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Thermodynamics Description of Startup Flow of Soft
Particles Glasses

Nazanin Sadeghi,a Hrishikesh Pable,a and Fardin Khabaz∗a,b

Particle dynamics simulations are used to study the startup flow of jammed soft particle suspensions
in shear flow from a thermodynamic perspective. This thermodynamic framework is established using
the concept of the two-body excess entropy extracted from the transient pair distribution function
and elastic energy of the suspension as a function of strain at different shear rates and suspension
volume fractions. Although the evolution of the elastic energy in these soft particle glasses closely
mimics the stress-strain behavior at different shear rates and volume fractions, there are several
differences corresponding to their overshoots in terms of the broadness and location of the peaks.
The transient excess entropy shows an anisotropic behavior due to the anisotropic distribution of
contacts and suspensions at all volume fractions shows general behavior: the excess entropy at high
shear rates increases as a function of the strain and attains a steady state. On the other hand,
it is nearly constant in the quasi-static regime, where the stress response is close to the dynamic
yield stress. Using the transient elastic energy and excess entropy, a transient temperature is defined
to establish a relationship between thermodynamics and the static yield stress data. This transient
temperature increases with the strain and then diverges at strains close to the static yield point at
high shear rates.

1 Introduction
Yield stress fluids, such as slurries, pastes, and certain food prod-
ucts (like ketchup and mayonnaise), and geological materials,
such as lava flows, are a class of non-Newtonian fluids that ex-
hibit solid-like response at rest and flow when the applied stress
or force, exceeds a critical value known as dynamic yield stress
σy.1–5 A particular type of these fluids categorized as soft par-
ticle glasses (SPGs) are suspensions composed of soft particles
suspended in Newtonian fluids and are jammed in disorder phase
at volume fractions above the random close packing φrcp = 0.64
of equivalent hard spheres.3,6–8 These soft particles can be in the
form of swollen microgels suspended in water, emulsions, star
polymers with many arms, and block copolymers, and can main-
tain disordered microstructure above volume fraction of φrcp.1,9

a School of Polymer Science and Polymer Engineering, The University of Akron, The
United States, OH 44235; Tel: 330 972-5410; E-mail: fkhabaz@uakron.edu.
b Department of Chemical, Biomolecular, and Corrosion Engineering, The University of
Akron, The United States, OH 44235.
† Electronic supplementary information (ESI) available:[Elastic energy as a function
of strain on linear scales, Strain dependence of first and second normal stresses and
osmotic pressure, Fit parameters for SE − γ̇ curves, Flow curve, Two-dimensional
pair distribution function, Expansion of pair distribution function based on spherical
harmonics at high and low shear rates, Derivative of excess entropy as a function of
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In this regime, each particle is surrounded by a strong cage
formed by neighboring particles at contact; the strength of the
cage scales with the contact modulus of the particles and is much
stronger than thermal energy.3 Thus, these suspensions are ather-
mal and show weak elastic solid behavior at rest and low stresses.
At stresses larger than the dynamic yield threshold, σy, they flow
according to the Herschel-Bulkley (HB) equation σ = σy + kγ̇n,
where γ̇ is the shear rate, k is the consistency index, and n is the
HB exponent which is close to 0.5.3,10–12

Prior studies in this area have shown that interparticle contact
and lubrication forces govern the shear rheology of SPGs.3,7,13–19

The viscoelastic properties of SPGs are controlled by particle
properties such as softness, their volume fractions, and macro-
scopic parameters such as deformation rate, and these macro-
scopic rheological properties are correlated with the micrody-
namics of individual soft particles in flow.7 The shear-induced
dynamics of suspensions in these systems show two distinct flow
regimes:7,20 (1) the dynamics are dictated by the transport of mo-
bility between domains formed by the mobile and immobile par-
ticles, or avalanches, which have also been reported in shear sim-
ulations of two-dimensional jammed suspensions21,22 and gran-
ular materials.23,24 The stress response is nearly constant in this
quasi-static regime, which covers several orders of magnitude in
shear rate, and corresponds to the dynamic yield stress,σy, which
is the minimum stress required to keep SPGs flowing. (2) Particles
show very localized dynamics at high shear rates, which gives rise
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to the appearance of a power-law regime in the flow curve. The
key observation is that a unique dimensionless number γ̇ηs/G0,
where ηs is the viscosity of solvent and G0 is the low-frequency
modulus of SPGs, separates these two regimes of flow.

