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A photoredox catalytic strategy has been developed to enable the functionalization of a variety of
commercially available, structurally different radical precursors by the use of a bench-stable isonitrile as
an efficient cyanating reagent. Specifically, a radical-based reaction has provided a mild and convenient

procedure for the cyanation of primary, secondary and tertiary radicals derived from widely accessible
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a variety of functional groups and it represents a complementary method for the cyanation of

DOI: 10.1035/d4sc04199b structurally different scaffolds that show diverse native functionalities, expanding the scope of previously
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Introduction

Aliphatic nitriles are ranked among the most common func-
tional groups in bioactive molecules." The anticancer agent
ruxolitinib, the antihyperglycemic vildagliptin and the anti-
bacterial cefmetazole are examples of commercialized drugs
containing alkyl cyanides. Additionally, nitriles are versatile
synthetic handles used to introduce a broad variety of func-
tional groups in organic molecules, and prevalent intermedi-
ates in the synthesis of heterocycles (Fig. 1).?

Traditionally, alkyl halides have been used to prepare
aliphatic nitriles through a Sx2 or Syl reaction. Some draw-
backs of this approach are the need to prepare the alkyl halides,
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Fig. 1 Selected pharmaceuticals containing aliphatic nitriles.
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the use of toxic cyanide salts, high temperatures and competing
elimination reactions.> To complement this polar strategy
different radical approaches have been developed, based on the
generation of a nucleophilic radical from a suitable precursor
followed by reaction with a cyanating reagent. With the expan-
sion of photoredox catalysis* and electrochemistry,” radical
approaches have become attractive ways to prepare alkyl nitriles
from native and abundant functional groups under extremely
mild conditions,® complementing the use of transition metals
and avoiding high temperatures.” Carboxylic acids,**° redox-
active esters," alkyl halides,’*** trifluoroborate salts,”* and
specific C-H bonds'*** have been used as carbon-centered alkyl
radical precursors in photoredox-catalyzed and electrochemical
cyanation reactions. The cyanating reagents used in these
transformations include tosyl and trimethylsilyl cyanide, cya-
nobenziodoxolone, 4-cyano pyridine and inorganic salts such as
sodium and potassium cyanides (Scheme 1). All of them are
cyanide-containing reagents often used in superstochiometric
amounts. The introduction of cyanide-free reagents that could
promote general photoredox catalyzed cyanations would be
a convenient addition to the toolbox that chemists have at
disposal to prepare aliphatic nitriles.

Our group recently demonstrated that isonitriles can unlock
hydro- and deuterodeamination reactions under extremely mild
conditions.” Indeed, isonitriles can intercept visible light-
generated silyl radicals to give an imidoyl radical intermediate
that enables a B-scission, provoking the C-N bond fragmenta-
tion. Based on these results, we reasoned that a tunable iso-
nitrile could intercept carbon-centered radicals generated
under photoredox catalysis to provide a unified strategy for the
cyanation of common functional groups.

Although isonitriles have been used as efficient radical
traps'” and suitable reagents in radical cyanations,'® the nitrile

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Common reagents used for radical cyanation of aliphatic
precursors. Dual use of isonitriles in photoredox catalysis: alkyl radical
precursors and cyanation reagents.
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product usually competes with the formation of an amide,
through the in situ generation of a nitrilium ion or a keteni-
mine.” We envisioned that trityl isocyanide, a bench stable
solid easily prepared from trityl amine,” could be used as
a selective cyanating reagent for precursors capable to provide
alkyl radicals through a photoredox reductive quenching cycle
(Scheme 2). Among the class of compounds that could generate
alkyl radicals through a reductive quenching cycle, carboxylic
acids, alcohols and alkyl halides (via an alpha-amino radical-
mediated halogen atom transfer) attracted our interest as they
are commercially available abundant building blocks.?* Once
generated, the alkyl radical would add to trityl isocyanide to
form an imidoyl radical.** Subsequent B-fragmentation would
afford the nitrile product and a trityl radical that could be easily
reduced to the stabilized trityl anion through a single-electron
reduction [E,.qg = —0.63 V vs. Ag/AgCl],> regenerating the pho-
tocatalyst. Key in our design is the fact that the stability of the
trityl radical would favour a fast B-scission, therefore avoiding
the nitrilium ion formation through single-electron oxidation,*
and shifting the selectivity towards the nitrile formation.
During the preparation of this manuscript Procter reported the
synthesis of aliphatic nitriles from alkyl iodides using a sulfo-
nium salt as a halogen atom transfer reagent precursor and an
a-amide isocyanide as cyanating reagent.>® Herein, we present
the use of trityl isocyanide as a general cyanating reagent for
alkyl carboxylic acids, alcohols and halides. This reagent allows
the use of widely accessible sp>-hybridized building blocks,
providing a straightforward access to structurally different
nitriles under mild conditions (Scheme 2).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Trityl isocyanide as a general reagent for photoredox
catalyzed cyanation.

