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Affective computing, representing the forefront of human–machine

interaction, is confronted with the pressing challenges of the execution

speed and power consumption brought by the transmission of massive

data. Herein, we introduce a bionic organic memristor inspired by the

ligand-gated ion channels (LGICs) to facilitate near-sensor affective

computing based on electroencephalography (EEG). It is constructed

from a coordination polymer comprising Co ions and benzothiadiazole

(Co–BTA), featuring multiple switching sites for redox reactions.

Through advanced characterizations and theoretical calculations,

we demonstrate that when subjected to a bias voltage, only the site

where Co ions bind with N atoms from four BTA molecules

becomes activated, while others remain inert. This remarkable

phenomenon resembles the selective in situ activation of LGICs

on the postsynaptic membrane for neural signal regulation. Conse-

quently, the bionic organic memristor network exhibits outstanding

reliability (200 000 cycles), exceptional integration level (210 pixels),

ultra-low energy consumption (4.05 pJ), and fast switching speed

(94 ns). Moreover, the built near-sensor system based on it achieves

emotion recognition with an accuracy exceeding 95%. This

research substantively adds to the ambition of realizing empathetic

interaction and presents an appealing bionic approach for the

development of novel electronic devices.
Introduction

Affective computing represents an emerging technological
paradigm that empowers machines, particularly robots, with
the capacity to recognize, interpret, and respond to human
emotions.1–4 This advancement holds significant implications
across various domains;5,6 in particular, the accuracy and
harmony of human–machine interaction (HMI) will be signifi-
cantly enhanced, as affective computing serves as a catalyst for
liberating robots from preconceived notions. Presently, the
predominant approach to implement affective computing is
analyzing behavioral characteristics or physiological attributes
gathered through sensors, such as natural language,7 human
postures,8 facial expressions,9 electroencephalogram (EEG)
signals,10 etc. Among these characteristic signals, EEG stands
out as a real-time indicator of brain activity recorded from the
scalp, allowing affective computing based on it to genuinely
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New concepts
We report a bionic organic memristor network for near-sensor affective
computing and high precision emotion recognition. Existing studies
show that affective computing significantly enhances human–machine
interaction (HMI) by gathering physiological electroencephalogram (EEG)
signals, while its substantial data processing imposes considerable
challenges on the execution speed and power consumption of the system.
In this work, we purposely utilize a coordination polymer comprising Co
ions and benzothiadiazole (Co–BTA) with multiple switching sites for
in situ redox reactions, inspired by the selective in situ activation of ligand-
gated ion channels, to construct a bionic organic memristor network. Our
results show that the bionic organic memristor network based on the
polymer exhibits excellent resistive switching performances, including
reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-
low energy consumption (1.08 pJ), and ultra-fast switching speed (25 ns).
An implementation utilizing this bionic organic memristor network for
EEG-based emotion recognition achieves high accuracy (495%). This
work provides an attractive bio-inspired method for the development of
novel electronic devices and an application of energy-efficient near-sensor
affective computing.
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reflect individual emotional states without concealment.
However, its substantial data processing imposes considerable
challenges on the execution speed and power consumption of
the system.

Memristors, emerging devices endowed with large-scale in-
memory computing capabilities, offer a significant avenue for
addressing the challenges encountered in EEG-based affective
computing through near-sensor data processing.11 This
approach has proven effective in mitigating the complexities
associated with the transmission of voluminous data in diverse
intelligent analyses. For instance, Wei D. Lu’s research group
and Heejun Yang’s research group have employed the Pd/WOx/
Au memristor network and Au/SnS/Cr memristor network,
respectively, to achieve fast and low-power execution of hand-
written character recognition tasks.12,13 Additionally, the team
led by Ming Liu and Qi Liu integrated a Pt/Ti/Nb2O5�x/Pt
memristor network with sensors to build a multimode-fused
spiking neuron capable of recognizing pressure and tempera-
ture by near-sensors.14 It is a regret that the aforementioned
memristors are constructed from rigid inorganic materials,
creating an inherent chasm in mechanical properties separat-
ing them and the flexible devices employed for EEG signal
collection. In contrast, organic memristors with the charac-
teristic of intrinsic flexibility are more suitable for seamless
integration with flexible sensors, facilitating the development
of near-sensor EEG-based affective computing.15