Apart from the steady state flow behavior of soft glasses, under-
standing the static yield behavior, which corresponds to the stress
required to flow the suspensions from rest and is highlighted with
an overshoot in shear stress at a given rate, is crucial since con-
trolling the startup flow response can avoid pressure overshoot
and subsequent damage to the processing tools in manufacturing
these materials.19,25 In addition, the transient response of soft
glasses reveals key physical mechanisms of their complex rheol-
ogy. Statistical physics links the yield behavior of thermally an-
nealed amorphous materials to phase transitions.26 Depending
on the annealing degree of structure at rest, brittle or ductile
yielding can be observed. In this regard, the fluidity model as-
sociates stress overshoots with shear band formation near mov-
ing walls due to nonlocal effects.27 Stress overshoots follow
power laws with different exponents at low and high shear rates.
Theoretical approaches like shear-transformation-zone theory,28,
mode coupling theory,29 elastically collective nonlinear Langevin
equation theory,30 molecular dynamics simulations,31,32 and mi-
cromechanical models18,33 emphasize nonaffine deformations in
amorphous materials during startup flow. The microstructure of
SPGs continuously changes until shear stress reaches a steady
state in the startup flow.18 During this period, shear stress ex-
hibits an overshoot, which corresponds to static yield at interme-
diate and high shear rates,18,19 while at low shear rates, the over-
shoot is not detected. At the overshoot point, the anisotropy of the
pair distribution function is maximum. Furthermore, the magni-
tude of the stress overshoot and corresponding strain is a function
of the mechanical history of the SPGs, and the magnitude of the
stress overshoot decreases with the internal stress stored in the
material at the onset of the shear flow.18 Furthermore, the di-
rection of the preshear flow also plays an important role in the
overshoot magnitude.19

The onset of the shear flow rearranges the microstructure of
SPGs by redistributing the contacts between the particles and in-
ducing anisotropy.18 The latter is correlated with the macroscopic
stress response of the SPGs in shear flow.3 On the other hand,
microstructural signatures can be utilized to extract thermody-
namic properties, such as excess entropy, to provide a thermody-
namic description for the measured macroscopic property, i.e., an
equation of state (EOS). Simulation studies have shown that the
concept of the excess entropy, SE , proposed by Rosenfeld34,35 is
applicable to correlate the dynamics properties with the entropy
in several complex fluids, such as hard-spheres,36 star-like poly-
mers,37 metallic glasses,38 Gaussian core fluids,39 supercooled
liquids,40 soft spheres,41,42 and this method can be reliably used
for SPGs in shear flow. In SPGs at steady-state,17 this framework
provides an EOS which relates the excess entropy to the shear
stress at steady-state according to −SE =−SE

y −B ln(σ/σy), where
B is a constant close to 1.35. Thus, the excess entropy can be used
in these suspensions to provide a thermodynamic framework to
determine the shear stress flow curve. The remarkable achieve-
ment of the scaling law determined by correlating excess entropy

to rheological properties of SPGs is that these suspensions are
athermal, and the generality of the thermodynamic framework
is extended in a shear-flow case which is a nonequilibrium state.
This success of the correlation with excess entropy becomes more
important when one considers the properties at the dynamic yield
point, or the quasi-static regime, since the shear viscosity and nor-
mal stress functions diverge, and the diffusivity vanishes at a criti-
cal excess entropy, corresponding to the yield stress of the suspen-
sion. An effective temperature is defined based on the derivative
of the elastic energy (U) with respect to the excess entropy, i.e.,

T =

(
∂U
∂SE

)
V

, which is found to vary linearly with the shear stress

and the elastic energy of the sheared SPGs. Furthermore, it was
shown that a universal behavior based on Dzogootov’s theory43

for particle diffusivity versus excess entropy unifies observations
for systems at equilibrium and nonequilibrium.

