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Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, primarily due to its rapid
acquisition of drug resistance and the complex tumor microenvironment. Conventional cancer therapies,
including chemotherapy and radiotherapy, often fail to elicit durable responses because PDAC cells exhibit
both intrinsic and extrinsic resistance, in which the intrinsic resistance is driven by genetic mutations, epigenetic
alterations, overexpression of efflux transporters, and the presence of cancer stem cells while the extrinsic
resistance is mediated by a dense desmoplastic stroma, hypovascularity, and immunosuppressive cellular
components. This review comprehensively analyzes these multifactorial resistance mechanisms and examines
cutting-edge nanotechnology-based strategies designed to circumvent them. We discuss the design of
intelligent, stimuli-responsive nanocarriers, including pH-sensitive, redox-sensitive, and enzyme-activated
systems that enable spatiotemporally controlled drug release, thereby enhancing drug accumulation within
tumor cells while minimizing systemic toxicity. Additionally, advances in surface functionalization and active
targeting strategies, such as the use of ligand-conjugated nanoparticles, are highlighted for their role in

enhancing selective delivery to both the bulk tumor cells and therapy-resistant cancer stem cell populations.
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tumor microenvironment to enhance therapeutic efficacy. These innovative strategies offer promising avenues

rsc.li/nanoscale-advances to overcome drug resistance in PDAC, potentially transforming therapeutic outcomes for this aggressive disease.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal
human malignancies, with a five-year survival rate below 10%."*
This dismal prognosis reflects its typically late-stage diagnosis,
aggressive metastatic spread, and a tumor microenvironment that
undermines conventional therapies.* Unlike malignancies
amenable to early detection by targeted agents, PDAC is often
identified when surgical resection is no longer possible,** leaving
systemic chemotherapy and radiotherapy as the mainstays—
modalities that frequently fail to produce durable responses due to
the rapid development of chemoresistance.*®

At the molecular level, PDAC is defined by recurrent genetic
alterations—most notably KRAS activating mutations in over 90%
of cases,’ and inactivation of key tumor suppressors such as TP53,
CDKN2A, and SMAD4.""* These changes drive aberrant signaling
through pathways such as MAPK, PI3K/AKT, and NF-kB, promoting
proliferation and survival under cytotoxic stress.»** Concurrently,
overexpression of ATP-binding cassette transporters actively exports
chemotherapeutic agents, reducing intracellular drug accumula-
tion and contributing substantially to resistance.** Epigenetic
reprogramming and dysregulated non-coding RNAs—such as
miRNA-21, miRNA-145, and miRNA-155—further modulate gene
expression to favor invasion, metastasis, and therapy escape.*>*®

Extrinsic factors compound these intrinsic defenses. PDAC's
hallmark desmoplastic stroma—composed of collagen, hyalur-
onan, cancer-associated fibroblasts, and infiltrating immune cells—
creates a dense extracellular matrix that impedes drug penetration
while secreting cytokines and growth factors that support tumor cell
survival and resistance.””** Hypovascularity further limits agent
delivery,” and hypoxia within the tumor niche activates adaptive
survival programs that blunt therapeutic efficacy.*

Addressing both intrinsic and extrinsic resistance mechanisms
demands innovative approaches. Nanotechnology-based drug
delivery systems have emerged as a promising strategy to surmount
these barriers.** By encapsulating chemotherapeutics within
nanoscale carriers, these platforms improve drug stability, refine
pharmacokinetics, and enable controlled, spatiotemporal release at
the tumor site.*?* Moreover, stimuli-responsive designs—triggered
by acidic pH, elevated reducing environments, or specific enzymatic
activity—ensure selective payload liberation within the tumor
microenvironment.”® Surface functionalization with ligands or
antibodies further enhances specificity, enabling precise delivery to
both bulk tumor cells and resistant cancer stem cell populations.””**

This review provides a focused analysis of the molecular and
microenvironmental drivers of PDAC resistance and critically
examines the latest nanomedicine strategies—ranging from
smart, stimulus-responsive carriers to targeted, multifunctional
platforms—designed to overcome these formidable challenges
and improve clinical outcomes in pancreatic cancer.

2. Current landscape of drug
resistance in pancreatic cancer

Pancreatic cancer exhibits a remarkably complex array of
resistance mechanisms that can be broadly classified into cell-
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autonomous  (intrinsic) and  microenvironment-driven
(extrinsic) factors. As shown in Fig. 1, these mechanisms can
be divided into intrinsic pathways, primarily involving genetic
alterations, and extrinsic factors associated with the tumor
microenvironment.

