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thesis, sensing mechanisms, and
potential applications as promising materials for
glucose sensors

Kawan F. Kayani, *ab Dlzar Ghafoor,cb Sewara J. Mohammed de

and Omer B. A. Shateryb

The disruption of glucose (Glu) metabolism in the human body can lead to conditions such as diabetes and

hyperglycemia. Therefore, accurately determining Glu levels is crucial for clinical diagnosis and other

applications. Carbon dots (CDs) are a novel category of carbon nanomaterials that exhibit outstanding

optical properties, excellent biocompatibility, high water solubility, low production costs, and

straightforward synthesis. Recently, researchers have developed various carbon dot sensors for fast and

real-time Glu monitoring. In this context, we provide a comprehensive introduction to Glu and CDs for

the first time. We categorize the synthetic methods for CDs and the sensing mechanisms, further

classifying the applications of carbon dot probes into single-probe sensing, ratiometric sensing, and

visual detection. Finally, we discuss the future development needs for CD-based Glu sensors. This review

aims to offer insights into advancing Glu sensors and modern medical treatments.
1. Introduction

Diabetes mellitus is a condition resulting from a defect in
insulin secretion, leading to the buildup of Glu. In the year
2000, over 170 million people globally were affected by diabetes
mellitus, and it is projected that by 2030, this number will
increase to 366 million.1 Glu levels in the human body are
crucial indicators of overall health. For individuals with dia-
betes, it is especially important to monitor these levels on
a daily basis.2,3 As a result, there is a pressing need to develop
highly sensitive, selective, and reliable methods for Glu detec-
tion that can be applied across various elds, including clinical
diagnostics, biotechnology, and the food industry.4,5 To date,
a variety of methods and devices have been proposed for Glu
testing, including electrochemical sensors,6–9 Raman spectros-
copy,10,11 chemiluminescence (CL),12,13 electrochemical tran-
sistor sensors,14,15 potentiometric sensors,16,17 and uorescence
(FL) sensors.18–22 Among these, FL sensors have gained recog-
nition as a simple, rapid, and convenient tool for Glu detection.
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Various uorescent materials have been utilized for the
detection of Glu, including metal–organic frameworks
(MOFs),23–26 nanoclusters (NCs),27 and small molecule uores-
cent sensors.28,29 However, each of these materials has certain
limitations. MOFs struggle with poor solubility, nanoclusters
have issues with short-term stability, and small molecule-based
sensors suffer from poor selectivity.30 In recent years, CDs have
attracted considerable interest across various elds.31–37

As innovative 0-dimensional materials with diameters
ranging from 1 to 10 nm, CDs exhibit excellent photostability,
good solubility in water, and resistance to photobleaching.38–40

Compared to other uorescent materials, CDs offer advantages
such as low cost, ease of use, mild preparation conditions, low
toxicity, biocompatibility, and a wide range of sources.40–42

Consequently, they have been extensively utilized in optoelec-
tronics,34,43,44 catalysis,33,45 biomedical applications,46,47 indus-
trial applications,32 food studies,48 and particularly in analytical
chemistry as uorescent probes.

Additionally, for clinical applications, the optical and surface
chemical properties of CDs make them ideal candidates for
theranostic uses, including biosensing,49 bioimaging50 and drug
delivery,51 both in vitro and in vivo. In diagnostics, uorescence
molecular bioimaging is crucial for early tumor detection,
allowing noninvasive, highly sensitive, and specic observation
of pathological and physiological processes.52 CDs offer several
advantages, such as low cytotoxicity, excellent biocompatibility,
stable photoluminescence, easy functionalization, and
remarkable resistance to photobleaching.43,53 Due to these
benets, numerous in vivo and in vitro bioimaging applications
have been developed recently.54–56 Moreover, CDs are widely
© 2025 The Author(s). Published by the Royal Society of Chemistry
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utilized in next-generation optical biosensors due to their high
sensitivity, low cost, and practicality. These sensors are used not
only for elemental and biomarker detection but also for moni-
toring changes in uorescence signals at the single-cell level,
through mechanisms such as uorescence enhancement (turn-
on) or quenching (off-state).57,58

CDs were rst developed in 2004.59 Since then, their simple
synthesis and unique properties have led to a substantial
increase in publications exploring various precursors and
synthesis methods. These methods are generally divided into
top-down and bottom-up approaches.