Similarly, Khabaz and Bonnecaze44 used this framework and
described the shear-induced phase transition of SPGs with a
low degree of polydispersity in particle size distribution. These
jammed SPGs transform into a layered phase in strong shear
flow.45,46 After sufficient exposure to shear flow, the shear stress
decreases and reaches a steady state in a layered phase. The lat-
ter creates a discontinuity in the flow curves. Using the two-body
excess entropy formulation, a clear discontinuity in the excess
entropy is observed at this phase transition. The entropy of the
system decreases significantly upon layering, that is an indicator
of the formation of an ordered microstructure. At the transition,
the effective temperature at steady-state, T , shows a discontinu-
ity as a function of the shear rate. This discontinuity in the T − γ̇

curves is similar to the discontinuity observed in the flow curve.
At a fixed temperature, where there is a transition from glassy to
layered phase, the Helmholtz free energy is equal in two phases,
which reveals that this transformation is a first-order thermody-
namic phase transition. Furthermore, the elastic energy, shear
stress, and Helmholtz free energy correlate with the temperature
in stable/metastable glassy and layered phases. The latter empha-
sizes the importance of this thermodynamic framework not only
in building useful relationships between rheological properties of
disordered systems but also in capturing flow-induced transitions
and structures with short-range ordering.

Inspired by prior works,17–19,44 here we study the transient re-
sponse of the excess entropy and elastic energy during the startup
flow at different shear rates and five different volume fractions
above the random close-packing fraction. The anisotropy of the
microstructure in strong shear flow is fully captured in the ex-
cess entropy, and the results highlight the distinction between the
thermodynamic response at high shear rates and the quasi-static
regime. We establish a thermodynamic description of the static
yield point appearance at different flow regimes for SPGs. Our
results suggest that a transient temperature can be constructed
by the concept of transient excess entropy.

2 Simulations methods
The model system comprises N = 10,000 polydisperse soft par-
ticles with a contact modulus of E∗ and an average radius of R
suspended in a Newtonian fluid with a viscosity of ηs (Fig. 1).
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Fig. 1 (A) Configuration of suspensions with volume fraction of φ =

0.80 in a cubic simulation box that is in the shear flow with an applied
shear rate of ˜̇γ = γ̇ηs/E∗, where E∗ is the particle contact modulus and
ηs is the suspending fluid viscosity. The flow (u), gradient (∇), and
vorticity (ωωω = ∇×u) directions are shown. (B) Two particles form flat
facet at a contact and interact via generalized Hertzian contact and
elastohydrodynamic lubrication forces. 3

The polydispersity in the particle size distribution is 20% of the
average radius to avoid the formation of ordered structures.45,46

Five different volume fractions in the range of φ ∈ [0.70− 0.90]
are selected. Particles in contact interact via generalized elastic
Hertz force, FE , and elastohydrodynamic force, FEHD, which de-
pends on the magnitude of the relative velocities of two particles
in contact and overlap distance.3

Following our previous works on this topic,3,45,46 we utilize the
methodology for simulating SPGs in shear flow governed by the
generalized Hertzian elastic contact according to:47

FE
αβ

=
4
3

CE∗
ε

n
αβ

R2
cn⊥, (1)

where C and n are constants which depend on the degree of com-
pression of particles, E∗ is the contact modulus of the individual
particle (E∗ = E/2(1− ν2), with E and ν are the Young’s modu-
lus and the Poisson ratio, respectively), εαβ is the dimensionless
overlap parameter which is defined as εαβ = (Rα +Rβ − rαβ )/Rc,
where Rc = Rα Rβ /(Rα +Rβ ) is the effective radius of the two par-
ticles in contact and rαβ is the distance between particles α and
β . n⊥ is the normal vector to the facets at contact as shown in
Fig. 1B. Two neighboring particles in contact also exert elastohy-
drodynamic (FEHD

αβ
) force onto each other based on:

FEHD
αβ

=−(ηsuαβ∥E∗R3
c)

(2n+1)/4
ε
(2n+1)/4
αβ

n∥, (2)

where uαβ∥ is the magnitude of the relative velocity of two parti-
cles in the direction parallel to the facets in contact, i.e., n∥.