2.1 Intrinsic mechanisms

Genetic alterations are central to the inherent resistance
observed in PDAC. Mutations in oncogenes such as KRAS,
present in over 90% of cases,*** and tumor suppressor genes like
TP53 and CDKN2A set the stage for a tumor phenotype that is
highly resilient to chemotherapeutic insults.****> These mutations
often lead to constitutive activation of survival pathways (e.g.,
MAPK, PI3K/AKT, and NF-kB), thereby reducing apoptosis and
promoting cell proliferation even in the presence of cytotoxic
drugs.***” Moreover, PDAC cells often upregulate ATP-binding
cassette (ABC) transporters, which actively pump chemothera-
peutic agents out of the cells, further diminishing drug effi-
cacy.’®* Epigenetic changes®* and the modulation of non-
coding RNAs (such as microRNAs-miRNA-21, miRNA-145, and
miRNA-155)*>** add another layer of complexity by altering the
expression of genes involved in drug response and resistance.
Cancer stem cells (CSCs) are also believed to contribute
substantially to chemoresistance;** these cells are characterized
by high expression levels of drug efflux pumps, enhanced DNA
repair capabilities, and a quiescent nature that makes them less
susceptible to treatments that target rapidly dividing cells.****

2.2 Extrinsic mechanisms

The tumor microenvironment (TME) in PDAC is uniquely
challenging. A hallmark of pancreatic tumors is an abundant
desmoplastic stroma, comprising fibroblasts, immune cells,
and a dense extracellular matrix (ECM) rich in collagen, fibro-
nectin, and hyaluronan.” This stroma creates significant
physical barriers that impede the effective penetration of
drugs.*® Additionally, the hypovascular and hypoxic nature of
the TME further restricts drug delivery and fosters an immu-
nosuppressive milieu.** Immunosuppressive cells, including
regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs), are recruited into the TME and secrete cytokines and
growth factors that not only shield tumor cells from the
immune system but also contribute to drug resistance by
promoting survival signals.**

2.3 Rational design of responsive nanocarriers to overcome
PDAC resistance

Pancreatic ductal adenocarcinoma (PDAC) employs intrinsic
mechanisms, such as overexpression of ATP-binding cassette
(ABC) transporters that efflux chemotherapeutics, and extrinsic
barriers, including a desmoplastic stroma that hinders pene-
tration and a hypoxic microenvironment that fosters survival, to
resist treatment. Responsive nanocarriers have therefore been
engineered with stimulus-triggered elements that directly
counteract these defenses. Specifically, pH-sensitive micelles
utilize acid-labile bonds that are stable at physiological pH (7.4)
but cleave in acidic endo/lysosomal compartments (pH 6.5-5.5),
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Fig. 1 Overview of drug resistance mechanisms in pancreatic cancer created with https://www.BioRender.com.

achieving intracellular drug release that bypasses ABC
transporter-mediated efflux.>* Redox-responsive systems incor-
porate disulfide linkages cleavable by elevated intracellular
glutathione, ensuring payload stability during circulation and
selective release within tumor cells.>® To overcome the stromal
barrier, nanocarriers are surface-functionalized with peptide
linkers that are degraded by matrix metalloproteinases (MMPs),
enabling local degradation of collagen and hyaluronan to
enhance penetration through the fibrotic matrix.>* By explicitly
linking each design feature to the specific resistance mecha-
nism it addresses, these strategies demonstrate that controlled
release and active targeting are purposefully tailored to
surmount PDAC's multifaceted drug resistance.

Collectively, the current landscape of drug resistance in
pancreatic cancer paints a picture of a highly adaptive and multi-
factorial challenge. The convergence of genetic mutations, epige-
netic reprogramming, enhanced efflux of drugs, and a complex,
immunosuppressive microenvironment necessitates a shift
towards more integrated and precision-based therapeutic strate-
gies. Continued research into the molecular underpinnings of
resistance is essential, as it will inform the design of next-
generation therapies, such as nanomedicines and combination
regimens, which may finally improve the prognosis for this
formidable disease.