CDs can be synthesized using two primary methods: “top-
down” and “bottom-up.” Top-down techniques, such as ultra-
sonic synthesis and chemical exfoliation, break down larger
carbon structures and are suited for large-scale production but
oen require extended processing times, harsh conditions, and
expensive equipment.31,60 On the other hand, “bottom-up”
methods, which are typically used for producing CDs, involve
constructing CDs from molecular precursors such as Glu and
citric acid through processes such as microwave pyrolysis and
chemical vapor deposition. These methods provide better
control and produce CDs with fewer defects.61,62

In this review, we aim to offer a unique perspective by
highlighting recent progress in using CDs for detecting Glu in
different samples. We will cover the synthesis of CDs and
examine practical applications for Glu detection, including
single probe sensing, ratiometric sensing, and visual detection
methods in real samples. Additionally, we will briey address
the challenges and future prospects in the development and
application of CDs, as illustrated in Fig. 1.
2. Conditions associated with glucose
imbalance

In recent decades, various factors such as shis in eating habits
and physical activity have contributed to an increase in disor-
ders linked to abnormal blood Glu levels. Alongside new
discoveries regarding diseases associated with this issue, these
Fig. 1 Summary of CDs and their applications.

© 2025 The Author(s). Published by the Royal Society of Chemistry
developments have driven research to explore innovative
methods for Glu monitoring.63,64 The condition linked to
abnormal blood Glu levels is known as Diabetes Mellitus (DM),
which manifests in several forms: type 1 DM, type 2 DM, Alz-
heimer's disease, cardiovascular disease and kidney disease.

Type 2 DM is themost prevalent form, accounting for around
90% of all diabetes cases, and the number of patients continues
to increase.65 An estimated 374 million people are at increased
risk of developing this form of the disease. Type 1 diabetes is
more common among children and adolescents, with over 1.1
million young individuals living with it. The two most common
types of diabetes stem from either the pancreas's inability to
produce insulin (DM1) or reduced tissue sensitivity to insulin (2
DM), both leading to disrupted carbohydrate metabolism.
Therefore, monitoring blood Glu levels is crucial.66,67

Similar to Alzheimer's disease (AD), type 2 diabetes mellitus
(2 DM) is another widespread condition oen linked to obesity
and aging. In the U.S., approximately 24 million people exhibit
clinical symptoms of 2 DM.68,69 This condition is characterized
by elevated blood Glu levels due to increased hepatic Glu
production, reduced insulin production by pancreatic b-cells,
and insulin resistance, where target cells have a diminished
response to insulin as a result of down-regulated expression of
insulin receptors (IRs), IGF-1 receptors (IGF-1R), and insulin
receptor substrate (IRS) proteins.70 Several clinical studies have
found a connection between 2 DM and neurodegenerative
disorders, including memory decline. Longitudinal studies
have shown that Glu intolerance and impaired insulin secretion
are associated with a higher risk of developing dementia or
AD.70–72

Diabetes mellitus, being a condition caused by either
insufficient insulin or insulin resistance, falls under the eld of
endocrinology. Compared to non-diabetic individuals, people
with diabetes face a signicantly higher risk of experiencing
cardiovascular events, along with worse outcomes from
cardiovascular disease, including a notably higher mortality
rate.73 The American Heart Association even refers to diabetes
as “a cardiovascular disease”.74 This dual view of diabetes as
both an endocrine and systemic vascular disorder is supported
Nanoscale Adv., 2025, 7, 42–59 | 43
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Fig. 2 Common glucose-related diseases.
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by two key factors: (1) the heightened cardiovascular risk related
to even early, mild cases of diabetes, and (2) the importance of
not only managing blood sugar levels but also identifying and
addressing other cardiovascular risk factors to reducemorbidity
and mortality in affected patients.75

Diabetic kidney disease (DKD) is a leading cause of both
morbidity and mortality in individuals with diabetes mellitus
and the primary cause of end-stage renal disease globally.76 The
kidney's critical role in Glu homeostasis is now widely under-
stood. For instance, renal gluconeogenesis signicantly
contributes to overall Glu production in the postabsorptive
state. The kidney helps regulate Glu levels by ltering and
reabsorbing Glu. Typically, Glu ltered by the glomeruli is fully
reabsorbed, but in cases of hyperglycemia or reduced reab-
sorptive function, glucosuria can occur,77 as illustrated in Fig. 2.