Considering these two forces, and the far–field shear flow
u∞

α = γ̇ηs
E∗ yex, where ex is the basis vector in the flow direction

equation. Using the scales of the particle size R, time ηs/E∗, the
dimensionless equation of motion for particles becomes:

dxα

dt
= u∞

α +
f (φ)

6πRα

(
4
3

C ˜̇γ−1
∑
β

ε
n
αβ

R2
cn⊥

− ˜̇γ−1/2
∑
β

(Cuαβ∥R3
c)

1/2
ε
(2n+1)/4
αβ

n∥

)
,

(3)

where f (φ) is the mobility coefficient and is set to 0.01.3,16 Note
that a dimensionless shear rate of ˜̇γ = γ̇ηs/E∗ emerges from these
equations of motion and is used to impose the shear rate on
the suspensions by applying the Lees-Edwards boundary condi-
tions.48 The stress tensor is computed as a function time using
the Kirkwood formula,49 i.e., σσσ = 1

L3 ∑α ∑β Fαβ (xα −xβ ), where
L is the length of the cubic box and Fαβ = FEHD

αβ
+ FE

αβ
is the

total force acting on particle α from β . The maximum shear
strain of two is set as the final time in all simulations. A wide
range of shear rate ˜̇γ ∈ [10−9 − 5 × 10−3], which translates to
ˆ̇γ = ηsγ̇/G0 ∈ [10−10 − 10−1] when the low-frequency modulus of
SPGs, G0(φ),20 is used for collapsing the data obtained at differ-
ent volume fractions. The time step of simulations is chosen to
produce 107 steps per strain at each shear rate. The initial con-
figuration of the particles is in a minimized elastic energy at the
beginning of the shear flow to avoid the effect of mechanical ag-
ing on the startup flow.3 The stress tensor and trajectories of the
particles are monitored at regular strain interval of ∆γ = 0.001.
All results are averaged over five independent replicas.

3 Results and discussion

3.1 Transient shear stress and elastic energy in startup flow

The shear stress, σ , as a function of the strain, γ, is plotted in
Fig. 2A-C for suspensions with volume fractions of φ = 0.70−0.9
(σ −γ data for φ = 0.75 and 0.85 are not shown here). The general
trend in σ − γ curves is that shear stress increases in the linear
regime and then shows an overshoot, which is marked by σp, at
a strain of γσ

p , and then decreases to the steady-state value. This
stress overshoot highlights the energy barrier required to initiate
the plastic flow of SPGs in shear. Similarly, the elastic energy,
U , is determined from the contacts between the particles as a

function of the shear strain as U(γ) =
8

3N
∑

N
α ∑

N
β

Cε
n+1
αβ

R3
c

n+1
, and it

is scaled by E∗R3. At γ = 0 (Fig. 2D-F), the elastic energy value
is U0, which increases with the volume fraction of suspensions
and shows a linear relationship with G0. The transient elastic
energy follows a very similar trend as the shear stress, except
that overshoots are slightly milder and broader than those in σ −
γ curves since the number of the contacts per particle shows a
minimum, while the overlap distance between the particles shows
a mild maximum at the overshoot point (see Fig. S1 in ESI† for
the plots on the linear scales).18 Furthermore, the evolution of
the first and second normal stresses, i.e., N1(γ) and −N2(γ) as
well as the osmotic pressure, Π(γ), are shown in Fig. S2 in ESI.†

As seen in Fig. 3A and Fig. 3B, the stress and elastic en-
ergy overshoots at different volume fractions show limiting val-
ues and power-law behaviors at low and high shear rates, respec-
tively. Using the corresponding values in the quasi-static regime
and steady-state (i.e., σy and Uy), and utilizing the rescaled shear

rate, ˆ̇γ =
ηsγ̇

G0
, all data collapsed onto master curves in Fig. 3C.

These behaviors are described by HB relationships, i.e.,
σp

σy
=

1.2+1202.4 ˆ̇γ0.52±0.03 and
Up

Uy
= 5.83+1882.3 ˆ̇γ0.54±0.04. These HB

exponents are similar to those reported in simulations and exper-
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Fig. 2 Shear stress, σ ,(top row) and elastic energy, U ,(bottom row) as a function of strain, γ, at different shear rates for suspensions with volume
fraction of (A and D) φ = 0.70, (B and E) φ = 0.80, and (C and F) φ = 0.90. The color-coding in all sub-figures is the same as (A).