3. Innovative nanotechnology
approaches targeting PDAC resistance

3.1 Overview of nanocarrier platforms and their impact on
the therapeutic index

A diverse array of nanocarrier platforms, including liposomes,
polymeric nanoparticles, dendrimers, micelles, and inorganic

5890 | Nanoscale Adv, 2025, 7, 5888-5904

constructs, has been engineered to improve the pharmacokinetics
and biodistribution of chemotherapeutics in PDAC.***® These
systems leverage the enhanced permeability and retention (EPR)
effect to preferentially accumulate in tumor tissue, protect labile
drugs from premature degradation, and reduce off-target toxicity,
as exemplified by liposomes encapsulating gemcitabine, which
achieved a twofold increase in tumor drug levels alongside a 30
percent reduction in systemic myelosuppression compared with
the free drug.”” While such enhancements to the therapeutic
index are valuable, they do not directly overcome the three core
resistance mechanisms of PDAC-ABC transporter efflux, cancer
stem cell survival, and stromal barriers which drive disease
relapse. The following subsections therefore focus on nanocarrier
designs that explicitly target each of these challenges.

3.2 Inhibition of drug efflux transporters via stimuli-
responsive release

Overexpression of ATP-binding cassette transporters such as P-
glycoprotein and MRP1 actively expels chemotherapeutics from
PDAC cells, undermining intracellular drug concentrations.*®* To
circumvent this defense, polymeric micelles bearing acid-labile
bonds have been developed; these micelles remain stable at
physiological pH (7.4) but undergo rapid bond cleavage within
acidic endo/lysosomal compartments (pH 6.5-5.5), releasing over
80 percent of their payload within two hours at pH 5.5 while
maintaining less than 10 percent leakage at pH 7.4, thereby
delivering gemcitabine intracellularly faster than efflux pumps can
remove it.** In parallel, redox-responsive prodrugs exploit the
millimolar intracellular glutathione gradient: doxorubicin linked
via disulfide bonds exhibits a threefold higher intracellular reten-
tion under 10 mM glutathione compared to non-responsive
controls, effectively overwhelming the MRP1-mediated efflux.*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Innovative nanotechnology approaches in precision drug delivery active targeting: functionalization of nanoparticles (e.g., liposomes and

polymeric NPs) with ligands (e.g., antibodies and peptides) for receptor-mediated uptake by tumor cells. Stimuli-responsive release: nanocarriers
designed to release therapeutic payloads in response to tumor microenvironment triggers (e.g., pH, enzymes, and redox gradients). Enhanced
permeability and retention (EPR) effect: passive accumulation of nanoscale particles in tumor tissue due to leaky vasculature and impaired
lymphatic drainage. Multifunctional systems: integration of imaging agents (e.g., fluorescent dyes and contrast agents) for theranostic appli-
cations or combinatorial drug loading. Created with https://www.BioRender.com.

By tying drug release to intracellular triggers, these platforms
ensure cytotoxic concentrations are achieved inside PDAC cells
despite elevated efflux activity.

3.3 Targeting cancer stem cells with functionalized
nanocarriers

Cancer stem cells (CSCs) within PDAC, identified by surface
markers such as CD44, CD24, and ESA, contribute to relapse
through enhanced DNA repair, quiescence, and robust efflux
capacity.®® To address this challenge, nanocarrier-based
approaches have been developed to selectively target and elimi-
nate CSCs. Functionalized nanoparticles conjugated with ligands
or antibodies against CSC-specific markers have demonstrated
improved uptake in stem-like cell populations and attenuated their
ability to drive tumor progression.”” In addition to targeted
delivery, co-loading of chemotherapeutics with agents that
suppress stemness-related signaling pathways—such as small
interfering RNAs (siRNAs) or pathway inhibitors—has been shown
to enhance therapeutic efficacy and reduce the regenerative
potential of CSCs.*** These strategies provide a promising avenue
to overcome chemoresistance at its root by disrupting the CSC
niche and limiting tumor repopulation.