Most current articles on Glu monitoring primarily concen-
trate on the medical applications of Glu measurement using
various sensors. In contrast, there is a scarcity of comprehensive
reviews that systematically explore the underlying principles of
Glu detection. This review is the rst to focus specically on CDs
for Glu detection, opening new avenues for a deeper under-
standing of this technology and its potential applications.
Fig. 3 Methods for synthesizing CDs: top-down versus bottom-up app

44 | Nanoscale Adv., 2025, 7, 42–59
3. Synthesis methods

Compared to other nanoparticles, CDs offer advantages in their
synthesis methods, with multiple options available some of
which are environmentally friendly30,78. They can be produced
through a “bottom-up” approach79,80 such as using small
organic molecules such as glucose81 and urea,82 or even bio-
logical materials such as biowaste,60 animal products,83,84 and
plant extracts,49 which chemically assemble into nano-
particles.85,86 Alternatively, a “top-down” method involves
breaking down larger pure carbon materials such as carbon
black,87 graphite oxide,88 carbon nanotubes,89 or graphite into
nanoparticles.90,91

The bottom-up method offers several important benets
over the top-down approach,92 including being more eco-
friendly93–95 and less time-consuming96 and enabling simple
adjustments to the surface state and composition of the
CDs.97–99 These benets make bottom-up methods more preva-
lent in the literature and contribute to CDs being an ideal
choice over other nanoparticle types. In this process, the
organic compound is dissolved in a solvent and heated until it
experiences dehydration and carbonization.100–102 This method
can be accomplished using different techniques, including
hydrothermal carbonization,103,104 microwaving,105,106

combustion,107–109 and pyrolysis.110 Each technique has its own
pros and cons regarding efficiency, time, cost, and energy
consumption, and they produce CDs of different sizes and
compositions,111,112 as summarized in Fig. 3.
3.1 Bottom up synthesis methods

The bottom-up approach involves hydrothermal carbonization,
solvothermal synthesis, microwaving, ultrasonic synthesis,
pyrolysis and combustion.

3.1.1 Hydrothermal and solvothermal synthesis of CDs.
Hydrothermal carbonization is widely used in scientic
research and is considered relatively simple and low-cost.113,114
roaches.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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It utilizes non-toxic starting materials to achieve controlled CD
formation, enabling straightforward adjustments to their
composition.115,116 This method requires a specially designed
reaction vessel capable of withstanding the high temperatures
necessary for carbonization while trapping emitted vapors to
raise the reaction pressure.117–119 Containing the vapors
enhances the efficiency of digesting organic materials, and the
sample can be heated longer without signicant evaporation
loss.120 CDs produced through this method typically exhibit
high photoluminescence quantum yields;121 however, draw-
backs include non-uniform particle sizes, impurities that are
difficult to remove, and possible variations in photo-
luminescence behavior among CDs within the same
sample.122,123 In addition to hydrothermal fabrication, the sol-
vothermal method for preparing CDs offers the benets of
being cost-effective and requiring simple equipment.124 Unlike
the hydrothermal process, where water is used as the solvent,
the solvothermal approach uses one or more solvents in
a sealed Teon-lined steel autoclave.125,126 The mixture of
solvent and carbon source undergoes a reaction under high
pressure and temperature conditions.127

3.1.2 Microwave-assisted synthesis of CDs. Microwaves,
a form of electromagnetic radiation, can serve as an alternative
heating method to ovens used in hydrothermal carbonization.
Similar vessels can be employed but made from nonmetallic
materials to enhance the digestion efficiency of organic mate-
rials.128,129 The main benet of microwaving is the strong
interaction between the carbon source and electromagnetic
radiation, which allows for fast and localized heating.130–132 This
approach is energy-efficient, eco-friendly, and generally regar-
ded as simpler than many other CD synthesis methods.53,133

Nevertheless, the resulting CDs may have a wide size distribu-
tion, and separating them from the solution can be chal-
lenging.134,135 As a result, CDs are frequently synthesized using
microwave-assisted techniques.

3.1.3 Ultrasonic synthesis of CDs. Ultrasonic treatment has
been recognized as an effective method for producing various
CDs, leading to numerous studies on its application for their
synthesis. In this process, carbon precursors, along with acids,
alkalis, and other oxidizing agents, are subjected to intense
ultrasound waves, causing the carbon particles to break down
into nanoscale particles. Continuous cavitation of the mole-
cules occurs during the process. The high energy of the ultra-
sonic waves eliminates the need for complex post-treatment
procedures, enabling the simple synthesis of small-sized
CDs.136,137 As a result, the ultrasonic synthesis method triggers
the reaction using the thermal effects of cavitation and ultra-
high-frequency vibrations. It offers unmatched benets,
including environmental friendliness, cost-effectiveness, strong
penetration, and consistent results.138 Therefore, high-
performance CDs can be produced by combining ultrasound
with other techniques.