Results and discussion

We started our investigations choosing carboxylic acids 1 as
building blocks that could generate carbon-centered radicals by
established photoredox catalysis via the corresponding carbox-
ylates [E,x = +1.2 V vs. SCE] upon deprotonation and subse-
quent decarboxylation.>**

As preliminary conditions, we employed [Ir(dF(CF3)ppy).(-
dtbbpy)PFs]  (Ir-cat) as the  photoredox  catalyst
[Eoq(Ir' /1) = +1.21 V vs. SCE],*® K;PO, as base, acetoni-
trile as solvent and we irradiated the reaction with a blue
440 nm Kessil PR160L LED lamp. On the other hand, isonitrile
2a (3.0 equiv.) was chosen since we envisioned that the corre-
sponding trityl radical that would be obtained after B-scission
would be easily reduced to regenerate the ground state photo-
catalyst. Indeed, we were delighted to observe an efficient
decarboxylation of carboxylic acid 1a and the concomitant
formation of product 3 in 68% yield (Table 1, entry 1). Next, we
evaluated different isonitriles (2b-f) as alternative cyanating
reagents (entries 2-6), observing a diminished reactivity which
indicated that the stability and redox potential of the interme-
diate isocyanide-derived radical play a crucial role. Moreover,
different amounts of decarboxylative product 3’ were obtained,
observing a lower ratio with isonitrile 2a, presumably due to the
easy B-scission that leads to the highly stabilized trityl radical.
Switching the solvent to DMSO led to an improvement of the
yield (entry 7) and after some further optimization (see ESIt for
additional details) the desired product could be obtained in
82% yield, employing 1.0 mol% of catalyst loading, 2.5 equiv. of
isonitrile and performing the reaction on a 0.20 mmol scale
(entry 11).

To enhance the synthetic utility of the isonitrile-enabled
photocatalytic cyanation, we decided to expand the scope of
the reaction by tackling a similar transformation starting from
widely accessible aliphatic alcohols 4 as radical precursors. To
achieve the required radical deoxygenation, we relied on
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Table1 Optimization of the photocatalytic decarboxylative cyanation
with isonitriles®
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Table 2 Optimization of the photocatalytic deoxygenative cyanation
with isonitriles®

Ir-cat (x mol%)
K3POy4 (1.2 equiv)
U\ isonitrile 2 (x equiv.)

COH ——M8M8M >

N

Boc v\ Boc

1a (Amax = 440 nm) 3 (3"

solvent, 16 h
@@ Ph o® Ph @@ Me o @® COMe
N+Ph CEN—( N—( C=N
Ph
2a 2d
© @_?‘ (] N+Me

2f

Entry Solvent (equiv.) Ir-cat (mol%) Yield 3 (3') %
1 MeCN 2a (3.0) 2 8 (14)
2 MeCN 2b (3.0) 2 5 (35)
3 MeCN 2¢ (3.0) 2 0(5)
4 MeCN 2d (3.0) 2 48 (52)
5 MeCN 2e (3.0) 2 24 (0)
6 MeCN 2f (3.0 2 4(12)
7 DMSO 2a (3.0) 2 74 (12)
8 DMF 2a (3.0) 2 60 (14)
9 DCM 2a (3.0) 2 0(5)
10 PhCH; 2a (3.0) 2 36 (30)
11%¢ DMSO 2a (2.5) 1 82 (8)
124 DMSO 2a (2.5) 1 0