With the data explosion in the big data era, memristors
are limited in their ability to process large amounts of data of
near-sensor EEG-based affective computing. As the primary

inspiration, the synapse is renowned for its ability to transmit
neural signals in a high-throughput manner, which is con-
ferred by the selective in situ activation of ligand-gated ion
channels (LGICs) located on the postsynaptic membrane, as
elucidated in Scheme 1a. After binding to neurotransmitters
released from presynaptic neurons, LGICs open in situ to allow
free ions within the synaptic gap to enter the postsynaptic
neuron, accompanied by the generation of action potentials on
the cell membrane. Different from other ion channels, such as
mechanically-gated ion channels present on the mechano-
receptor,16 only a portion of the LGICs that can form chemical
coordination with neurotransmitters are selectively opened
uncontrollably. Recently, it has been widely reported that
bionic organic memristors exhibit impressive performance
attributes.17 These advancements are due to their utilization
of organic semiconductor materials, which offer distinct advan-
tages in molecular design, synthesis methodologies, and large-
scale production.18,19 It provides a feasible technical route
to solving the dilemma of EEG-based affective computing, that
is, to develop a bionic organic memristor grounded in the
distinctive operational principle of LGICs.

In this study, we have developed a bionic organic memristor
that mimics LGICs by choosing a coordination polymer composed
of cobalt ions and benzothiadiazole (Co–BTA) as an active material
(Scheme 1b). Because substantial electron delocalization occurs as
the hybridization of p–d conjugation between inorganic metals
and the organic ligand,20 the Co–BTA film possesses abundant
Co–N coordination bonds to serve as active sites for resistive
switching through in situ redox transformation. Meanwhile, there

Scheme 1 (a) Schematic illustration of LGICs transmitting neural signals in a high-throughput manner through selective in situ activation. (b) Application
of the bionic organic memristor inspired by LGICs in EGG-based affective computing and its mechanism of resistive switching.
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are differences in the number of BTA molecules that provide
N atoms for Co ions in these sites, resulting in a significant
dispersion of their highest occupied molecular orbitals
(HOMOs) under the steric hindrance effect with different
strengths. It lays the foundation for selective in situ activation
of our bionic organic memristor, which has been verified by
various characterization analyzes and theoretical calculations.
Therefore, the bionic organic memristor network based on Co–
BTA exhibits excellent resistive switching characteristics,
including outstanding reliability (200 000 cycles), high integra-
tion level (210 pixels), ultra-low energy consumption (4.05 pJ),
and fast switching speed (94 ns). Finally, our bionic organic
memristor network was used as a near-sensor system to perform
the task of EEG-based emotional computing, and the results
showed that it can complete complex emotion recognition with
an accuracy of 95%. This research opens up new possibilities for
EEG-based affective computing and provides valuable insights
for the advancement of near-sensor systems in HIM.

Results and discussion

In Fig. 1a, it shows a potential chemical structure of Co–BTA
with multiple LGIC-like active sites. As a result of that discre-
pancy of the number of BTA molecules that provide binding N
atoms for Co ions among these sites (highlighted by blue,
green, and orange), their activation energies must be different,
laying the foundation for selective in situ resistive switching.
We employed a solid–liquid interfacial assembly method to
synthesize the continuous Co–BTA film by dripping the mixed
solution of CoCl2�6H2O and BTA�4HCl into ammonia on the
surface of indium tin oxide (ITO). It can quickly self-assemble to
form the desired coordination polymer, and this self-assembled

growth involves three reactions: the adsorption of precursors, the
organization of polar groups, and the occurrence of coordination
effects. More details about the preparation process are included in
the Experimental section and Fig. S1 of the ESI.† The molecular
structure of the synthesized Co–BTA film is confirmed by Fourier
transform infrared spectroscopy (FTIR). As seen in Fig. 1b, the
main absorption peaks of 1315, 1532, 1099, and 3196 cm�1 are
assigned to the stretching vibrations of C–N, CQC, C–C, and N–H
bonds in the organic component of BTA, respectively. Notably,
there is an absorption peak of CQN at 1625 cm�1, which is a
double-bond character of a partial C–N bond produced by the
conjugation effect between metal cations and organic ligands,
so that the coexistence of C–N and CQN bonds demonstrates
the formation of coordination between the cobalt ion and BTA
molecules.21,22 Thanks to a controlled preparation method, the
Co–BTA can be made into a large-area continuous film with high-
quality flexibility (Fig. S2 of the ESI†). In addition, this liquid–solid
interface method can adjust the film thickness by changing the
number of repeated cycles of processing, as shown in Fig. S3 of
the ESI† where the color of the film gradually deepens with the
number of experiments from 1 to 6 times.