3.1.4 Pyrolysis and combustion synthesis of CDs. Both
pyrolysis and combustion involve thermal decomposition
methods but differ in atmospheric conditions: pyrolysis occurs
in a low-oxygen or an oxygen-free environment, while combus-
tion requires oxygen.107,110,139,140 These techniques may require
© 2025 The Author(s). Published by the Royal Society of Chemistry
strong acids or bases to initiate the digestion of the carbon
precursor, making them less environmentally friendly.60,141 CDs
synthesized via pyrolysis tend to have relatively high photo-
luminescence QYs, but the process is time-consuming, requires
specic setups, and the CDs are difficult to separate from the
solution.142,143 Additionally, producing CDs through combus-
tion is regarded as one of the most efficient, low-cost, simple,
and rapid one-step methods, relying on the carbonization of
precursor molecules. Carbonization is a chemical process
where organic materials undergo extended pyrolysis in an inert
atmosphere, resulting in solid residues with a higher carbon
content.96

3.1.5 Microuidic synthesis. The concept of microuidics
was rst introduced by Manz in the 1990s.144 With advance-
ments in micromachining, microuidic technology has rapidly
evolved, making signicant strides in various elds. Compared
to traditional chemical synthesis methods, microuidic tech-
nology offers several distinct advantages.145 Microuidic
systems, known for their precise control over reaction condi-
tions, have attracted the attention of researchers for generating
nanomaterials. Previously, studies on quantum dots (QDs) were
mostly conducted in batch reactors. Although these reactors
were relatively simple, they struggled with uncontrollable
reactions and challenges in maintaining consistency across
different batches. In contrast, microuidic-based reactors
provide precise control over reaction conditions, such as
temperature, pressure, and concentration distribution.146–149

Most bottom-up synthesis methods for QDs involve two key
phases: nucleation and growth. These processes can be nely
tuned in microreactors to produce QDs with specic sizes,
morphologies, and compositions. Furthermore, due to the high
sealing efficiency of microreactors, the need for inert gas
protection typically required in batch production can oen be
eliminated in the microuidic synthesis of many QD types.150

Microuidic approaches to CDs generally enhance synthesis
efficiency, increase quantum yields, and have the potential for
large-scale production.
3.2 Top-down method

The top-down approach encompasses techniques such as arc
discharge, laser ablation, electrochemical methods, and
chemical oxidation.

The arc discharge method involves continuous electrical
discharge between the cathode and anode, which generates
high temperatures, gradually consuming the anode and form-
ing CDs.151 Since 2004, it has gained popularity as a quick
preparation method. However, CDs produced this way have
inconsistent particle sizes and uncontrollable morphology,
leading to the method being rarely used today.152,153 The laser
ablationmethod employs a high-energy laser as a light source to
irradiate carbon materials and produce CDs.154 This method
allowed for the specic functionalization of CD surfaces,
enhancing their uorescence properties.155 The chemical
oxidation method uses strong oxidizing agents to synthesize
CDs. The primary advantage of this method is its ability to
enhance the water solubility of CDs, and it remains a widely
Nanoscale Adv., 2025, 7, 42–59 | 45
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used technique for this purpose.156 The electrochemical method
uses graphite rods as the carbon source to produce CDs through
electrochemical treatment.157 In 2012, Shinde and Dhanraj
discovered that this method allows control over the size of CDs
by adjusting factors such as potential, electrolyte concentration,
and reaction temperature. This method is popular for its
simplicity, high yield, and production of uniformly sized
particles.158
4. Sensing mechanism

In theory, any uorescence variation such as changes in inten-
sity, anisotropy, wavelength, or lifetime associated with the
concentration of various analytes can serve as a basis for
sensors. This section provides a concise overview of these
sensing mechanisms.
4.1 Förster resonance energy transfer

FRET (Förster Resonance Energy Transfer) involves the non-
radiative transfer of energy between an excited donor and an
acceptor through long-range dipole–dipole interactions. In
1948, Theodor Förster introduced an equation that quanties
the efficiency of electronic excitation transfer between an energy
donor (D) and acceptor (A).159 CDs are frequently utilized as
donors. Currently, there are primarily two types of FRET-based
CD probes. The rst type involves the signicant overlap
between the emission spectrum of CDs and the absorption
spectrum of the target, allowing FRET to occur from CDs to
targets when they are at an appropriate distance. This interac-
tion leads to a decrease in the uorescence intensity of the CDs
or a shi in the emission wavelength toward either the blue or
red end of the spectrum. In the second scenario, FRET occurs
from CDs to the quencher, resulting in reduced uorescence
intensity of the CDs. However, when a target is present, the
distance between the CDs and the quencher increases, halting
FRET and thereby increasing the uorescence intensity of the
CDs. As illustrated in Fig. 4.
Fig. 4 A scheme describing FRET from the CDs to the quencher and ta

