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iption: the power of natural
organic materials in healthcare

João V. Paulin

Natural organic materials (NM), which are biodegradable, biocompatible, renewable, and electroactive,

offer a sustainable solution to the environmental impact of technological progress. This perspective

emphasizes NM's potential to reduce environmental impact and create sustainable solutions for medical

devices and disposable products. Nonetheless, challenges remain in scaling up production and

addressing durability. Integrating natural systems into technological processes can help achieve a more

eco-friendly and balanced future.
Sustainability spotlight

Technological progress needs to be aligned with sustainable practices as it can have a negative impact on the environment. Using natural materials can reduce
plastic pollution, develop biodegradable medical electronics to improve patient outcomes and reduce healthcare costs, as well as enable the development of
energy-harvesting and energy-storage devices that can power implantable and wearable health devices. This approach is, therefore, related to SDG 3 (Good
Health and Well-being), SDG 7 (Affordable and Clean Energy), SDG 12 (Responsible Consumption and Production) and SDG 14 (Life Below Water).
Introduction

In today's world, technological progress and environmental
degradation can be viewed as two sides of the same coin. As
much as the former is celebrated, we cannot close our eyes to
the warning signs of the adverse impact of human-driven
activities on the environment.1,2

From smartphones and smart homes to self-driving cars and
articial intelligence, the fast pace at which electronic tech-
nology is evolving is shaping our lives and how we approach
healthcare. Take, for example, the recent coronavirus disease
(COVID-19) outbreak. Biosensors, in particular, have shown
immense promise for real-time health monitoring and disease
control.3 Nonetheless, their uninterrupted use further increased
the amount of single-use medical items and non-biodegradable
plastics.2,4,5 As the demand for healthcare electronics grows, its
development must be aligned with sustainable practices to
mitigate the adverse impact on the environment.
Nature and healthcare

In order to achieve sustainable healthcare technology, Nature
itself can have a solution. Through the years of evolution and
adaptations, Nature has provided us with an extensive range of
organic materials derived from animals, plants, fungi, and
bacteria. These natural organic materials (NM) possess
l of Sciences, Department of Physics and
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mechanical, physical, and chemical properties that align with
current healthcare needs.6–8 They are also biologically active,
biocompatible, biodegradable, renewable, and cost-effective.6–8

One signicant advantage of NM is its biodegradability,
which offers a low carbon footprint solution to address the
problem of plastic pollution and replace conventional fossil-
fuel-based plastics.9–11 The feasibility of such a substitution is
becoming increasingly evident to the extent that the US
government has set an admirable goal of ensuring that 90% of
all plastic will be from a bio-based origin within the next two
decades.12 For example, natural polymers such as cellulose
(found in the cell walls of plants) and chitin (found in the
exoskeletons of crustaceans and insects) provide solutions to
combat plastic pollution due to their biodegradability and
impressive mechanical properties.8,13 Cellulose, for instance,
exhibits exceptional strength and durability comparable to
traditional plastics, along with resilience to weather and
chemicals.14,15 Similarly, chitin demonstrates biocompatibility,
biodegradability, and remarkable resistance to microbial
degradation,9,16 making it valuable in medical and environ-
mental applications.

The NM used in bioplastics can be sourced from renewable
plant biomass and natural sources, promoting environmental
sustainability and reducing dependence on non-renewable
resources.17,18 Bioplastics can also be designed to be biode-
gradable or compostable, facilitating reuse through recycling or
organic waste management systems.10,11,19 Ongoing advance-
ments in extraction techniques aim to enhance efficiency and
minimize environmental impact.10,17 Enhancing their
© 2024 The Author(s). Published by the Royal Society of Chemistry
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mechanical properties and extending their lifespan through
formulation optimization is also a research theme.17,18 These
attributes underscore their role as a sustainable alternative to
conventional plastics. It is worth noting that, while more envi-
ronmentally friendly than traditional petroleum-based plastics,
bioplastics can still contribute to undesirable land use and
greenhouse gas emissions.9

Another interesting consequence of using nature in health-
care is developing new medicines from plants and microor-
ganisms, the so-called bioprospecting. A good example is Taxol,
a plant-based chemotherapeutic agent obtained from yew trees.
U.S. Food and Drug Administration (FDA) approved this
compound for treating different types of cancers because it
inhibits cell proliferation.20