3.4 Remodeling the tumor microenvironment to enhance
penetration and reverse resistance

The tumor microenvironment (TME) in PDAC is characterized by
a dense desmoplastic stroma, comprising extracellular matrix
components such as collagen and hyaluronan, along with abun-
dant cancer-associated fibroblasts.® This structural complexity
imposes significant physical and biochemical barriers to drug
delivery, limiting the therapeutic impact of systemically adminis-
tered agents. Nanotechnology-based strategies aimed at remodel-
ing the TME have shown considerable potential in enhancing drug

© 2025 The Author(s). Published by the Royal Society of Chemistry

penetration and improving treatment responses.®® Responsive
nanocarriers equipped with matrix metalloproteinase (MMP)-
sensitive linkers can locally degrade stromal components,
thereby facilitating deeper intratumoral distribution.®” Addition-
ally, platforms that generate reactive oxygen or nitrogen species
have been applied to modulate fibroblast activity, reduce intersti-
tial fluid pressure, and normalize abnormal vasculature, collec-
tively improving drug perfusion.® By selectively altering the tumor
stroma and microenvironmental conditions, these approaches
enhance access to malignant cells and mitigate one of the most
significant extrinsic mechanisms of drug resistance in PDAC

(Fig. 2).

4. Mechanistic insights:
nanomedicine interventions to
counteract drug resistance

4.1 Bypassing cellular efflux and enhancing intracellular
drug accumulation

Nanoparticles play a crucial role in drug delivery by bypassing
cellular ABC transporter efflux mechanisms through receptor-
mediated endocytosis, thereby increasing intracellular drug
concentrations.*’® Researchers have developed high drug-
loading gemcitabine inorganic-organic hybrid nanoparticles
(GMP-IOH-NPs) composed of [ZrO]*" and gemcitabine mono-
phosphate (GMP)*~, with GMP constituting 76% of the total
nanoparticle mass”™(Fig. 3). Self-assembled gemcitabine pro-
drug nanoparticles have demonstrated efficient cellular uptake
and drug delivery capabilities, significantly increasing intra-
cellular gemcitabine concentrations and overcoming chemo-
resistance.””  Additionally, gemcitabine-loaded chitosan
nanoparticles have been shown to improve the drug's efficacy
against pancreatic cancer cells, enhancing both apoptosis and

Nanoscale Adv, 2025, 7, 5888-5904 | 5891
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Fig. 3 Synthesis, characterization, cellular uptake, and biodistribution of DUT647-Labeled Ref-IOH-NPs. (A) Scheme illustrating the aqueous
synthesis; (B) particle size distribution according to DLS and SEM with a photograph of the aqueous suspension; (C) representative confocal
fluorescence microscopy images showing the uptake of DUT647-labeled Ref-IOH-NPs after 24 and 48 h in AsPC1 cells co-stained with
LysoTracker. The enlarged section shows GEM-free Ref-lIOH-NPs colocalize in part with LysoTracker-labeled vesicles (yellow, marked with
white arrows on the inset). Note that more LysoTracker-labeled vesicles are visible in comparison to the control without IOH-NPs (scale bars in
a-c identical for all images); (D) spectral unmixing performed to distinguish between DUT647-derived fluorescence (red) and tissue auto-
fluorescence (green). Reprinted with permission from ref. 71. Copyright @2023 Wiley.

ferroptosis responses.” These nanoparticles enter tumor cells
via receptor-mediated endocytosis, effectively circumventing
ABC transporter efflux and enhancing intracellular drug levels.
These advancements highlight the potential of nanoparticle-
based delivery systems in enhancing the therapeutic efficacy
of gemcitabine by overcoming drug resistance mechanisms and
promoting cancer cell death through multiple pathways.

5892 | Nanoscale Adv, 2025, 7, 5888-5904

4.2 Overcoming the tumor microenvironment barrier

The dense fibrotic stroma of pancreatic ductal adenocarcinoma
(PDAC) significantly impedes drug penetration and induces
hypoxic, nutrient-deprived conditions that activate tumor cell
survival pathways, leading to drug resistance. Nanomedicine
offers solutions by employing carriers capable of penetrating or

© 2025 The Author(s). Published by the Royal Society of Chemistry
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modulating the tumor microenvironment (TME).”*”* Studies
have demonstrated that nanoparticle-based photodynamic
therapy (PDT) can effectively disrupt tumor-stroma interactions
in pancreatic tumor models, sustainably inhibit extracellular
matrix (ECM) secretion, and enhance therapeutic efficacy. For
instance, = photodynamic  nanoparticles = (UCNs@PPF),
comprising upconversion nanoparticles (UCNs), protopor-
phyrin IX (PpIX), and polylysine (PLL)-modified folic acid (FA),
generate reactive oxygen species (ROS) upon light irradiation.
These ROS not only directly kill cancer cells and pancreatic
stellate cells (PSCs) but also downregulate the TGF-B signaling
pathway, reducing cancer cell proliferation and drug resis-
tance.”® Additionally, researchers have developed tumor stroma-
targeted nitric oxide (NO) nanogels for the co-delivery of NO and
TRAIL. NO prevents tissue fibrosis, while TRAIL selectively
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induces apoptosis in cancer cells. These nanogels are func-
tionalized with tumor stroma-targeting peptides identified
through phage display technology, ensuring targeted
delivery””(Fig. 4).

