR analysis.
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Table 2 Substrate scope of (2)-isomer®?<4

o) Cu(CH3CN)4PFg Q Ry
R4 Me, o ° Me (2.5 mol%) .
( N . Mei ‘5g iMe (S,S)-Ph-BPE (5 mol%) Bpin
nY I Me—7~d o Mz/'e LiO'Bu, 'BuOH 'OH \
Ba(pin, THF, -78°C, 2h ) \
21 R, anti-2 Ry

2a, 82%; >99% ee 2b, 77%; >99% ee 2c, 71%; >99% ee 2d, 69%; >99% ee

®

2a, CCDC 2443592 (relative)

2f, 82%; 98% ee 29, 78%; >99% ee R = Et, 2h, 80%; >99% ee 2j, 80%; >99% ee 2k, 82%; >99% ee
R = Bn, 2i, 65%; >99% ee

2m, 79%; >99% ee Z/E=T:1(SM) 20, 75%; 98% ee Z/E = 4:1 (SM)
2n, 80%; >99% ee 20, CCDC 2443593 (absolute) 2p, 67%; >99% ee
OMe

2r, 77%; >99% ee 2s, 65%; >99% ee R = OMe, 2t; 69%; >99% ee 2v, 72%; >99% ee
R = Cl, 2u, 78%; >99% ee

Examples having cyclohexane-1 3-dione

(e}
Me

Me OMe
2y, 77%; 98% ee 2z, 73%; 94% ee 2aa; 78%; >99% ee 2ab, 72%; 94% ee 2ac, 75%; 98% ee 2ad, no reaction

@ Reaction conditions: 1 (0.3 mmol), B,(pin), (91 mg, 0.36 mmol), Cu(CH;CN),PF (2.8 mg, 2.5 mol%), (S,S)-Ph-BPE (7.6 mg, 5.0 mol%), ‘BuOH (57
uL, 0.6 mmol), LiO'Bu (54 pL, 0.6 mmol, 1.0 M THF solution), in THF solvent (3 mL, 0.1 M). ? Isolated yields after column chromatography.
¢ Enantiomeric ratio (er) was determined by chiral HPLC analysis.  >20:1 dr was observed (unless otherwise mentioned) through "H NMR
analysis of a crude reaction mixture. SM = Starting material.

Under standard conditions, the borylative cyclization of 1,3- enantioselectivity (Scheme 2). In contrast, the reaction of 1,3-
enyne (Z)-1a proceeded with complete anti-selectivity, affording enyne (E)-1a yielded the syn-selective bicyclic product 2a with
the bicyclic product 2a in 82% yield with >99% moderate yield and 92% enantioselectivity. Besides, prolonging
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Me reaction . 82% vield
N conditions ‘Bpin 5y
aa 99% ee
2h
°© \
Ph Ph
(2)1a anti-2a
For 2h
2 Ph standard Q Ve 47;’ -
Me = reaction . % yie
-7 conditions -Bpin T
o OH \\ For 18h
>35% starting material bh 49% yield
(B)1a recovered in both cases n-2a 92% ee

Scheme 2 Comparative study of reaction rates.

the reaction time did not enhance the conversion, and over 35%
of the starting material (E)-1a remained unreacted in both
cases. The reaction rates and syn/anti selectivity of the reaction
were significantly influenced by the E or Z configuration of the
1,3-enyne substrates.'” Notably, the borylative cyclization of (Z)-
1a proceeded much faster than that of (E)-1a, affording the
desired product in high yield with exclusive enantioselectivity.
This enhanced reactivity is likely attributed to reduced steric
interaction between the Bpin and alkyne groups in Int-A
compared to Int-B during C-C bond formation (see Scheme 1c).