13° DMSO 2a (2.5) 1 0

“ The reactions were performed on a 0.10 mmol scale and the yields
were determined by TH NMR with CH,Br, as an internal standard.
P The reaction was performed on a 0.20 mmol scale. Yield
determlned after isolation by column chromatography purification.
4 The reaction was performed in the absence of light. ¢ The reaction
was performed in the absence of photocatalyst. See ESI for further
details.

arecently developed strategy that, upon oxidation of an alcohol-
NHC (N-heterocyclic carbene) adduct [E,x = +0.6 V vs. SCE],
allows an efficient C-O bond homolysis.* Slightly adapting this
methodology to our envisioned cyanation strategy, we obtained
a promising 30% yield (Table 2, entry 1) when 1,2,3,5-
tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) was used as
the photoredox catalyst
[E;.q(4CzIPN* /4CZIPN' ") = +1.35 V vs. SCE].** The use of
MTBE or 1,4-dioxane as solvents improved the yields (entries 2
and 3), obtaining the product in 75% yield when a 1: 1 mixture
of dioxane and DMSO was employed (entry 4). After some
additional optimization (see ESIT for further details) the reac-
tion could be scaled up to 0.2 mmol with a 2.0 mol% of pho-
tocatalyst, delivering the desired nitrile 5 in a slightly
diminished yield (60%, entry 5).

Next, with the aim of developing a complementary method
that could provide an alternative to nucleophilic substitution
reactions, we evaluate the possibility to exploit a halogen atom
transfer (XAT) photocatalytic strategy to generate a carbon-
centered radical from alkyl halides 6 (Table 3).** Specifically,
the photoredox catalyst engages in a SET with triethylamine [E,

14190 | Chem. Sci, 2024, 15, 14188-14194

NHC precursor (1.0 equiv.)
pyridine (1.0 equiv), solvent
then: 4CzIPN (1.2 mol%)
Quinuclidine (1.0 equiv)

O\/OH isonitrile 2a (2.5 equiv.)

NHC
precursor Ph

Qi ®
N
Boc

Eoc I B
4a (Mmax = 440 nm) 5
solvent, 16 h
Entry Solvent 4CzIPN (mol%) Yield %
1 MTBE:DMA (1:1) 1.2 30
2 MTBE 1.2 46
3 Dioxane 1.2 52
4 Dioxane : DMSO (1:1) 1.2 75
5° Dioxane : DMSO (1:1) 1.2 60
6° Dioxane : DMSO (1:1) 1.2 0
74 Dioxane : DMSO (1:1) — 0

“ The reactions were performed on a 0.10 mmol scale and the yields
were determlned after isolation by column chromatography
purification. ? The reaction was performed on a 020 mmol scale.
© The reaction was performed in the absence of light. ¢ The reaction
was performed in the absence of photocatalyst. See ESI for further
details.

=+0.77 Vvs. SCE] by a reductive quenching cycle to deliver an a-
amino alkyl radical as a powerful XAT reagent that abstract the
iodine atom to deliver a new carbon-centered radical.
Gratifyingly, adding isonitrile 2a to the reaction mixture, the
transiently generated radical could be efficiently trapped to
furnish the corresponding isonitrile 7 in 88% yield (Table 3,
entry 1). Decreasing the photocatalyst loading to 2.0 mol%
afforded the product in 91% yield (entry 2), whereas different

Table 3 Optimization of the photocatalytic XAT-enabled cyanation
with isonitriles®

4CzIPN (x mol%)
Et;N (2.0 equiv)
isonitrile 2a (2.5 equiv.)