Targeting the TME barriers allows for a more comprehensive
modulation of the TME, addressing multiple aspects of the
stromal barrier simultaneously, and holds promise for further
improving PDAC treatment outcomes.

4.3 Modulating intracellular signaling and gene expression

Cancer drug resistance primarily arises from genetic mutations
and epigenetic modifications, which activate pro-survival
pathways such as NF-kB, MAPK, and PI3K/AKT.”** Nano-
medicine has shown tremendous potential in overcoming this
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Fig. 4 Tumor stroma-targeted TRAIL-NO@Nanogel remodels the fibrotic tumor microenvironment and suppresses PDAC progression in mice
(A) schematic showing the mechanism by which tumour stroma-targeted TRAIL-NO@Nanogel suppresses PDAC progression in mice. NO
released from tumour stroma-targeted TRAIL-NO@Nanogel remodels the fibrotic tumour microenvironment of desmoplastic PDAC; (B) three
days after the implantation of AK4.4 PDAC cells and mice were treated with DNIC (2 mg kg™ and/or Dox (0.5 mg kg™ or Gem (1 mg kg™
loaded in lipid-PLGA NPs modified with LQT28 on days 3, 5, 7, 9, 11, 13 and 15; tumours were then analysed on day 16. Volumes of orthotopic
PDAC tumours 16 days post-implantation in treated and untreated (control) mice, DNIC: 2 mg kg; Dox: 0.5 mg kg; Gem: 1 mg kg~*. Reprinted
with permission from ref. 77. Copyright @2021 Lippincott Williams and Wilkins Ltd.
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challenge by delivering gene-silencing agents, such as siRNA,
miRNA mimics, or antisense oligonucleotides, which precisely
target these resistance mechanisms.** By inhibiting the
expression of resistance-related genes, nanocarriers can resen-
sitize cancer cells to conventional therapies. For example, Xu
et al. provided a successful case by developing black titanium
dioxide (bTiO,) nanoprobes. Under the synergistic action of
photothermal therapy and chemotherapy, these nanoprobes
not only disrupt the tumor stromal barrier but also reverse drug
resistance. Their in vitro and in vivo experiments demonstrated
that the nanoprobes significantly enhanced the efficacy of
gemcitabine, eliminating resistant pancreatic
tumors®*(Fig. 5).

Together, these approaches not only disrupt the tumor
microenvironment physically (e.g., through photothermal
therapy) to improve drug penetration but also act at the gene
regulation level by targeting specific signaling pathways and
gene expressions to reverse resistance. Such findings provide
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critical scientific evidence and practical guidance for devel-
oping more effective treatment strategies for pancreatic cancer.

4.4 Synergistic combination approaches

Integrating nanomedicine with conventional therapies offers
a multifaceted approach to overcoming drug resistance. For
example, co-delivery systems can simultaneously transport
chemotherapeutic agents and survival pathway inhibitors to
achieve synergistic effects.®*** These integrated platforms not
only enhance the efficacy of the primary drug but also suppress
the compensatory mechanisms cancer cells use to evade treat-
ment. Multifunctional nanoparticles that combine therapeutic
and diagnostic capabilities (theranostics) enable clinicians to
monitor treatment responses in real time and adjust dosing or
combination regimens accordingly®*(Fig. 6).