The excellent processing characteristic of Co–BTA film lays
the material foundation for the development of high-
performance devices, so a bionic organic memristor with the
structure of Au/Co–BTA/indium tin oxide (ITO) was successfully
manufactured by us. As shown in Fig. 1c and d, it can be found
that its active layer of Co–BTA exhibits extremely high unifor-
mity, such as a thickness of about 100 nm tested by scanning
electron microscopy (SEM) and a roughness of less than 4 nm
tested by atomic force microscopy (AFM). Furthermore, the ITO
bottom electrode and Au top electrode of the bionic organic
memristor were transformed into a crossbar structure by mag-
netron sputtering, thereby expanding the device into a highly

Fig. 1 (a) Potential chemical structure of the Co–BTA molecule. (b) FTIR spectra of the Co–BTA film. (c) SEM image of the Co–BTA film on the cross-
sectional view. (d) AFM image of the surface morphology of the Co–BTA film. (e) Photograph of the bionic organic memristor network with the structure
of Au/Co–BTA/ITO. The inset is a digital image of the flexible bionic organic memristor network under bent conditions.
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integrated memristor network with 32 � 32 pixels (Fig. 1e),
whose linewidth is 150 mm as shown in Fig. S4 of the ESI.† The
intrinsic flexibility allows it to be bent substantially to match
the mechanical properties of flexible EEG electrodes (the inset
of Fig. 1e). Please note that SiO2/Si was selected as the substrate
for fabricating the memristor network, so it should be ultra-
sonically cleaned with deionized water, ethanol, and acetone in
sequence before use, and each cleaning lasts for 30 minutes.

The current–voltage curves of our bionic organic memristor
are recorded in Fig. 2a, and it shows that the memristor can
switch from a high resistance state (HRS) to a low resistance
state (LRS) at the voltage of 1.5 V (set voltage, Vs), exhibiting a
sudden 20-fold increase in current. When applying a reverse
voltage up to �0.75 V (reset voltage, Vr), the device will return to
the HRS and remain stable for a long time. Repeating the above
operation for 600 times, there is no significant change in
the switching characteristics of our memristor, which can be

demonstrated from the statistical results with Vs of 1.5� 0.50 V,
Vr of �0.75 � 0.25 V, HRS value of 3045.4 � 1561.1 O, and LRS
value of 190.4 � 86.8 O (Fig. S5, the ESI†). Our bionic organic
memristor also exhibits a stable non-volatile time retention
(410 000 s) and an ultra-low energy consumption for switching
(4.05 pJ), as shown in Fig. 2b and c. Note that depending on
the experimental setups, e.g. metal probes, cablings, measuring
systems, etc., the transient current responses of memristor
devices may or may not show initial spikes upon the applica-
tion of voltage stresses.23–29 In order to comprehensively reflect
the responding rate of our memristor, we define the switching
speed as the time interval between when the stressing voltage
starts to apply and when the current response reaches its
maximum. As depicted in Fig. 2c, the present organic memris-
tor shows a fast switching speed of 94 ns. Meanwhile, we tested
the effect of bending on the performance of the memristor
based on Co–BTA (Fig. S6 of the ESI†). During 100 bending