46 | Nanoscale Adv., 2025, 7, 42–59
4.2 Inner lter effect (IFE)

The uorescence intensity observed is proportional to the
intensity of the excitation light, and the quantum yield is
slightly lower than that seen in an innitely dilute solution. This
phenomenon is known as the IFE, which can result in a reduc-
tion of the excitation intensity at the observation point or
a decrease in the observed uorescence intensity due to
absorption.160

Currently, there are two primary types of IFE-based uores-
cent probes. The rst type occurs when the absorbance spec-
trum of the analyte signicantly overlaps with the excitation or
emission spectrum of CDs, thereby directly inducing the IFE.
The second type involves a situation where the absorption
spectrum does not align well with the CD spectrum; instead,
a component (A) is introduced to react with the analyte to form
a product. As illustrated in Fig. 5.
4.3 Photoinduced electron transfer (PET)

PET is a process involving the transfer of electrons between an
electron donor (D) and an electron acceptor (A). As illustrated in
Fig. 6, there are two forms of PET. When excited using light, the
electrons in a uorophore move from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO). If an acceptor is present with a HOMO energy
higher than that of the uorophore, electron transfer can occur
from the acceptor to the uorophore, a phenomenon known as
a-PET. The change in uorescence of the uorophore due to a-
PET can serve as a signal for detecting the acceptor or target, as
the presence of either reduces a-PET. The second form is called
b-PET, in which electron transfer takes place from the uo-
rophore to the acceptor because the uorophore's LUMO is
higher than that of the acceptor.161 A decrease in uorophore
uorescence indicates the presence of the acceptor, while an
increase in uorescence can signal the detection of a target that
binds to the acceptor, preventing it from accepting the excited
electron from the uorophore.
rget.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 A scheme showing the IFE from the CDs to the quencher and target.
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4.4 Static quenching mechanism

Static quenching occurs when a nonuorescent ground-state
complex is formed through the interaction between CDs and
a quencher. When this complex absorbs light, it quickly returns
to the ground state without emitting a photon.162 Static
quenching exhibits several characteristics: (1) the absorption
spectrum may change due to the formation of a ground-state
complex. (2) The uorescence may increase with temperature
because of the dissociation of the weakly bound quencher. (3)
The uorescence lifetimes of the CDs remain constant. Because
the static quenching mechanism can be easily conrmed, it is
frequently utilized for analyte detection.
5. Applications

CDs, owing to their remarkable properties such as exceptional
photoluminescence, low toxicity, abundant precursor sources,
easy surface functionalization, and excellent biocompatibility,
are promising zero-dimensional carbon-based nano-
materials.163,164 They are widely used in bioimaging to visualize
cells and tissues, providing a non-toxic alternative for
Fig. 6 A scheme showing PET from the CDs to the quencher and targe

© 2025 The Author(s). Published by the Royal Society of Chemistry
diagnosing diseases. CDs also show great potential in drug
delivery systems, where they can be functionalized to target
specic tissues, enhancing treatment precision. In biosensing,
CDs assist in detecting biomolecules such as glucose and cancer
markers, enabling early and accurate diagnoses. Additionally,
CDs play a role in cancer therapy through photodynamic and
photothermal treatments, helping to target and destroy cancer
cells. These unique characteristics make them suitable candi-
dates for use as Glu sensors. This review aims to examine
cutting-edge CD-based optical sensors and their sensing
capabilities.
5.1 Single probe sensing

In this section, we explore the use of single-probe sensors based
on CDs for precise Glu measurement in various samples. These
sensors are not only cost-effective but also exhibit low toxicity,
making them ideal for practical applications. The sensor system
typically consists of CDs or a combination of CDs with other
materials, designed to accurately detect and quantify Glu
concentrations. This approach leverages the unique properties
of CDs, such as strong photoluminescence and ease of surface
t.
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Fig. 7 A schematic illustration for the synthesis of GCDs and detection of Glu with permission. Copyright 2021, Elsevier.167
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modication, to enhance sensitivity and reliability in Glu
sensing.

Chen et al. developed165 a sensitive and selective Glu sensor
using thiol-functionalized CDs (S-CDs). Upon exposure to H2O2,
the S-CDs were converted into non-luminous assemblies due to
the target-initiated oxidation of –SH groups into –S–S– bonds.
Since Glu can be broken down into H2O2 by Glu oxidase, the S-
CDs were used to detect Glu with a low detection limit (LOD) of
0.03 mM, a dynamic range of 0.1–50 mM, and high selectivity for
distinguishing Glu from other sugars.