BocN<>—I : BOCNQ—CN
6a (max = 440 nm) 7
solvent, 14 h

Entry Solvent 4CzIPN (mol%) Yield %
1 MeCN 5.0 88
2 MeCN 2.0 91
3 DMSO 2.0 50
4 Acetone 2.0 69
5° MeCN 2.0 0
6° MeCN 2.0 0
7¢ MeCN — 0

“ The reactions were performed on a 0.20 mmol scale and the yields
were determined after isolation by column chromatography
purification. ” The reaction was performed in the absence of
trlethylamme ¢ The reaction was performed in the absence of light.

4 The reaction was performed in the absence of photocatalyst. See ESI
for further details.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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solvents than acetonitrile led to diminished yields (entries 3 and
4). Even in this case, the presence of all the reaction compo-
nents was necessary for a successful reaction since it did not
proceed in the absence of XAT reagent, light or photocatalyst.
With the optimized conditions in hand for the three
different radical precursors, we evaluated the scope of the
photocatalytic cyanation reaction, employing a variety of
carboxylic acids 1,**° aliphatic alcohols 4, and alkyl halides 6
(Table 4).">'*?* N-Boc-piperidine-containing secondary carbox-
ylic acids delivered the corresponding nitriles 8 and 9 in 66%
and 65% yield. Acetal-, hydroxy- and catechol-containing prod-
ucts (10-12) were obtained in moderate to high yields, high-
lighting the functional group compatibility of the method. On
the other hand, N-boc phenylalanine derived nitrile 13 was
isolated in 63% yield, showcasing that N-protected o-amino
acids are suitable substrates. Next, we employed tertiary
carboxylic acids to study the influence of the radical stability
and of its steric hindrance on the outcome of the reaction. We
were pleased to observe high reactivity in all the cases, indi-
cating an efficient B-scission of the imidoyl radical upon radical
addition on isonitrile 2a. Indeed, products 14-17 were obtained,
allowing the introduction of a nitrile functionality at the
bridgehead position of a bicyclo[2.2.2]octane and the modifi-
cation of the lipid-regulating agent gemfibrozil. Stabilized and

Table 4 Reaction scope of the photoredox-catalyzed cyanation®”
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not stabilized primary radicals could be employed, resulting in
the formation of nitriles 18-20, albeit with slightly lower yields.
The general reactivity observed with primary, secondary and
tertiary aliphatic carboxylic acids is striking as most previous
examples are limited to carboxylic acids carrying an o-
heteroatom.*™® On the other hand, benzylic carboxylic acids
were not suitable for this reaction. Indeed, although efficiently
decarboxylated, the corresponding nitrile 21 was not observed
and only a dimeric compound was detected (45% NMR yield of
a 50% maximum theoretical yield), presumably due to a reluc-
tance of the (more stable) benzyl radical to undergo radical
addition to the isonitrile or to a more favourable and undesired
a-scission of the transiently formed imidoyl radical.
Subsequently, we evaluated the scope of the reaction
employing aliphatic alcohols as radical precursors. Different -
amino alcohols, which are derived from ubiquitous a-amino
acids and that present a primary alcohol as functional group,
could be employed, delivering products 5 and 22 in 60% and
46% yield, respectively. Secondary aliphatic alcohols furnished
a variety of cyclic nitriles (7, 8, and 23) with different ring size or
a spirocyclic scaffold. Moreover, a tertiary alcohol was amenable
to this transformation, delivering the spirocyclic tertiary nitrile
24 in 40% yield. To the best of our knowledge our protocol

Carboxylic Acids
secondary
[)\ Boc CN 0 CN O CN CN
N~ CN BocN/\:>—CN oc E OCN @ ]/
Boc o OH o NHBoc
3 8 9
82% yield 66% yield 65% yield 84% yield 74% yield 51% yield 63% yield
3 from nipecotic acid
tertiary s limitations: benzy e T
BocHN CN Me CN Me. Me imitations: benzylic i
B°°N/\:>’ Me CN i
O H
14 15 16 17 : 2 Me :
80% yield 61% yield? 52% yield 80% yield 0% yield
. from gemfibrozil undesired dimerization
primary (45% yield®)
o BocHN
AN CN
O e TS %
18
46% yield 43% yleld 48% yleld """""""""""""""""""""
from gabapentin
Aliphatic Alcohols
Me
() _en Me
N Me CN BOCNO—CN BocN CN BOCNOQ—CN BocN cN
Boc NHBoc
5 22 7 8 23 24
60% yield 46% yield 48% yield 61% yield 59% yield 40% yield
from L-prolinol
Alkyl Halides