However, Nature is capable of much more. The core of the
earliest evidence from humankind implants, back to the
Neolithic period, was based on ivory, nacre, various types of
animal tissues, silk, and wood. Nowadays, silk bers are re-
emerging as promising candidates for use in sutures, liga-
ments, and tendons, as they are exible and incredibly strong.8

Silk offers a slower degradation rate than absorbable ber
sutures like polyglycolic acid (PGA). While PGA dissolves in
about 60–90 days, silk can take up to two years to completely
degrade in vivo,21,22 providing prolonged support for wound
healing and causing less inammatory response. In ligament
and tendon repair, silk supports cell attachment and prolifer-
ation, promoting better healing and integration with native
tissues than synthetic materials like polyethylene tere-
phthalate.8,21,23 However, the scalability of silk production and
its standardization for medical use still require further research
and development.22

To add on, natural rubber latex (NRL) has shown multiple
applications in enhancing tissue repair in critical bone defects
and chronic wounds, as well as enabling a sustained and
controlled local drug release.24,25 As an example, the antioxidant
activity of curcumin has been preserved aer incorporation into
NRL, providing anti-aging benets with promising applications
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in the cosmetics industry.26 Additionally, the treatment of
inammatory diseases and candida spp. infected burn wounds
have been achieved by combining NRL with synthetic drugs like
ibuprofen,27 organic materials such as silver sulfadiazine,28 and
composites made with natural resins (red propolis) andmetallic
copper ions.29

In reality, NM is witnessing an enormous blossoming in
healthcare in terms of exploration and applications. These
materials are being considered for various healthcare settings,
such as biomedical implants, bioprosthetics, bioadhesives,
sealants, cardiovascular therapy, cosmetics, surgical sutures,
sensors, tissue gras and engineering, and wound healing
(Fig. 1).8 Therefore, the economic impact of these materials in
the biomedical eld can be impressive.

The development of implantable sensors and diagnostic
tools is sparking a notable sense of excitement due to the
potential to provoke a new era in healthcare through unprece-
dented precision and efficacy.6,8,30 Although these biodevices are
electronic systems designed to interact with biological and
living tissue safely, they are generally built upon non-renewable
plastics and metal sources, which may lead to inammation,
rejection, or even toxic effects in the body. By contrast, imple-
menting the inherent biocompatibility of NM into the system
would make them less likely to cause any adverse reaction.6,8

Indeed, electronic devices based on hyaluronic acid (HA)
showed no cell cytotoxic response,31 in contrast to poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS),
a well-known biocompatible synthetic polymer.32 In this case,
uorescence-activated cell sorting revealed that the PEDOT:PSS
device can have a damaged cell ratio higher than 41%, which is
signicantly higher than the HA-based device with 5.7% cell
damage.31

Similarly, the ability of NM to naturally degrade over time
and be metabolized by the body can improve patient outcomes
by reducing the need to remove the implanted devices, thus
avoiding potential surgical complications.6,8,30 Also, reduced
healthcare costs would be expected since there will be no need
for additional surgeries or treatments. Consequently, such
medical electronics could be more accessible to low-income
communities, improving their quality of life.

NM also possesses electrical, optical, and magnetically active
features essential for developing high-performance and accu-
rate biodevices to better interact with living tissue.30,33 These
devices couldmonitor the patient's health and provide real-time
data, enabling the detection and treatment of complications at
an early stage.

Another exciting area for health electronics relies on energy-
harvesting devices that can convert body heat, biouids, and
human-body motions into electricity.1,6,34,35 These systems
would have the efficacy to power implantable and wearable
health devices without the need for batteries or constant
charging. As an emerging demonstration, a exible and trans-
parent triboelectric nanogenerator capable of harvesting energy
from water, wind, and human motion was developed using
silver nanowires and a cellulose-based material.35 Combining
the above characteristics with the renewability of NM can assist
in reducing the carbon footprint associated with resource
RSC Sustainability, 2024, 2, 2190–2198 | 2191

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4su00219a


Fig. 1 Typical healthcare applications of a few natural organic materials.
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extraction (by minimizing the use of toxic chemicals and
pollutants) and use.
Challenges and opportunities

There are several benets to using NM, but there are also
challenges associated with their technological development.
For instance, NM's performance and durability may limit their
use in long-term applications compared to traditional inorganic
materials. Additionally, the harsh conditions of standard nano
and microfabrication techniques need to be adapted to NM's
so and gentle traits to implement them into the devices.36