In this study, a molecularly imprinted electrochemical
sensor (MIECS) was developed for Glu detection using a glassy
carbon electrode (GCE) modied with hollow nickel nano-
spheres (HNiNSs), CDs, and chitosan (CS). Under optimal
conditions, the sensor exhibited two wide linear ranges for Glu
concentrations: 0.03–10 mM and 20–300 mM, with a LOD of
4.6 nM. The sensor was successfully applied to detect Glu in
human serum and fermentation samples.166

Gan et al. developed167 Au/CDs(GCDs) for Glu detection using
the surface-enhanced Raman scattering (SERS) method, which
exhibited enhanced peroxidase-like activity. Based on this
property, GCD composites were further utilized to detect Glu,
achieving a LOD as low as 5 × 10−7 M, with a working range of
0 to 50 mM, as shown in Fig. 7.

Mutuyimana et al. developed168 orange-red emissive CDs
whose FL is signicantly quenched by hydrogen peroxide. Since
the oxidation of Glu by Glu oxidase (GOx) generates H2O2, which
quenches the FL through static quenching, a uorometric
method was designed for Glu detection. Under optimal condi-
tions, the method exhibited a linear response for Glu concen-
trations ranging from 0.5 to 100 mM, with a LOD of 0.33 mM.

Doping CDs with different metal atoms enhances their
photophysical properties due to surface passivation. Metal-
doped CDs not only modify the photophysical behavior of the
CDs but also give them multifunctional characteristics, even
48 | Nanoscale Adv., 2025, 7, 42–59
though the exact mechanism behind their photoluminescence
remains unclear. For example, the synthesized Cu-doped CDs
demonstrated peroxidase-like activity that surpassed that of
horseradish peroxidase. As a result, the Cu-CD-based CL
sensing method was effectively used for sensitive Glu detection,
with a low LOD of 0.32 mM and a linear range of 1–48 mM.169

In another study, bifunctional Ag-CDs were synthesized, and
a simple, sensitive dual-mode sensing platform utilizing color-
imetric and SERS techniques was developed for detecting Glu in
body uids. This method took advantage of the Ag-CDs' strong
peroxidase-like and SERS activities. The colorimetric detection
of Glu showed a linear range of 50–800 mM with a LOD of 11.30
mM, while the SERS mode exhibited a linear range of 10–800 mM
with a LOD of 3.54 mM.170

In this section, we examine in greater detail the most
commonly used CDs for visual Glu sensing platforms, as
summarized in Table 1.
5.2 Ratiometric sensor

A single probe sensor can be inuenced by external factors such
as the intensity of excitation light, environmental interference,
and probe concentration. These factors may lead to uctuations
in FL intensity, compromising the accuracy and reliability of
measurements.22 To address these challenges, ratiometric
uorescent probes have been designed, offering self-calibration
through two emission peaks that respond differently to the
target analyte. Additionally, ratiometric uorescent probes
allow for visual detection by showing color changes under UV
light, enhancing both the convenience and efficiency of the
analysis process.194,195 Developing an innovative ratiometric
sensing method holds great promise and importance for the
easy detection of Glu.

Cho et al. prepared196 a ratiometric FL Glu probe based on
CDs, where the signal originated from blue CDs and green
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Visual detection of Glu based on CDs with permission. Copyright 2024, Elsevier.204

Table 1 List of selected CDs, probes, real samples, QY, methods, dynamic ranges, and LOD values

Color Sample QY% Method Dynamic range LOD Ref.