BOCN<>—CN

7 8
91% yield 82% yield

(53% yield from bromide)

o)
BocN/\:>7CN [ ><:>—CN
d

1"
80% yield

Me><o O
BocN<><>—CN Me™ .,

23
69% yield 37% yleld

from a-D-galactopyranose

“ The reactions were performed on a 0.20 mmol scale and the yields were determined after isolation by column chromatography purification.

b The

yield was determined by "H NMR with CH,Br, as internal standard. See ESI for further details.
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Scheme 3 Incorporation of *C in bioactive compounds and natural products.

represents the first example of photoredox-catalyzed direct
cyanation of aliphatic alcohols.

Next, we explored the possibility to carry out a photocatalytic
cyanation starting from alkyl halides 6.">'** A variety of struc-
turally different secondary iodides could be employed, obtain-
ing nitriles 7, 8, 11, and 23 in excellent yields. In addition, the
same reaction could be performed over secondary bromides,
despite a diminished yield in comparison with the parent
iodide (53% vs. 82% yield). Primary halides were also suitable
for this transformation, as exemplified by the
galactopyranose-containing product 25, which demonstrated
the feasibility to employ more complex scaffolds and natural
product cores. These results are comparable to those obtained
using TMS-CN as cyanating reagent.*?

Moreover, we decided to prepare the “*C-labelled analogous
of trityl isocyanide 2a, employing “*C-formic acid for its
synthesis. Indeed, the use of this '*C-labelled cyanating reagent
would enable access to the corresponding isotopic nitrile
analogues through functionalization of widely available
carboxylic acids, aliphatic alcohols and alkyl halides, allowing
the efficient incorporation of a carbon isotope starting from
diversified starting materials. As representative examples, we
chose to prepare the isotopic analogues of products 12 and 17.
When the photocatalytic reaction was performed in the pres-
ence of isonitrile *C-2a as a trapping agent, we smoothly
observed the formation of compounds **C-12 and **C-17 in 58%
and 70% yield (Scheme 3). Therefore, this labelling strategy
could enable the synthesis of *C-labelled analogous of bioac-
tive compounds such as idazoxan hydrochloride and WB-
4101.*> Moreover, the potential of this methodology was show-
cased by the facile hydrolysis of **C-17, which allowed to access

3C-labelled gemfibrozil analogue **C-1k in 90% yield.

o-D-

Conclusion

In summary, we have developed a general photocatalytic cyan-
ation reaction employing trityl isocyanide as selective cyanating
reagent. The use of a photoredox reductive quenching strategy,
along with a judicious choice of the more appropriate isonitrile,
avoids the formation of undesired nitrilium ions, shifting the

14192 | Chem. Sci., 2024, 15, 14188-14194

transformation towards the nitrile product. The suitability of
carboxylic acids, aliphatic alcohols and alkyl halides as radical
precursors enables a straightforward transformation from
widely accessible building blocks. Besides enabling access to
alkyl nitriles from common and diversified precursors, this
methodology represents a valuable alternative to polar cyana-
tion strategies that allows the easy preparation of isotopic
analogues, avoiding the use of cyanide-containing reagents.

Data availability

The datasets supporting this article have been uploaded as part
of the ESL.{

Author contributions

M. T. conceived and designed the project. I. Q., M. M., C. P.-S,,
and T. R. performed all optimization studies and photocatalytic
reactions. M. T. and T. R. wrote the manuscript with the
contribution of all the authors.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the European Research Council (ERC Consolidator
Grant - 101002715 — SCAN) and the Spanish Ministry of Science
and Innovation (MICINN) [PID2022-142594NB-100] for financial
support. M. M. and C. P.-S. acknowledge Ministerio de Uni-
versidades and MICINN for FPU (FPU20/06320) and for FPI
(PREP2022-000243) fellowships, respectively.