Later, the scope of the borylative cyclization in the presence
of B,pin, was explored using various prochiral (Z)-selective 1,3-
enyne-tethered cyclic 1,3-diones 1 under optimized reaction
conditions, unless otherwise specified for the Z/E ratio of the
substrate. Our initial investigation focused on phenyl-

Table 3 Substrate scope of the (Z/E)-isomer®?<e
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substituted enynes with various substituents at the all-carbon
prochiral center, and the results are summarized in Table 2.
Substrates bearing sterically diverse alkyl groups and a cin-
namyl group at the quaternary center were well-tolerated,
undergoing borylative enantioselective desymmetrization to
afford the corresponding products 2a-2e in 67-82% yield with
excellent enantioselectivity. Next, a range of benzyl groups with
electronically and sterically tuned substituents at the prochiral
center were evaluated. These 1,3-enyne-tethered cyclopenta-1,3-
diones proved to be highly suitable, delivering bicyclo[3.3.0]
octane products 2f-2v in good yields with uniformly >99% ee
across all cases. Particularly, the reaction was carried out on the
substrates as an inseparable mixture of (Z/E)-isomers, with the
major (Z)-1,3-enyne predominantly yielding the corresponding
products anti-2n and anti-2p, along with trace amounts of syn-
products derived from the (E)-isomer. Beyond benzyl groups,
a similar range of yields and enantioselectivities was observed
with other substituents, including 1-naphthyl and thiophen-2-
ylmethylene groups at the quaternary prochiral center,
furnishing products 2w and 2x, respectively. Next, the generality
of the present approach was evaluated using Z-selective enyne-
tethered cyclohexa-1,3-diones under standard conditions,
which provided the corresponding products 2y-2ac in compa-
rable yields and enantioselectivities. =~ However, the
cycloheptane-1,3-dione substrate failed to afford the desired
product (2ad), and most of the starting material was recovered.
The absolute stereochemistry of the bicyclic ketone anti-20 was
unambiguously established by single-crystal X-ray diffraction

o Q Me Q Me
Me B,(pin),
N (1.2 equiv) ++Bpin -1Bpin
—_— /
standard OH OH %
° I conditions A\ \\
(ZEM  Ar anti2 Y, syn2 Y
major minor
Q Ve Q Me Q Me Q Ve Q Me
~1Bpin ~uBpin -1Bpin -nBpin ~nBpin
OH \\ OH \\ OH OH \\ OH \\
Me Et n-Bu n-CsHyq +Bu
Z/E =6.5:1(SM) Z/E =31 (SM) Z/E=2:1(SM) Z/E=25:1(SM) Z/E =3.5:1(SM)
2ae, 54%, >99% ee 2af, 45%, >99% ee 2ag, 44%, >99% ee 2ah, 47%, >99% ee 2ai, 51%, >99% ee
Q Me Q Me Q Me Q Me
-Bpin -4Bpin -Bpin ~Bpin
OH \ OH \ OH \ OH \
F Cl
OMe F Br
ZE=2:1 (SM) ZE=2:1 (SM) Z/E =311 (SM) ZE=2:1 (SM) ZE =311 (SM)
2aj, 36%, 98% ee 2ak, 48%, 98% ee 2al, 53%, 98% ee 2am, 49%, >99% ee 2an, 51%, >99% ee
Q Me Q e
-Bpin -Bpin
OH \\ OH \\
Br
R
ZE =31 (SM) Z/E=35:1(SM) Z/E=65:1(SM) R = n-C4Hg; 2ar } no.
reaction

2ao0, 54%, >99% ee

2ap, 43%, >99% e

2aq, 58%, >99% ee

R = cyclohexyl; 2as

“ Reaction conditions same as in Table 2. ? Isolated yields of the major product anti-2. © Diastereoselectivity was observed to be >20: 1 for the major
isomer, which was confirmed by 'H NMR analysis. ¢ Unable to find the ratio of major and minor products in the crude '"H NMR analysis.

¢ Enantioselectivity of the major isomer. SM = starting material.
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Cu(CH3CN)4PFg
(2.5 mol%)
(8,5)-Ph-BPE (5 mol%)
—_—
B,pin, LIO'Bu, 'BUOH
THF, -78°C, 2 h, 71%

2/B)-3a
Z/E =251
o Me
Q'. NaBO3.4H,0
od “OH THF, 1t

| l anti-5a, 56%

||l syn-5a, 35%
Ph >99% ee Ph

>99% ee

Scheme 3 Borylative cyclization of 1,3-indandiones.

analysis.'® The stereochemical assighments of the remaining
products were assumed by analogy.