Green CDs Serum 2.74 FL enhancement 0.2–6 mM 0.12 mM 171
Blue NCDs Urine — Electrochemical 1 × 10−5 to 5 × 10−3 M 3.8 × 10−7 172
Green rGO-PBA — — FL quenching 0.01–0.35 M — 173
Blue Pd-CDs Fruit juice — Colorimetric 0–100 mM 0.2 mM 174
Blue CD/V2O5 Serum — Colorimetric 0.7–300 mM 0.7 mM 175
Green CDs Serum 71.7 FL quenching 10–240 mM 0.92 mM 176
Blue CDs Serum 58.7 FL quenching 0.2–20 mM 0.15 mM 177
CDs — — Colorimetric 0–500 mM 87.3 nM 178
Blue Gd-CDs Serum — FL quenching 0.6–40.0 mM 0.6 mM 179
Blue CDs Serum — FL quenching 1–30 mM 1 mM 180
Blue CDs/MnO2 Serum 21.63 FL enhancement 2–200 mM 0.83 mM 181
CDs Serum — Colorimetric 0.010–0.40 mM 2 mM 182
Blue CDs/AgNPs Serum — FL enhancement 2–100 mM 1.39 mM 183
Blue CDs Serum — FL quenching 0.5–7 mM 0.058 mM 184
SCDs Saliva 22.63 FL quenching 1–250 mM 0.57 mM 185
Green CDs Milk — FL quenching 10–100 mM 0.686 mM 186
Blue CDs Glial cells 9.91 FL quenching 0.3–15 mM 0.1 mM 187
CDs Serum — Electrochemical 1–12 mM 0.25 mM 188
Blue CDs Serum — FL quenching 9–900 mM 1.5 mM 189
Blue CDs Serum 9.06 FL quenching 0–30 mM — 190
Blue CDs Urine, serum — FL enhancement 20–150 mM 3.9 mM 191
Blue CDs Serum — FL quenching 5–750 mM 0.5 mM 192
CDs Serum — Electrochemical 0.5–40 mM, 50–600 mM 0.09 mM 193

© 2025 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2025, 7, 42–59 | 49
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rhodamine 6G as the reference signal. A change in probe FL
color, from blue to green, was observed as the Glu concentration
increased. The probe showed a linear range of 0.1–500 mM with
a LOD of 0.04 mM. A stable solid-state probe using a hydrogel lm
exhibited a similar ratiometric FL color change and sensitivity,
with a linear range of 0.5–500 mM and an LOD of 0.08 mM.

In this research, a new Fe-doped CD ratiometric probe was
fabricated. This probe consisted of blue doped CDs and 2,3-
diaminophenazine (DAP), produced by the oxidation of o-phe-
nylenediamine (OPD) by Fe-CDs in the presence of H2O2, which
emitted a yellow signal. The responses can be used to accurately
quantify H2O2 and Glu in the ranges of 0–133 mM and 0–300 mM,
with LOD of 0.47 mM and 2.5 mM, respectively.197

Wen-Sheng and colleagues developed CDs functionalized with
boronic acid. This ratiometric probe, which relies on the boronic
acid groups on the CDs' surface, interacts with the cis-diol groups
of Glu to form a coordination compound, leading to FL
quenching of the C-dots caused by their aggregation. Moreover,
the aggregation of the C-dots simultaneously enhanced reso-
nance light scattering (RLS) due to the presence of two pairs of
cis-diol groups. As a result, a hybrid ratiometric chemosensor for
Glu was designed. Importantly, the inert surface of the CDs
allows this probe to measure Glu over a dynamic range of 10 to
2000 mM, with a LOD as low as 10 mM.198

A novel ratiometric FL sensor was developed using carbon
quantum dots (CQDs) and o-diaminobenzene (ODB). The
sensor was used to detect various concentrations of Glu stan-
dard solutions (as shown in Fig. 8). As the Glu concentration
increased, the FL peak of CQDs at 446 nm gradually decreased,
Fig. 9 The ratiometric FL spectra for detecting Glu with permission. Co

50 | Nanoscale Adv., 2025, 7, 42–59
while the peak of oxidized ODB (oxODB) at 550 nm steadily
increased. To quantify the relationship between the FL changes
of CQDs and oxODB and Glu concentration, a linear t was
applied to the FL ratio of oxODB to CQDs against the Glu
concentration. The FL ratio demonstrated a strong linear
correlation with Glu concentrations in the range of 10 to 200
mM, with a LOD of 1.15 mM.199

A novel uorescent probe for Glu detection was developed
using a platform combining NCDs and CdTe quantum dots
(CdTe QDs). This ratiometric probe, based on blue CDs and
yellow CdTe QDs, was successfully applied for Glu detection
under optimized experimental conditions. The probe demon-
strated a wide linear range of 26–900 mM with a LOD of
7.86 mM.200

5.3 Visual detection

Colorimetric sensing is a favored approach for analytical
chemists, as it enables swi on-site detection through visible
color changes.201 Visual detection has long captivated scholars,
and the development of portable optical sensors for qualitative
and semi-quantitative analysis of various substances has
further drawn attention from researchers in many disciplines.
This method allows analytes to be identied without relying on
complex external instruments.30 Therefore, creating sensitive
and selective methods for visually detecting Glu in various
samples is highly important.