Notes and references

1 (a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk and
B. C. Shook, Nitrile-containing pharmaceuticals:
Efficacious roles of the nitrile pharmacophore, J. Med.

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04199b

Open Access Article. Published on 06 Liigen 2024. Downloaded on 03/11/2025 2:27:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Chem., 2010, 53, 7902; (b) J. Wang and H. Liu, Application of
nitrile in drug design, Chin. J. Org. Chem., 2012, 32, 1643.

2 (@) The Chemistry of the Cyano Group, ed. Z. Rappoport and S.
Patai, John Wiley & Sons, 1970; (b) Science of Synthesis, ed. S.-
I. Murahashi, Georg Thieme Verlag, Stuttgart, Germany,
2004, p. 19; (¢) R. C. Larock, Comprenhensive Organic
Transformations: A Guide to Functional Group Preparations,
VCH, New York, 2nd edn, 1999.

3 (@) M. T. Reetz, 1. Chatziiosifidis, H. Kiinzer and H. Miiller-
Starke, Tetrahedron, 1983, 39, 961-965; (b) M. T. Reetz and
I. Chatziiosifidis, Angew. Chem., Int. Ed., 1981, 20,1017-1018.

4 (a) M. D. Kérkds, J. A. Porco Jr and C. R. J. Stephenson, Chem.
Rev., 2016, 116, 9683-9747; (b) Visible Light Photocatalysis in
Organic Chemistry, ed. C. R. ]J. Stephenson, T. P. Yoon and
D. W. C. MacMillan, Wiley-VCH, 2018; (¢) T. Rigotti and
J. Aleman, Chem. Commun., 2020, 56, 11169-11190.

5 M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117,
13230-13319.

6 R. I Patel, S. Sharma and A. Sharma, Org. Chem. Front., 2021,
8, 3166-3200.

7 (@) F. Yan, J.-F. Bai, Y. Dong, S. Liu, C. Li, C.-X. Du and Y. Li,
JACS Au, 2022, 2, 2522-2528; (b) J. Xu, J. C. Twitty and
M. P. Watson, Org. Lett., 2021, 23, 6242-6245; (c) A. Xia,
X. Xie, H. Chen, J. Zhao, C. Zhang and Y. Liu, Org. Lett.,
2018, 20, 7735-7739.

8 (a) F. Le Vaillant, M. D. Wodrich and J. Waser, Chem. Sci.,
2017, 8, 1790-1800; (b) N. P. Ramirez, B. Konig and
J. C. Gonzalez-Gomez, Org. Lett., 2019, 21, 1368-1373.

9 For a photoelectrochemical asymmetric cyanation, see:
X.-L. Lai, M. Chen, Y. Wang, J. Song and H.-C. Xu, J. Am.
Chem. Soc., 2022, 144, 20201-20206.

10 For an electrochemical cyanation of carboxylic acids and
activated C-H bonds, see: G. S. Kumar, P. S. Shinde,
H. Chen, K. Muralirajan, R. Kancherla and M. Rueping,
Org. Lett., 2022, 24, 6357-6363.

11 (a) D. Wang, N. Zhu, P. Chen, Z. Lin and G. Liu, J. Am. Chem.
Soc., 2017, 139, 15632-15635; (b) H.-W. Chen, F.-D. Lu,
Y. Cheng, Y. Jia, L.-Q. Lu and W.-]J. Xiao, Chin. J. Chem.,
2020, 38, 1671-1675; (¢) For a pioneering photochemical
reaction employing Barton esters, see: D. H. R. Barton,
J. C. Jaszberenyi and E. A. Theodorakis, Tetrahedron, 1992,
48, 2613-2626.