Fig. 2 (a) Typical current–voltage (I–V) characteristics cycles of a bionic organic memristor based on Co–BTA. (b) Retention performance test of the
device at the HRS and LRS. (c) Immediate current response (red) of the device under the stimulation of pulsed voltage (purple). The current limitation is
1 � 10�2 A. (d) The three-dimensional color-map of HRS/LRS value (left) and Vs/Vr distribution (right) of the memristor network. The value of each pixel is
the statistical result of 50 I–V curve tests. (e) The endurance test of the device under 200 000 pulses. The inner graph is enlarged curves within the box
area. (f) Performance comparison (reliability of the cycle, and integration level) of our bionic organic memristor with other state-of-the-art organic
memristors.
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cycles with a bending radius of 1.83 cm, the average fluctuation
of HRS/LRS values and switching voltages is lower than 6.75%,
which means that the prepared bionic organic memristor can
match a variety of wearable flexible sensors including EEG
electrodes. To fully elaborate the reliability, we have tested
the device-to-device (D2D) reliability and cycle-to-cycle (C2C)
endurance of the Co–BTA organic memristor. The 49 pixels in
memristor network were selected for D2D testing (Fig. S7 of the
ESI†), and its statistical analyses are recorded in Fig. 2d, show-
ing that the average fluctuation of the switching voltages is only
9.48%, yet that of the HRS/LRS resistance ratios reaches 28.7%.
Nevertheless, the ON/OFF ratios are maintained for larger than
10 for all devices, which can be reliably distinguished by
external CMOS read circuits. As described in the Experimental
section and Fig. 2e, the Co–BTA memristor exhibits promising
endurance performance, with the device resistances and ON/OFF
ratios only varying for 3.77% during 200 000 continuous operating
steps.30 All these figures of merits make the reliability of our
biomimetic memristor significantly superior to other reported
organic memristors (Fig. 2f).31–45

Before verifying the bionic resistive switching behavior of
the Co–BTA film, it is necessary to confirm the types of active

sites formed by Co ions in it, so we employ a variety of
characterization techniques and advanced theoretical calcula-
tions. From the test results of X-ray photoelectron spectroscopy
(XPS) in Fig. S8 of the ESI,† it can be found that the composi-
tion of the film mainly consists of Co, N, and C elements, and
the deconvolution of the N 1s peaks at 399.0 eV and 401.5 eV
reveal the presence of anilinic amine (–N–H–) and quinoid
imine (–NQ) groups, respectively. These peaks indicate the
formation of conjugation and electronic delocalization within
the p–d conjugated structure. The binding energy of the Co
2p3/2 peak and the accompanying satellite peak is 781.9 eV and
787.1 eV, respectively, consistent with Co2+ compounds rather
than Co3+ compounds.30,46,47 Based on these observations, we
believe that the N atoms coordinated with Co ions can originate
from 2, 3, or 4 BTA molecules (Z = 2, 3, or 4), which means that
there are three different types of active sites in the Co–BTA.
It is further characterized and confirmed by density functional
theory (DFT). In the active sites with Z of 2, or 3, the Co ions and
their coordinated BTA molecules are in the coplanar state,
while the site with Z of 4 is like butterflies flapping their wings
in space, i.e. four non-coplanar coordination molecules, as
shown in Fig. 3a–c. The more structural images of the three

Fig. 3 (a)–(c) Molecular structures of active sites in Co–BTA films. They are the calculation results of DFT. In situ measurement of the (d) Raman
spectrum and (e) UV-Vis spectrum of the electrochemical device based on Co–BTA stimulated by different bias voltages.
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active sites under different visual angles can be found in Fig. S9
of the ESI,† and their structural parameters are detailed in
Tables S1 and S2 of the ESI.† All tests show that the Co–BTA
film has three types of active sites, laying a data foundation for
analyzing its bionic resistive switching behavior.

According to the electrostatic potential calculated by DFT,
there is a significant electron-deficient effect in the Co–N
coordination bond across all active sites, and their energies
of the highest occupied molecular orbit (HOMO) respectively
are �3.35 eV (Z = 2), �3.38 eV (Z = 3), and �3.00 eV (Z = 4). This
suggests that the resistive switching of the Co–BTA film is
achieved through the redox transition of the Co–N bond at
the active sites, where the active site with Z of 4 is the easiest
among the three to lose electrons for transition under the bias
voltage. Considering that the DFT calculation is ideal, an
electrochemical Pt-tip/Co–BTA/ITO device (Fig. S11 of the ESI†)
is designed for in situ characterization of Raman spectroscopy
to explore the microscopic changes of an actual sample during
resistance switching. The results of Raman spectral analysis of
the film under different bias voltages are recorded in Fig. 3d.
As we all know, the infrared absorption peak of chemical bonds
with similar structures red-shifts with the increase of the steric
hindrance. From the chemical structures of the three active
sites, the steric hindrance of the site with Z of 2 and that of the
site with Z of 4 is the smallest and largest, respectively, so
the three absorption peaks of the Co–N bond (486.7 cm�1,
603.2 cm�1, and 694.4 cm�1) from left to right in the infrared
spectrum respectively belong to the active sites with Z of 2, 3,
and 4 under the bias voltage of 0 V. When the Co–BTA film is
subjected to the bias voltages of 1 V, 2 V, and 3 V, there is a new