Fig. 3 (A) Peak stress, σp, and (B) peak elastic energy, Up, as a function of the shear rate ˜̇γ. (C) Master curve of the σp/σy (left axis) and Up/Uy
(right axis) as a function of the rescaled shear rate, ˆ̇γ, at different volume fractions. The solid lines are the HB fits to data. (D) Strain corresponding
to peak stress, γσ

p , and (E) elastic energy, γU
p , as a function of the shear rate, ˜̇γ. (F) Master curves of γσ

p (left axis) and γU
p (right axis) as a function

of the rescaled shear rate, ˆ̇γ. The color-coding in (D-F), is the same as (A-C), respectively.
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iments for SPGs (see Fig. S3 in ESI† for the master curve of the
steady-state flow curve.7,18,19 The strains corresponding to these
overshoots in transient stress, γσ

p , and elastic energy, γU
p , also in-

crease with the shear rate (Fig. 3D and Fig. 3E) and decrease with
the volume fraction at a given shear rate. We also note that at
lower shear rates, detecting these overshoots becomes challeng-
ing, especially for the elastic energy (it does not show overshoot
at the low shear rates), and uncertainty in the data increases. Al-
beit the latter point, the data show reasonable collapse at high
shear rates, and dispersion increases at low rates (Fig. 3F). At
high shear rates, both peak strains show power-law relationships
with the rescaled shear rate: γσ

p ∼ ˆ̇γ0.15 and γU
p ∼ ˆ̇γ0.10. At low

and intermediate shear rates, the exponent for the γσ
p slightly in-

creases to 0.20. The values of γU
p are almost twice γσ

p . Note that
the scaling exponents are weakly dependent on the mechanical
history of the pastes, as discussed by Di Dio et al.19

3.2 Thermodynamics in Startup flow behavior

Since shear flow induces anisotropy of the configuration of the
particles in contact, the pair distribution function is determined
in the flow-gradient plane, i.e., g(x,y), at low and high shear rates
over the startup flow period for suspensions with a volume frac-
tion of φ = 0.80 (Fig.4). At a low shear rate of ˜̇γ = 10−9 (Fig.
4A-C) particles show symmetric distribution at rest, and increas-
ing the strain does not make major rearrangement in the contacts.
On the other hand, at a high shear rate of ˜̇γ = 10−4 (Fig. 4D-F),
the distribution of the contacts for a reference particle becomes
anisotropic as soon as shear stress increases. In strong shear
flow, neighboring particles tend to accumulate in the upstream
compressive quadrant,

(
π

2 ≤ θ ≤ π
)
, where they are more com-

pressed, and deplete along the extension axis,
(
θ = π

4
)
, where

they are less distorted. The particles are also more compressed
by increasing the strain up to the γσ

p . This anisotropy is maxi-
mum at γσ

p and then slightly decreases and reaches steady-state
(see Fig. S4 in ESI† for the polar plots of g(r,θ)). Alternatively,
this anisotropy can be captured by the g2,−2(r) coefficient of the
spherical harmonics expansion of g(r), which can measure the
asymmetry of the pair distribution between the compression and
extension axes, as shown in Fig. S6 and Fig. S7 in ESI† and
prior works.† 3,18 This behavior is consistently observed when the
systems undergo strong shear deformation, which corresponds to
the power-law flow regime at all volume fractions.18

The dimensionless excess entropy is calculated using the two-
body approximation as SE ∼= S2 = −0.5ρ

∫
∞

0 [g(r) ln(g(r))− (g(r)−
1)]dr,34,35,42 where ρ is the number density of the suspensions.
The excess entropy is non-dimensionalized by the Boltzmann fac-
tor kB. Since the shear flow induces anisotropy in the flow-
gradient plane, we consider g(r) = g(r,θ), where θ is defined with
respect to the flow direction and capture the anisotropy in the
flow-gradient plane.50 Considering the latter, the dependence of
the excess entropy on θ is given by:

S2(θ) =−ρ

∫
∞

0
[g(r,θ) ln(g(r,θ))− (g(r,θ)−1)]r2 dr, (4)

and S2 =
∫ 2π

0 S2(θ)dθ . In the above equation the g(r,θ) is calcu-

lated using:

g(r,θ) =
L3

2r2∆r∆θN(N −1) ∑
i̸=k

δ (r−|rik|)δ (θ −θik), (5)

where L is the simulation box length and ∆r = 0.01 and ∆θ = π/50
are the bin sizes in r and θ directions. Using this formulation, the
S2(θ) is shown for two nominal low and high shear rates at differ-
ent strains in Fig. 5 As expected, at rest, the excess entropy does
not have a θ -dependence behavior. At low shear rates, when γ

increases the excess entropy shows no significant changes com-
pared to at rest, at all θ values, and there is no θ -dependency.
On the other hand, at high shear rate, due to the anisotropic
nature of the contacts, we observe a decrease of the excess en-
tropy on the extension axis (θ = π/4 and 5π/4). The excess en-
tropy also shows maximum points contacts are on the compres-
sion axis, i.e.,θ = 3π/4 and 7π/4. This characteristic behavior
that S2(θ) shows two minima/two maxima pattern as a function
of θ over 0 ≤ θ ≤ π is a resemblance of the behavior reported for
Weeks-Chandler-Anderson fluid under shear deformation.50 We
also note that the magnitude of the extremum is the highest at
the stress overshoot point. The latter is also expected since the
anisotropy in g(x,y) is captured by g2,−2 coefficient of the g(r)
expansion, and the shear stress is related to this coefficient via:
σxy =−ρ2

√
π/15

∫ 2R
0 r3FE(r)g2,−2(r)dr.3

By integrating the S2(θ) over θ , the total excess entropy is de-
termined as a function of strain (Fig. 6) at different shear rates
and volume fractions. At low shear rates, the excess entropy
reaches a steady state quickly since the microstructure shows mi-
nor adjustment in this regime of the shear flow. On the other
hand, SE initially increases with the strain and then attains a
steady state at higher shear rates (note that −SE decreases as
a function of the strain). Although the pair distribution func-
tion shows an anisotropic distribution and S2(θ) clearly shows a
θ -dependence at high shear rates, the total excess entropy as a
function of strain does not show a measurable overshoot, due to
the compensation of the contribution from extension and com-
pression axes at large strains and shear rates. In addition, the
SE(γ) increases with an increase in the volume fraction at a given
shear rate and strain.

Now, we turn our attention to the scaling behavior of the steady
state value of excess entropy, SE

st , and correlate that with the
shear rate, ˜̇γ. At low shear rates, data suggest that there is a
limiting value for SE

st , and then it shows a logarithmic increase
as a function of ˜̇γ at all volume fractions (Fig. 7A). The depen-
dence of the SE

st on ˜̇γ is expressed by a logarithmic function in the
form of SE

st = a−b ln( ˜̇γ + c), where a, b, and c are fitting parame-
ters and are presented in the Supporting Information.† By scaling
the excess entropy at steady-state with the value obtained in a
quasi-static regime, SE

y , as a function of the rescaled shear rate,
ˆ̇γ, a universal behavior for different volume fractions is obtained
(Fig.7B). This relationship is well-described by a logarithmic func-
tion in the form of SE

st/SE
y = a−b ln( ˆ̇γ+c), where a= 0.396±0.013,

b = 0.046±0.001, and c = 1.84×10−6 ±6.09×10−7.
As shown in Fig. 8, the excess entropy increases with the elas-

tic energy in the startup flow. Since there is a weak overshoot
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Fig. 4 Two dimensional pair distribution function, g(x,y), at shear rate of (A-C) ˜̇γ = 10−9 and (D-F) ˜̇γ = 10−4 for φ = 0.80 at different strains:(A, D)
γ = 0, (B, E) γ = γσ

p , and (C, F) γ = γst .

Fig. 5 Excess entropy, −SE , as a function of θ , at (A) ˜̇γ = 10−9 and (B)
˜̇γ = 10−4 for suspensions with volume fraction of φ = 0.80.

in U and SE smoothly increases and reaches steady behavior, the
SE −U curve becomes a hook-like shape near and after the over-
shoot points, especially at the lowest volume fraction, φ = 0.70
(Fig. 8A). The steady-state condenses to a single point on the
SE −U plot. This trend occurs at all shear rates and volume frac-
tions. Interestingly, the initial part of the transient SE = SE(U)

data obtained at different shear rates that approximately corre-
spond to elastic deformation follows a universal behavior. Thus
the departure from this trend can be considered as an indication
of plastic flow.