12 For a halogen atom transfer-enabled strategy
metallaphotoredox, see: L. Caiger, H. Zhao, T. Constantin,
J.J. Douglas and D. Leonori, ACS Catal., 2023, 13, 4985-4991.

13 For a photochemical cyanation of unactivated alkyl chlorides
that proceed through the use of UV light, see: T. S. Ratani,
S. Bachman, G. C. Fu and J. C. Peters, J. Am. Chem. Soc.,
2015, 137, 13902-13907.

14 J.-J. Dai, W.-M. Zhang, Y.-J. Shu, Y.-Y. Sun, J. Xu, Y.-S. Feng
and H.-J. Xu, Chem. Commun., 2016, 52, 6793-6796.

15 For examples of photocatalytic hydrogen atom transfer-
enabled C-H cyanations, see: (@) S. Kamijo, T. Hoshikawa
and M. Inoue, Org. Lett., 2011, 13, 5928-5931; (b) K. Kim,
S. Lee and S. H. Hong, Org. Lett., 2021, 23, 5501-5505; (c)
For a photoredox-catalyzed C-H cyanation enabled by
deprotonation of a radical cation, see: 1. Robb and

via

© 2024 The Author(s). Published by the Royal Society of Chemistry

16

17

18

19

20

21

22

23

24

View Article Online

Chemical Science

J. A. Murphy, Org. Lett., 2024, 26, 2218-2222; (d) For an
electrochemical cyanation of an activated C-H bond, see:
G. S. Kumar, P. S. Shinde, H. Chen, K. Muralirajan,
R. Kancherla and M. Rueping, Org. Lett., 2022, 24, 6357~
6363.

I. Quirds, M. Martin, M. Gomez-Mendoza, M. ]J. Cabrera-
Afonso, M. Liras, 1. Fernandez, L. Novoa and M. Tortosa,
Angew. Chem., Int. Ed., 2024, 63, €202317683.

(@) D. Nanni, Isonitriles: a Useful Trap in Radical Chemistry,
in Radicals in Organic Synthesis, ed. P. Renaud and M. P. Sibi,
Wiley-VCH Verlag GmbH, 2001; (b) R. Leardini, D. Nanni and
G. Zanardi, J. Org. Chem., 2000, 65, 2763-2772; (c) J. Lei, D. Li
and Q. Zhu, Synthesis of Nitrogen-Containing Heterocycles
via Imidoyl or Iminyl Radical Intermediates, In Free-
Radical Synthesis and Functionalization of Heterocycles,
Topics in Heterocyclic Chemistry 54, ed. Y. Landais,
Springer, Cham, Switzerland, 2018; (d) B. Zhang and
A. Studer, Chem. Soc. Rev., 2015, 44, 3505-3521.

(@) G. Stork and P. M. Sher, J. Am. Chem. Soc., 1983, 105,
6765-6766; (b) Y. Shan, X. Zhang, G. Liu, J. Li, Y. Liu,
J. Wang and D. Chen, Chem. Commun., 2024, 60, 1546-1562.
(@) S. Tang, R. Guillot, L. Grimaud, M. R. Vitale and
G. Vincent, Org. Lett., 2022, 24, 2125-2130; (b) W. Huang,
Y. Wang, Y. Weng, M. Shrestha, J. Qu and Y. Chen, Org.
Lett., 2020, 22, 3245-3250; (¢) For a chemoselective one-pot
sequence towards benzylic nitriles using BF;OEt, to
promote dehydration: X. Jia, Z. Zhang and V. Gevorgyan,
ACS Catal., 2021, 11, 13217-13222.

(@) R. C. Cioc, P. Schuckman, H. D. Preschel, T. Vlaar,
E. Ruijter and R. V. A. Orru, Org. Lett., 2016, 18, 3562-3565;
(b) R. C. Cioc, H. D. Preschel, G. Heijden, E. Ruijter and
R. V. A. Orru, Chem.-Eur. J., 2016, 22, 7837-7842; (c) For
a Mn(m) mediated oxidative radical cyanation of
arylboronic acids with trityl isocyanide, see: Z. Xu, X. Liang
and H. Li, Org. Lett., 2022, 24, 9403-9407.