The main challenge is producing NM on a large scale, which
may require specialized equipment or expertise to separate it
from its natural source and remove any impurities or contam-
inants.7 These factors can increase production costs and create
additional obstacles to commercialization and widespread
adoption. Furthermore, large-scale production of NM can have
a signicant environmental impact, particularly if energy-
intensive processes are used. Reducing this impact will
require innovative methods and more sustainable practices.37

Noteworthily, adding nancial value to what is typically seen
as waste from the agricultural and food industries can be
a viable possibility to alleviate such a rise in cost.7,38 This means
that the “waste” products such as corn stover, sugarcane
bagasse, coffee grounds, and fruit peels can be processed to
isolate carbon-rich material and natural extracts with all the
above-mentioned properties. In addition, this approach has the
advantage of reducing environmental pollution by avoiding the
burning or disposing of such products in unplanned landlls,
thereby lowering the carbon footprint of the production
process.
2192 | RSC Sustainability, 2024, 2, 2190–2198
The advances in chemistry and materials science also offer
a promising alternative to develop materials that have not only
the unique properties of the NM but also the chemical exibility
to tailor their properties to any specic needs.7,33 Thus, greater
versatility and customization in material design can improve
performance and efficiency. Additionally, adopting a synthetic
approach can assist in mitigating ethical concerns associated
with animal-based materials by avoiding harmful and exploit-
ative practices.7

The use of NM in healthcare is a developing concept with
great potential to revolutionize the eld, but it's not a one-size-
ts-all solution. As research in this area advances, input from
scientists, engineers, and healthcare professionals will lead to
innovative nature-based biodevices with a real impact on
patient outcomes. Whether or not to use NM will depend on the
specic application, environmental impact, and economic
feasibility. While inorganic materials have been viewed as the
best option for their superior durability, we must also consider
the environmental impact of their production and disposal.2

NM, on the other side, offers a sustainable alternative to reduce
the strain on non-renewable resources and promote a healthier
ecosystem. However, it is crucial to manage the production of
NM to keep costs feasible and minimize environmental impact,
including reducing carbon emissions through energy-efficient
methods.37

Combining the best of these two worlds could further posi-
tively impact healthcare by maximizing its advantages. This
connection can result in a medical setting with enhanced
durability, cost-effectiveness, and biodegradability while still
addressing the medical needs of biocompatibility and
mechanical soness that inorganic materials do not match. J. A.
Rogers's group showed a good representation of a direct couple
© 2024 The Author(s). Published by the Royal Society of Chemistry
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of the brain tissue and rigid and inexible metallic electrodes
using NM. They demonstrated that silk (from Bombyx mori
silkworms cocoons) is dissolved and resorbed by the biological
tissue, allowing a spontaneous and conformal wrapping process
of the ultrathin electronics at the biotic/abiotic interface.39

Accordingly, the mechanical mismatch of this interface is
reduced without losing the implanted electrode performance.

Eumelanin in focus

Eumelanin is a key natural pigment found throughout nature.
In humans, it is present in the skin, hair and eyes, as well as
several internal regions of the body, like the locus coeruleus and
substantia nigra regions of the brain, inner ear (cochlea) and
melanoma cells.7,40 Eumelanin draws attention not only for its
biological role in photochemical reactions, antioxidant protec-
tion, and neurological disorders but also for its unique prop-
erties and applications in healthcare and biotechnology.7

As part of the broader exploration into the use of natural
organic materials in medical technology, eumelanin presents
intriguing characteristics such as biocompatibility,41,42 biode-
gradability,43,44 and photoprotection,7,40 which offer new
avenues for developing sustainable and biodegradable medical
settings. Indeed, in the medical realm, eumelanin has already
been explored as thermo- and/or photostabilizers,45–47

bioremediation,48–50 matrix for bactericidal systems,51

controlled drug delivery,52,53 photothermal therapeutic
agent,54–56 and reduced inammation.57,58

Eumelanin also showed photoconversion59 and energy
storage capabilities.60–63 For instance, using an eumelanin
anode (0.6 g of active material) along with a manganese oxide
cathode could sustain 5 mW of power for 20 hours.61 Mean-
while, an eumelanin cathode (0.6 g of active material) with
a sodium-titanium phosphate anode generated 18 mW of power
for 16 hours.60 These power outputs are sufficient to satisfy the
power needs of several current medical devices.64 Additionally,
eumelanin systems exhibit stable specic capacities (over
60 mA h g−1) aer 500 cycles, with coulombic efficiencies
maintained above 99.2%.61 In supercapacitor conguration,
eumelanin-based electrodes also show coulombic efficiencies
close to 100% even aer 5000 cycles.59,65 Thus, these systems can
be rechargeable. Besides, active electrode material in these
congurations ts the standard sizes typically used in wireless
ingestible devices.64