Next, we explored the scope of 1,3-enynes bearing various
aromatic substituents (Table 3). The reaction was carried out on
a mixture of (Z/E)-isomers under standard conditions, yielding
product anti-2 predominantly from (Z)-1,3-enyne as the major
diastereomer due to its higher reaction rate. Only trace amounts
of the syn-product 2 (<5% yield) were identified from (E)-1 in
a few examples, highlighting the strong stereochemical influ-
ence on the reaction outcome. The transformation proceeded
with good diastereoselectivity, and excellent enantioselectivity.
Aromatic 1,3-enynes with diverse substituents, regardless of
their electronic properties, were well-tolerated under the stan-
dard conditions. Substituents such as alkyl, alkoxy, and halogen
groups at the para-, meta-, or ortho-positions of the phenyl ring
afforded the corresponding products (2ae-2ao) in moderate

Table 4 One-pot borylative cyclization/oxidation of 1,3-indandiones

View Article Online
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yields with excellent enantioselectivity (97-99% ee). Addition-
ally, 9-phenanthryl and 1-cyclohexenyl groups on 1,3-enynes
were readily converted into the desired products (2ap and 2aq)
in good yields with >99% enantioselectivity. Unfortunately, 3-
enyne substrates bearing aliphatic substituents failed to afford
the desired products, and most of the starting material was
recovered (entries 2ar and 2as).

The enantioselective desymmetrization of a,a-disubstituted
1,3-indandione (Z/E)-3a (dr = 2.5 : 1) proceeded efficiently under
the optimized reaction conditions, affording the desired
product 4a as a mixture of inseparable diastereomersina1.5:1
ratio with a 71% yield (Scheme 3). Subsequent oxidation of the
Bpin group using NaBOj;-4H,O yielded the corresponding
alcohols anti-5a (56%) and syn-5a (35%) as separable diaste-
reomers, which were easily purified via simple column chro-
matography. It is interesting to observe that the (E)-isomer of
the 1,3-indandione substrate reacts just as effectively as the (Z)-
isomer.

For ease of handling, we performed a one-pot borylative
cyclization/oxidation of 1,3-indandiones under standard reac-
tion conditions, followed by the sequential addition of NaBO;-
-4H,0 (Table 4). We briefly screened this reaction with
substrates featuring various benzyl groups at the prochiral
quaternary center, yielding separable diastereomeric products
anti-5 and syn-5. Electronically diverse substituents on the
benzyl group provided high yields and excellent enantiose-
lectivities (5a-5d). However, a sterically demanding ortho-
substituted benzyl group resulted in only a trace amount of
syn-product from the (E)-isomer and predominantly anti-5e
from the (Z)-isomer.

ab,c.d

standard
R conditions
A then
NaBO; 4H,0
,05h

Z/E=251(SM)
anti-5a, 54%; 99% ee
syn-5a, 23%; 98% ee

Ph
Z/E =41 (SM)
anti-5b, 61%; 99% ee
syn-5b, 17%; 94% ee

o o
Ry Ry
"“OH "OH
HO HO

anti-5 | |

syn-5
from  Ph from Ph
(2)-isomer (E)-isomer

Z/E = 5:1 (SM)
anti-5¢, 57%; 99% ee
syn-5¢, 23%; 96% ee

Z/E =31 (SM)
anti-5d, 54%; 99% ee
syn-5d, 23%; 98% ee

Z/E =51 (SM)
anti-5e, 56%; 99% ee
syn-5e, trace

“ Reaction conditions: Same as in Table 2 and then NaBO, - 4H,O (150 mg, 1.5 mmol, 5.0 equiv.) was added in the same reaction. ” Isolated yields of
respective diastereomers. ¢ Enantiomeric excess (ee) was determined by chiral HPLC analysis. ¢ The dr was observed from 'H NMR analysis of the

crude reaction mixture. SM = starting material.
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a. Gram-scale reactions
Cu(CH3CN)4PFg 0o o

M M
2 (1.5 mol%) ° >
Me 5 Ph-BPE (3 mol%) -Bpin -Bpin
pin.
(% N O standard [ ("
o} | ] conditions \\ \\
Ph Ph Ph
n=1,(2)-1a forn=1 forn=2
n=2,(2)-1y anti-2a, 79% (1.20 g) anti-2y, 72% (1.13 g)