Next, we utilize the thermodynamic definition of temperature,

i.e., T =

(
∂U
∂SE

)
V

, with a goal to define a transient temperature

during the startup flow as a function of the strain. Considering
the scales for the SE and U , this transient temperature is nor-
malized with E∗R3/kB. Note that these calculations have been
performed over the period that shear stress and elastic energy
show a transient behavior, i.e., 0 ≤ γ ≤ 1.0; thus, we call this pa-
rameter transient temperature to distinguish this definition from
the prior definition obtained based on the steady-state proper-
ties.17,44 At volume fraction of φ = 0.70 and high shear rates, T
monotonically increases as a function of the elastic energy, until
it reaches the point which corresponds to the steady-state of the
steady state point of SE −U diagram. This behavior consistently
occurs at shear rates which a clear overshoot in the stress-strain
data is observed. Furthermore, the transient temperatures at dif-
ferent rates show overlap in the T −U plot in the linear part of
the stress-strain data. At higher volume fractions (φ = 0.80 and
0.90), the transient temperature generally increases with elastic
energy. At low rates, where the shear stress reaches steady-state
behavior rather over smaller strains, T shows a minor increase–
note that the range of U or SE is significantly limited to determine
the temperature. The latter is more severe for data obtained at
higher volume fractions. In other words, the data on the SE −U
diagram is limited to one thermodynamical state point. Thus,
the transient temperature does not exist. At a high shear rate,
the T −U diagram is more extended to higher temperatures at
high elastic energy values. One should note that these calcula-
tions are performed up to strain values that elastic energy and
excess entropy show steady-state since T can diverge when SE
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Fig. 6 Excess entropy, −SE , as a function of strain, γ, at different shear rates for suspensions with volume fraction of (A) φ = 0.70, (B) φ = 0.80, and
(C) φ = 0.90. The color-coding in all sub-figures is the same as (A).

Fig. 7 Steady state excess entropy, −SE
st , as a function of shear rate, ˜̇γ,

and (B) rescaled excess entropy SE
st/SE

y , where SE
y is the excess entropy in

the dynamic yield point, as a function of the rescaled shear rate, ˆ̇γ. The
solid line shows the logarithmic fit to the data.

becomes steady or it can fluctuate about zero when U shows an
overshoot. This behavior can be explained by considering the
chain rule of differentiation applied to the transient temperature

as T (γ) =
(

∂U
∂SE

)
V
=

(
∂U
∂γ

)
V
×
(

∂γ

∂SE

)
V

(see the insets of Fig.

8D-F for T = T (γ)). Thus, T (γ)→ ∞ when
(

∂SE

∂γ

)
V
→ 0. Gener-

ally, at shear rates lower than ˆ̇γ∗ ∼= 2× 10−6, this transition tem-
perature shows a value fluctuating about zero since no significant
adjustment in the microstructure occurs.

We also observe that the rate of the excess entropy change,(
∂SE

∂γ

)
V

, at high shear rates shows at least one maximum be-

fore descending to zero, i.e., steady state behavior in SE , while at
low shear rates, this parameter decays to zero (Fig. S8 in ESI†).
This result is important since it shows this measurement can sep-
arate two flow regimes: (1) at ˆ̇γ ≥ ˆ̇γ∗ at high and intermediate
shear rates where shear stress shows an overshoot and nonaffine
dynamics of particles are localized and (2) at ˆ̇γ < ˆ̇γ∗ where flow
is driven by the avalanches in dynamics of the particles at low
stresses close to the dynamic yield limit and stress overshoot is
suppressed.7,20

Finally, the transient shear stress and excess entropy of SPGs
with different shear rates and volume fractions are correlated in
Fig.8 G-I. Similar to the SE −U data, the SE −σ diagrams at differ-
ent shear rates show a hook-like shape in the plastic flow regime
and approximately collapse in the elastic part of the deformation.

Other transient rheological properties, such as first normal stress,
N1, second normal stress, N2, and osmotic pressure, Π, can also
be correlated with the SE as shown in Fig. S9†. Furthermore, the
steady-state points at different rates can be explained by a loga-
rithmic relationship in the form of SE

y −SE
st = A ln(σ/σy). Notably,

the thermodynamic path to reach a steady state at a given vol-
ume fraction becomes longer on SE −σ by increasing the shear
rate and decreasing the volume fraction. This path essentially
reaches a single thermodynamic state point close to the dynamic
yield stress value in the quasi-static regime.