NM has an intrinsic ability to generate electrical charges, but
it has been notoriously hard to obtain electrically conductive
variants over the years. Unlike solid-state electronics, where
electron and hole transfer are common, most biological activity
is driven by cation and anion uidic motions.66 This funda-
mental difference creates challenges in selecting suitable
materials for biotic–abiotic interfaces. Here, eumelanin can be
a good material candidate, as it shows electroactivity7,67–69 with
the ability to transduce ionic signals into electronic ones.70–72

Aligning eumelanin's processability into self-healing73 and
exible substrates62,72 with the aforementioned feature makes it
a versatile material for the fabrication of advanced wound
dressing systems. Indeed, eumelanin derivatives have been
© 2024 The Author(s). Published by the Royal Society of Chemistry
tested as pH sensors aer contact with human plasma72 and in
bacterial cultures74 without compromising their effectiveness.

Not only can eumelanin be integrated into bioelectronic
systems, but it can also play an active role in the wound-healing
process itself.75–77 Eumelanin is known for its antioxidant,
antibacterial, and tissue-regeneration properties, offering
signicant potential for improving wound treatment outcomes.
By incorporating eumelanin into formulations for dressings, it
is possible to harness its properties to protect tissues against
oxidative stress, prevent infections, and modulate the inam-
matory response. Also, eumelanin can promote tissue regener-
ation, thus accelerating the healing process. The possibility of
developing eumelanin-based drug delivery systems also pres-
ents an exciting opportunity to deliver therapeutic agents
directly to the wound site, providing targeted and effective
treatment. This innovative approach holds the potential to
signicantly enhance wound care outcomes, offering a prom-
ising solution to the ongoing challenge of wound healing.

Given eumelanin's hydration-based conductive
properties,68,78–80 it could also be integrated into wearable tran-
sient to assess skin hydration, monitoring human respiration
patterns and speech recognition by tracking alterations in water
molecules concentration through air exhalation.81,82

Despite its numerous advantages, eumelanin is constrained
by challenges that should not be overlooked. The production
process can be complex and time-consuming and is not yet fully
optimized for large-scale industrial production.7,83 Costly
extraction and purication procedures further restrict its
viability in commercial sectors. Additionally, scalability issues
persist, with current manufacturing techniques needing
renement to ensure yield and consistency. Nonetheless,
promising cost-effective methodologies are emerging as
researchers are exploring innovative methods to overcome these
obstacles and enhance the feasibility of eumelanin for broader
industrial use.84,85

Moreover, natural variations in eumelanin sources
contribute to inconsistencies in quality and properties,7,80

making it difficult to produce reliable, cost-effective product
development. Potential solutions lie in in vitro synthesis,
promising controlled and consistent production conditions.

Furthermore, achieving precise structural control during
eumelanin synthesis remains a signicant challenge. Structural
integrity dictates its physical and chemical properties,
including electrical conductivity and optical characteristics,
which depend heavily on its molecular arrangement.63,86–88

Advances in chemistry and material science are being explored
to manipulate eumelanin's molecular structure,89–93 leading to
predictable properties essential for any specic application.
Continued research and development efforts are imperative to
make eumelanin viable for various commercial industries.

Conclusion

With the science community embracing different perspectives
and new and innovative approaches in healthcare, the promises
to uncover opportunities for growth and success are limitless. A
holistic approach is essential for comprehending the positive
RSC Sustainability, 2024, 2, 2190–2198 | 2193
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effects of NM that could emerge on the environment, economy,
and social spheres. As always, there are multiple solutions to
this problem, and considering NM is just one of them. Never-
theless, the outlined approach is not only beautiful but also
incredibly effective. By working together to put the power of
Nature to good use, a better world for ourselves and future
generations can be mastered.
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52 M. Araújo, R. Viveiros, A. Philippart, M. Miola, S. Doumett,
G. Baldi, J. Perez, A. R. Boccaccini, A. Aguiar-Ricardo and
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