Among numerous studies, one nanomedicine platform that
combines photodynamic therapy (PDT) and chemotherapy has
demonstrated significant synergistic antitumor effects. This
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Fig. 5 Synergistic photothermal-chemotherapy with GEM-loaded, IGF1-conjugated bTiO, nanoprobes: TEM characterization, histological
analysis, and in vivo efficacy in drug-resistant pancreatic cancer; (A) illustration of GEM loaded, IGF1 conjugated, black TiO,-based nanoprobes
for 808 nm NIR triggered synergistic photothermal-chemotherapy in drug-resistant pancreatic cancer; (B) TEM images of bTiO,-Gd-IGF1; (C)
tumor injury analysis via H&E staining following injection of mice with PBS, GEM, bTiO,-Gd-IGF1 and bTiO,-Gd-IGF1-GEM, followed by irra-
diation, in the presence or absence of for 5 min; (D) relative tumor volume and (E) mice body weights following the aforementioned treatments.
Reprinted with permission from ref. 82. Copyright @2022 BioMed Central.
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platform employs the self-assembly of Chlorin e6 (Ce6) with
a prodrug containing the pro-apoptotic peptide Smac N7 and
gemcitabine (Gem). Under light irradiation, the system triggers
rapid release of Gem, Ce6, and Smac N7, along with the
generation of reactive oxygen species (ROS). The ROS disrupt
the tumor cell's antioxidant defenses, while Smac N7 inhibits
inhibitors of apoptosis proteins (IAPs), thereby enhancing the
cytotoxicity of Gem. This synergistic interaction not only boosts
the overall therapeutic efficacy but also markedly reduces tumor
cell resistance®(Fig. 7).

The strength of multifunctional nanoparticles lies in their
dual capacity for therapy and diagnosis. By integrating Ce6,
Gem, and Smac N7, these nanomedicines can monitor treat-
ment responses in real time and adjust drug release based on
changes in the tumor microenvironment. This intelligent drug
delivery system addresses the challenges of uneven drug
distribution and resistance seen in traditional therapies,
providing a promising new strategy for treating pancreatic
cancer.

4.5 Immune modulation and microenvironment

reprogramming

Beyond direct cytotoxic effects, nanomedicine can alter the
immunosuppressive landscape of the tumor microenviron-
ment.*” Nanoparticles engineered to deliver immune adjuvants
or checkpoint inhibitors locally can reprogram the tumor
milieu to support immune cell infiltration and activation.®® By
disrupting the protective niche that cancer cells construct,
through modulation of stromal cells and cytokine secretion,
these interventions can render previously “cold” tumors more
immunogenic and responsive to immunotherapy, thereby

© 2025 The Author(s). Published by the Royal Society of Chemistry

addressing another layer of drug resistance.*® Research has
shown that precise photodynamic therapy (PDT) using Midkine-
targeted, nanobody-engineered nanoparticles can effectively
remodel the tumor microenvironment (TME) of pancreatic
ductal adenocarcinoma (PDAC) and activate anti-tumor
immune responses. Specifically, under light irradiation, D4
Nb-PCP nanoparticles generate abundant reactive oxygen
species (ROS), which induce immunogenic cell death (ICD) in
tumor cells, evidenced by the translocation of CRT and ERp57
to the cell membrane and increased HMGB1 secretion. These
changes stimulate the immune system to recognize and attack
the tumor. Additionally, after PDT, there is an increase in
mature dendritic cells and enhanced infiltration of CD4+ and
CD8+ T cells within the PDAC TME, indicating a shift from an
immunosuppressive to an immunoactive state. Elevated levels
of pro-inflammatory cytokines in the tumor tissue further
confirm the remodeling of the immune microenvironment.
Ultimately, when combined with PD-1 antibody therapy, this
precise PDT significantly enhances anti-tumor efficacy and
prolongs survival in mice, offering a promising new strategy for
PDAC immunotherapy® (Fig. 8). A major contributor to thera-
peutic failure is the presence of cancer stem cells, which possess
intrinsic resistance mechanisms including enhanced drug
efflux, robust DNA repair, and quiescence.’*> Nanomedicine
interventions have been tailored to specifically target CSC
markers (such as CD44) to eliminate this resistant cell
subpopulation.®*®* Functionalized nanocarriers, such as the
aforementioned anti-CD44-conjugated nanocapsules, have
demonstrated significant efficacy in selectively delivering cyto-
toxic drugs to CSCs, thereby reducing the likelihood of tumor
relapse and metastasis.”>*® A study developed a PDAC-specific,

Nanoscale Adv., 2025, 7, 5888-5904 | 5895
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nutrient-mimetic recombinant high-density lipoprotein (rHDL),
termed pGpC-rHDL, which effectively remodels the tumor
microenvironment (TME) of pancreatic ductal adenocarcinoma
(PDAC). It achieves this by inhibiting the activation of cancer-
associated fibroblasts (CAFs), reducing collagen deposition,
and suppressing both M2 macrophage polarization and the
expression of the immunosuppressive cytokine IL-6. Notably,
pGpC-tHDL significantly impedes pancreatic tumor spheroid

5896 | Nanoscale Adv., 2025, 7, 5888-5904

formation and lowers the proportion of CD44'/CD24" cell
subpopulations, indicating its potential to effectively down-
regulate tumor cell stemness®(Fig. 9).