In this study, a visual detection method for Glu was devel-
oped. Glu was specically broken down by Glu oxidase (a
natural enzyme), generating H2O2, which was then catalyzed by
pyright 2021, MDPI.199

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 List of selected CDs, probes, real samples, QY, methods, dynamic ranges, and LOD values

Color Sample QY% Method Dynamic range LOD Ref.

Green CDs Human plasma 29.03 Solution assay 1–10 ppm 2.53 ppm (13.98 mM) 205
Blue CDs Serum and urine 11 Paper platform 10−6 to 10−5 M — 206
Blue CDs Saliva — Paper platform 10.0 × 10−6, 40.0 × 10−6 M 2.60 × 10−6 M 207
Green BCNP Serum 46 Solution assay 32 mM to 2 mM 8 mM 208
Blue Fe-CDs Serum 19.11 Solution assay — — 209
Green R-CDs/B2O3 Serum 6.70 Portable test gel 0–20 mM — 210
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CDs (FeMn/N-CDs, a nanozyme) to accelerate the conversion of
o-phenylenediamine (OPD, colorless) into 2,3-dia-
minophenazine (DAP, yellow). As a result, the absorbance at
450 nm increased with higher Glu concentrations, causing
a color change from colorless to yellow. Simultaneously, the FL
of FeMn/N-CDs at 450 nm gradually decreased, while the FL of
DAP at 550 nm increased, enabling dual-mode detection via
both ratiometric FL and colorimetry. The portable swabs
created for this purpose had dynamic ranges of 1–600 mM (LOD
= 0.37 mM) for colorimetric detection and 4–1200 mM (LOD =

1.19 mM) for uorometric detection,202 as shown in Fig. 9.
Bandi et al. developed203 Fe-doped CDs(FeCDs) with high

peroxidase (POD)-like activity, which were immobilized on
cellulose nanobrils (CNFs) to create a composite paper. The
POD activity of this paper was assessed through the oxidation of
TMB and applied for the colorimetric detection of H2O2 and
Glu. CNFs served as a support for the nanozyme, providing
reusability, while also adsorbing the chromogen during the
reaction, leading to a visible color change, making it suitable as
a test strip for portable, on-site detection. A smartphone was
used to monitor the color change, simplifying and reducing the
cost of the detection process. This method offered linear
detection ranges of 10–70 mM and a LOD of 1.73 mM for Glu.

In this study, N-CDs with excellent peroxidase-like activity
were synthesized. These N-CDs catalyzed the oxidation of the
chromogenic substrate TMB in the presence of H2O2, producing
a blue oxidized product (TMBox) with an absorption peak at
654 nm. A smartphone-based colorimetric method was devel-
oped to quantitatively detect TMBox, recording the 1/L values (L
representing lightness in the HSL color space). Since H2O2 is
a byproduct of Glu oxidation in the presence of Glu oxidase
(GOx), this method was adapted for sensitive and selective Glu
detection, with a LOD of 1.09 mM.204

In this section, we examine in greater detail the most
commonly used CDs for visual Glu sensing platforms, as
summarized in Table 2.
6. Conclusions and prospects

CDs are gaining signicant attention due to their exceptional
properties, non-toxic nature, availability, and simple synthesis
process. Since their discovery, extensive research has been
conducted on CDs, with the current focus shiing towards
sustainable development, a critical necessity for this century.
This review primarily highlights the latest advancements in the
use of CDs for the detection of Glu. To advance this eld, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
have compiled and emphasized reliable synthetic methods for
CDs while highlighting key accomplishments in various sensing
techniques that utilize CDs for Glu detection. Despite signi-
cant progress, several limitations and challenges still require
attention.

Despite the progress made in CD research, many challenges
remain. Predicting the photophysical behavior and selectivity of
CDs for specic targets, such as Glu, is still difficult, as is
optimizing CD synthesis. Additionally, inconsistencies in CD
properties and selectivity, even when synthesized from the same
source, highlight the need for further investigation. The
enhanced efficiencies observed in Glu detection also require
more in-depth conceptual analysis.

Moreover, the practical use of CDs remains largely conned
to laboratory settings. There is an urgent need to advance this
technology for real-time, on-site Glu detection and to develop
faster, simpler detection methods for broader applications.
Extensive research is essential to overcome these challenges
and fully realize the potential of CDs in practical scenarios.
Additionally, producing CDs in large yields is still of interest
and in demand for real industrial applications, making further
research on this important aspect necessary.

In conclusion, CD-based uorescent probes show signicant
promise for Glu detection, but further research is needed to
rene the design of CDs to improve their efficiency in real-world
applications. We hope that this review will inspire greater
interest in the development and optimization of CDs, ultimately
driving their widespread use in Glu detection in the near future.
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