Y. Zabolotna, D. M. Volochnyuk, S. V. Ryabukhin,
D. Horvath, K. S. Gavrilenko, G. Marcou, Y. S. Moroz,
O. Oksiuta and A. Varnek, J. Chem. Inf. Model., 2022, 62,
2171-2185.

(@) M. Minozzi, D. Nanni and P. Spagnolo, Curr. Org. Chem.,
2007, 11, 1366-1384; (b) J. Lei, J. Huang and Q. Zhu, Org.
Biomol. Chem., 2016, 14, 2593-2602; (c) S. Sharma,
A. P. Pandey and A. Sharma, Adv. Synth. Catal., 2020, 362,
5196-5218.

M. Poncelet, B. Driesschaert, A. A. Bobko
V. V. Khramtsov, Free Radical Res., 2017, 52, 373-379.
For selected examples of nitrilium ion formation through
oxidation of an imidoyl radical, see: (a) C. Russo,
F. Brunelli, G. C. Tron and M. Giustiniano, Eur. J. Org
Chem., 2023, 26, €202300743; (b) S. Pelliccia, A. 1. Alfano,
P. Luciano, E. Novellino, A. Massarotti, G. C. Tron,
D. Ravelli and M. Giustiniano, J. Org. Chem., 2020, 85,
1981-1990; (¢) R. Cannalire, J. Amato, V. Summa,
E. Novellino, G. C. Tron and M. Giustiniano, J. Org. Chem.,
2020, 85, 14077-14086; (d) Y. Lv, P. Bao, H. Yue, J.-S. Li
and W. Wei, Green Chem., 2019, 21, 6051-6055; () W. Wei,
P. Bao, H. Yue, S. Liu, L. Wang, Y. Li and D. Yang, Org.

and

Chem. Sci., 2024, 15, 14188-14194 | 14193


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04199b

Open Access Article. Published on 06 Liigen 2024. Downloaded on 03/11/2025 2:27:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

Lett., 2018, 20, 5291-5295; (f) M. Chen, Y. Li, H. Tang,
H. Ding, K. Wang, L. Yang, C. Li, M. Gao and A. Lei, Org.
Lett., 2017, 19, 3147-3150; (g) Z. Guan, Y. Peng, D. Yang,
S. Zhu, H. Zhang and A. Lei, Green Chem., 2022, 24, 3964~
3968.

25 H. Zhao, V. D. Cuomo, J. A. Rossi-Ashton and D. J. Procter,
Chem, 2024, 10, 1-12.

26 (a) L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am.
Chem. Soc., 2014, 136, 10886-10889; (b) S. B. Beil,
T. Q. Chen, N. E. Intermaggio and D. W. C. MacMillan,
Acc. Chem. Res., 2022, 55, 3481-3494.

27 (a) M. Galicia and F. J. Gonzalez, J. Electrochem. Soc., 2002,
149, D46; (b) H. G. Roth, N. A. Romero and D. A. Nicewicz,
Synlett, 2016, 27, 714-723.

14194 | Chem. Sci, 2024, 15, 14188-14194

View Article Online

Edge Article

28 M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl,
R. A. Pascal, G. G. Malliaras and S. Bernhard, Chem.
Mater., 2005, 17, 5712-5719.

29 Z.Dong and D. W. C. MacMillan, Nature, 2021, 598, 451-456.

30 J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.

31 T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Julia and
D. Leonori, Science, 2020, 367, 1021-1026.

32 (a) C. B. Chapleo, P. L. Myers, R. C. M. Butler, J. C. Doxey,
A. G. Roach and C. F. C. Smith, J. Med. Chem., 1983, 26,
823-831; (b) D. Giardina, P. Angeli, L. Brasili, U. Gulini,
C. Melchiorre and G. Strappaghetti, Eur. J. Med. Chem.,
1984, 19, 411-414.

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04199b

	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...
	Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanationsElectronic supplementary information (ESI) available:...