4 Summary and concluding remarks
Our study explores the thermodynamics of startup shear flow in
jammed suspensions comprising soft particles using particle dy-
namics simulations. Results reveal that the excess entropy pro-
posed by Rosenfeld34,35 not only explains the steady-state rheol-
ogy behavior as reported by Bonnecaze et al.17 but also effectively
captures the stress-strain behaviors in transient flow regimes at
different shear rates and volume fractions. The transient excess
entropy, SE(γ), derived from the pair distribution function, ex-
hibits an overshoot whose magnitude generally increases with
the shear rate. Notably, the magnitudes of these overshoots in
stress, elastic energy, and excess entropy collapse onto master
curves when the shear rate is scaled by the parameter G0/ηs,
reflecting the ratio of elastic to viscous forces in the paste. In
these master curves, either determined from transient rheology
or thermodynamics, two behaviors reflecting the dominant flow
mechanisms at the quasi-static regime and high shear rates are
observed. These two regimes are separated at a critical shear rate
of ˆ̇γ∗ ∼= 2×10−6.

From a thermodynamic perspective, our analysis reveals the
variation of the excess entropy as a function of the elastic en-
ergy, i.e., SE −U data, follows a universal behavior when data
from different shear rates are limited to small deformations. Any
departure from this generic behavior can be considered a ther-
modynamic indication of nonlinear flow and the onset of plastic
deformation in these materials. Furthermore, a transient tem-
perature can be defined using the thermodynamic definition of
temperature from SE −U data. This transient temperature, T ,
is not defined at steady-state. In the transient flow regime, it
increases with an increase in the elastic energy (equivalently in-
creasing strain or stress), while at low rates corresponding to the
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Fig. 8 Excess entropy, −SE , (top row) and transient temperature, T , (middle row) as a function of the elastic energy, U , for suspensions with volume
fraction of (A, D) φ = 0.70, (B, E) φ = 0.80, and (C, F) φ = 0.90. Insets are temperature as a function of strain, γ. Excess entropy, −SE , (bottom
row) as a function of shear stress, σ , at different shear rates for suspensions with volume fraction of (G) φ = 0.70, (H) φ = 0.80, and (I) φ = 0.90. The
color-coding in all sub-figures is the same as (A).
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quasi-static regime, it shows fluctuating behavior about zero.
The scaling relationships and thermodynamic framework es-

tablished in this work provide valuable insights into the tran-
sient flow behavior of athermal, flow-driven systems across vari-
ous conditions. Moreover, our findings suggest a promising route
for exploring the applicability of this framework to thermally ac-
tivated and flow-driven systems for future research. Given the
similarities between SPGs and other flow-driven systems, such
as granular materials,24 where particle dynamics are driven by
avalanches in a jammed state, it would be constructive to apply
this method to correlate the transient macroscopic rheology with
the microstructure. We also note that the definition of the gran-
ular temperature, which is related to the kinetic energy of the
particles, cannot reproduce the trend seen here since the average
nonaffine velocity of the particles does not change as a function of
the strain at a given rate. These suspensions also share similarities
with hard spheres when under shear, exhibiting anisotropy of mi-
crostructural and arrested state in the shear flow. While this sim-
ilarity exists, there are specific differences in the transient stress
response when the volume fraction of hard spheres approach the
random close-packing; the stress overshoot magnitude decreases
with the increasing the φ , while as we have shown, the over-
shoot is monotonically increased with volume fraction. The latter
is due to the difference in the origin of the stress, which arises
from the purely entropic origin in hard spheres, while in SPGs,
particles can deform at contact and accumulate elastic energy.
Nevertheless, this framework can be tested for these hard-sphere
suspensions, in which particles experience the caging behavior
in the flowing state,51–55 and show shear-driven microstructural
changes in form of structuring into layers. This phenomenon also
occurs in SPGs when the distribution of the particle size is nar-
row, and they show a similar trend in terms of the existence of
an induction period, where stress gradually decreases before at-
taining a steady state in the layered phase.45,46,56 We also note
that hard-sphere colloidal gels57,58 and glass forming systems59

that show caging behavior can be used to establish these corre-
lations between the transient thermodynamics and macroscopic
rheology.
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