Together, these mechanistic insights illustrate that nano-
medicine does more than simply transport drugs; it actively
intervenes in the molecular and cellular pathways that underlie
drug resistance. By enhancing intracellular drug delivery,
modulating the tumor microenvironment, reprogramming

© 2025 The Author(s). Published by the Royal Society of Chemistry
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genetic and epigenetic regulators, and targeting resilient cancer
stem cells, innovative nanotechnology strategies hold the
promise of transforming the treatment landscape for pancreatic
cancer and other recalcitrant malignancies.

5. Revolutionizing target discovery:
integrative omics and Al-driven
nanomedicine for personalized
pancreatic cancer therapy

5.1 Spatial and single-cell omics breakthroughs

Cutting-edge single-cell and spatial omics techniques now
enable the dissection of tumor heterogeneity at unprecedented

© 2025 The Author(s). Published by the Royal Society of Chemistry

resolution.”® By mapping gene expression and protein distri-
butions within individual cells and their spatial contexts,
researchers can identify rare but critical subpopulations, such
as cancer stem cells and resistant clones. This level of granu-
larity reveals unique biomarkers and vulnerabilities that can be
exploited through nanotherapeutics, ensuring that treatment is
tailored not only to the dominant tumor type but also to its most
elusive, drug-resistant niches.*®

5.2 Systems biology and multi-layer omics integration

Integrative analyses that combine genomics, transcriptomics,
proteomics, metabolomics, and even epitranscriptomics create
comprehensive molecular portraits of pancreatic cancer.'®

Nanoscale Adv., 2025, 7, 5888-5904 | 5897
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These systems biology approaches uncover complex networks
and feedback loops that drive tumor progression and drug
resistance. By synthesizing multi-dimensional data, researchers
can pinpoint key regulatory nodes and signaling pathways,
paving the way for the design of nanocarriers that specifically
target these critical hubs, thereby disrupting the tumor's
survival strategies.

5898 | Nanoscale Adv., 2025, 7, 5888-5904

5.3 Al-driven data mining and predictive modeling

The advent of machine learning and artificial intelligence has
revolutionized omics data analysis. Advanced algorithms can
sift through massive datasets to identify novel biomarkers and
predict the functional consequences of specific mutations.****>
These insights not only inform the selection of therapeutic
targets but also guide the customization of nanotherapeutics.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00513b

Open Access Article. Published on 29 Qado Dirri 2025. Downloaded on 13/02/2026 2:15:39 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Designing nanocarriers that precisely target key
signaling pathways and regulatory hubs driving

tumor progression and resistance
ligands to achieve highly personalized therapy
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nanoparticles that adjust drug release profiles
based on the tumor's evolving molecular

in real time, ensuring sustained therapeutic
effectiveness

Guiding the customization of smart, adaptive
landscape

drug-resistant niches and specific cellular
Enabling theranostic platforms that provide
Functionalizing nanocarriers with specific

Tailoring nanotherapeutics to target elusive,
subpopulations

Nanomedicine application

Real-time monitoring of treatment efficacy and

Identification of novel biomarkers; prediction of
tumor molecular responses

Comprehensive molecular portraits; uncovering
functional consequences of mutations

complex networks, regulatory nodes, and

(e.g., cancer stem cells and resistant clones)
feedback loops

Detailed mapping of tumor heterogeneity;
identification of rare subpopulations
Patient stratification; identification of

individualized biomarkers

Key insights

Table 1 Summary of integrative omics and Al-driven nanomedicine approaches for personalized pancreatic cancer therapy

Integration of omics data with imaging agents

and biosensors embedded in nanocarriers
Correlating multi-omics signatures with drug

transcriptomics, proteomics, metabolomics,
response profiles

and epitranscriptomics
Machine learning and artificial intelligence

Single-cell and spatial omics techniques
algorithms

Integrative analysis of genomics,

Technological approach
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Al-driven predictive models facilitate the design of smart,
adaptive nanoparticles that adjust drug release profiles in real
time based on the tumor's evolving molecular landscape.*®