>99% ee, >20:1 dr >99% ee, >20:1 dr

b. One-pot reaction

Q
Me, Me standard Me
Me Me O\B B,O Me conditions o
~ _—
A Me g o-\Me then
Il Me Ve NaBOj;.4H,0 OH \
\

1a Ph 6,78% Ph

>99% ee, >20:1 dr
c. Further synthetic transformations on products

Q Me Pd/C NalOy
a0 Hy (atm) 2a NH,,OAC
-t S
pin MeOH, rt acetonelHZO
OH 12h it 1h
o
7,88% |,
6,84% Ph
Ph NaBO3.4H,0 OH

PhNHNH, HOI __Geauy)
AcOH/MeOH N Me s THF/HzO H Me

reflux, 48 h pin rt, 30 min

8, 72% 9, 84%
2y
o)
NaBO3.4H,0 Me DMP AuPPh;CI
(5 equiv) -"OH (1.2 equiv, AgOTf o

e

THF/H,0 o CH,Cl, MeOH

t, 30 min \\ i, 12 h CHaCly

,2h
10, 76% Ph 11,61% Ph 12, 57% Ph

Scheme 4 Large-scale reactions and further transformations.

Gram-scale reactions using (Z)-1a and (Z)-1y were carried out
with reduced -catalyst loading under standard conditions,
affording the desired products anti-2a and anti-2y, respectively,
without any significant loss in yield or enantioselectivity (Scheme
4a). The one-pot borylative cyclization, followed by the sequential
addition of the mild oxidizing agent sodium perborate, afforded
the corresponding alcohol 6 in a similar yield with exclusive
enantioselectivity (Scheme 4b). Interestingly, the reaction with
the strong oxidizing agent sodium periodate also afforded alcohol
6 in high yield, instead of undergoing boronic ester hydrolysis
(Scheme 4c). The Pd/C-catalyzed hydrogenolysis of compound 2a
successfully reduces the triple bond, providing bicyclic ketone 7
in 88%yield. The Fischer cyclization of compound 2y with phe-
nylhydrazine furnished a highly functionalized tetracyclic fused
indole 8 in 72% yield. Subsequent oxidation of 8 with sodium
perborate afforded the corresponding alcohol 9 in 84% yield.
Interestingly, direct oxidation of 2y with sodium perborate yiel-
ded alcohol 10, which upon Dess-Martin periodinane (DMP)
oxidation provided the a-alkynyl enone 11 via sequential alcohol
oxidation and tert-alcohol elimination in good yield. This highly
reactive, fused, electron-deficient enyne 11 serves as a promising
intermediate for diverse cycloaddition reactions. In addition,
Au(1)-catalyzed hydration of enyne 11 in methanol afforded aryl-
ketone 12 in 57% yield.

Based on the proposed copper catalytic cycle, the ligated
copper alkoxide complex LnCuOtBu is generated in situ in the
presence of a chiral ligand and base (Scheme 5). This complex

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 5 Plausible reaction mechanism.

undergoes o-bond metathesis with a diboron reagent, yielding
the LnCu-Bpin species. The enantioselective and regioselective
1,2-syn-addition of LnCu-Bpin to the 1,3-enyne-tethered cyclic-
1,3-dione 1a leads to the formation of a propargylic copper
intermediate A. This intermediate exists in equilibrium with an
axially chiral allenyl-copper intermediate B via a stereospecific
isomerization. Subsequent desymmetrization through annulation
of propargylic intermediate A furnishes the desired product 2a,
while the catalytic cycle is completed by regenerating LnCu-OtBu
via a copper alkoxide intermediate C in the presence of a base.

Conclusions

In summary, we have developed a stereospecific, enantiose-
lective copper(i)-catalyzed borylative cyclization of prochiral 1,3-
enyne-tethered cyclic-1,3-diones with excellent diaster-
eoselectivity. This asymmetric desymmetrization reaction effi-
ciently delivers highly functionalized chiral
octahydropentalenes bearing four contiguous stereocenters.
Notably, the use of a BPE-ligand resulted in >99% ee for most
examples. Additionally, (2)-1,3-enyne substrates react more
rapidly than their (E)-isomers, affording borylation products in
high yields under standard reaction conditions. Ongoing
studies in our laboratory are focused on further Cu(i)-catalyzed
stereoselective transformations.
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