5.4 Dynamic, real-time monitoring with theranostic
nanoplatforms

Integration of omics data with nanotechnology has opened up
the field of theranostics where treatment and diagnostics
converge. Nanocarriers equipped with imaging agents and
biosensors enable real-time monitoring of treatment efficacy
and the tumor's molecular response. This dynamic feedback
allows clinicians to modify treatment regimens on the fly,
ensuring that nanotherapeutic interventions remain effective
even as the tumor evolves and develops new resistance
mechanisms.***

5.5 Personalized nano-targeting based on omics signatures

The ultimate goal of integrating multi-omics data is to enable
truly personalized therapy. By correlating specific omics signa-
tures with drug response profiles, clinicians can stratify patients
and design individualized treatment protocols. Nanocarriers
can be functionalized with ligands that precisely target
biomarkers identified through omics analyses, ensuring that
each patient receives a custom-tailored therapy optimized to
overcome their tumor's unique resistance patterns.

Collectively, these innovative approaches underscore the
potential of integrating multi-omics data, advanced AI
analytics, and smart nanotherapeutics to revolutionize target
discovery and treatment personalization in pancreatic cancer.
This convergence not only enhances our understanding of
tumor biology but also sets the stage for the next generation of
precision medicine strategies aimed at overcoming drug resis-
tance. As summarized in Table 1, integrating multi-omics data,
advanced AI analytics, and smart nanotherapeutics offers
a revolutionary approach to personalized pancreatic cancer
therapy.

6. Discussion and future perspectives

Nanotechnology is redefining pancreatic cancer treatment by
addressing the notorious drug resistance seen in traditional
therapies. Recent advancements in nanomedicine have led to
the development of various nanocarriers, such as liposomes,
polymeric nanoparticles, dendrimers, and inorganic nano-
materials, which improve drug stability, control release, and
enhance pharmacokinetics. However, given the heterogeneous
nature of pancreatic ductal adenocarcinoma (PDAC), future
research must focus on creating multifunctional, adaptive
nanoparticles capable of responding to local stimuli like pH
changes, redox conditions, or enzymatic activity. These smart
systems, equipped with on-demand drug release triggered by
biosensor feedback, promise to deliver high concentrations of
therapeutic agents precisely when needed.

Overcoming the formidable tumor microenvironment is
another critical challenge. The dense stroma in PDAC not only
limits drug penetration but also fosters an immunosuppressive,
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hypoxic milieu. Nanoparticles that remodel this environment,
by normalizing vasculature or degrading extracellular matrix
components, could work synergistically with traditional
chemotherapies and immunotherapies. Additionally, address-
ing cellular resistance mechanisms through the targeted
delivery of gene-silencing molecules or combination therapies
that interfere with key survival pathways is essential.

The integration of diagnostic and therapeutic functions in
theranostic nanoparticles further enables real-time monitoring
of treatment responses, paving the way for personalized thera-
pies. Despite these promising developments, issues related to
the scalable synthesis, long-term safety, and regulatory approval
of these nanoplatforms remain. Continued interdisciplinary
collaboration and standardized preclinical models will be vital
for translating these innovative strategies from the laboratory to
clinical practice.

7. Conclusions

Nanotechnology-based approaches offer a transformative
avenue for overcoming the notorious drug resistance observed
in pancreatic cancer. By harnessing the unique properties of
nanocarriers, including enhanced stability, controlled release,
and active targeting, researchers have developed innovative
strategies that address both intrinsic and extrinsic mechanisms
of resistance. These advanced platforms not only improve the
intracellular delivery of therapeutic agents by bypassing efflux
pumps and protecting drugs from premature degradation but
also modulate the tumor microenvironment to facilitate drug
penetration and re-sensitize resistant cancer cells. Although
significant progress has been made, translating these prom-
ising strategies into clinical practice remains a formidable
challenge. Continued interdisciplinary research, coupled with
the integration of real-time monitoring and personalized
treatment protocols, is essential to fully exploit the potential of
nanomedicine. As we refine these technologies and address the
remaining hurdles, nanotechnology is poised to redefine
precision medicine in pancreatic cancer, offering new hope for
improved outcomes and a better quality of life for patients
battling this aggressive disease.
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