absorption peak (740 cm�1) appearing on the leftmost absorp-
tion peak of the Co–N bond, which is attributed to the dis-
connection of the Co–N bond and the oxidation of Co ions in
the active site with Z of 4. When applying the bias voltage of
�1 V, and �2 V, the chemical environment of this active site
returns to the original state with the gradual disappearance of
the new peak. Importantly, the absorption peaks of other active
sites (Z = 2, and 3) remain unchanged during this reversible
reaction.

A similar phenomenon induced by chemical state transi-
tions also occurs in the test of in-site ultraviolet-visible (UV-vis)
spectroscopy. Initially, there are two main peaks at the wave-
length of 320 nm (blue part) and 465 nm (green part) in Fig. 3e,
which is influenced by the p–p* jumping of the conjugate
structure and the d–p* metal-to-ligand charge transfer. The
corroborative evidence for this part is described in Fig. S12
of the ESI,† including the UV-vis spectra of the individual
components and their analyses. During oxidation under posi-
tive voltage, these two peaks gradually differentiate due to the
destruction of the d–p conjugated structure of Co–N–C, yet the
differentiated peaks recombine under a reverse voltage, indi-
cating the restoration of the structure to its original state. These
results can prove that our sample has a unique selective in situ
redox transition for resistive switching, which is similar to the
selective in situ activation of LGICs. Specifically, the active sites
with Z of 2, 3, and 4 in the Co–BTA film can all be in situ
activated through redox reactions, where the activation energy
of the site with Z of 4 is the lowest, becoming the only one that
is selectively in situ active under the stimulation of small
voltage. This behavior is exactly the same as that of LGICs on

Fig. 4 (a) Changes of the current of the bionic organic memristor during long-term promotion. The amplitudes and widths of the applied voltage pulse
are 0.8 V and 10 ms, respectively. (b) SRDP and (c) STDP characteristic tests of the bionic organic memristor based artificial synapse. (d) The 288
continuous conductance states of the device. The inset is 16 linear conductance states between 0.32 mA and 0.49 mA. (e) Retention performance test of
16 linear conductance states.

Communication Materials Horizons

Pu
bl

is
he

d 
on

 2
5 

Q
as

a 
D

ir
ri

 2
02

4.
 D

ow
nl

oa
de

d 
on

 0
9/

07
/2

02
4 

6:
20

:3
6 

A
M

. 
View Article Online

https://doi.org/10.1039/d3mh01950k


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz.

the postsynaptic membrane, which is enough to show that
bionic molecular design is a potential strategy for improving
device performance.

In order to show the potential for affective computing,
emotion recognition is chosen as the application demonstra-
tion of our biomimetic organic memristor network, but before
that, we have tested the computing capabilities of the bionic
organic memristor as a neuromorphic device, including spike
rate dependent plasticity (SRDP), spike timing dependent plas-
ticity (STDP), and multiple conductance state regulation. In the
SRDP tests, ten consecutive pulses of 10 ms with 0.9 V were used
to stimulate the device, and the pulse frequency was altered by
adjusting the interval time (25 ms, 15 ms, 10 ms, 5 ms, 4 ms, 3 ms,
2 ms, and 1 ms) between pulses to observe its impact on the
synaptic conductance. The raw data tested on the device and
the normalized results are exhibited in Fig. S13 of the ESI† and
Fig. 4a, respectively. The synaptic conductance difference (Do)
is calculated by subtracting the 1st pulse conductance from
the 10th pulse conductance. It can be found that the response
current of the device increases with the increase of the

stimulation pulse number and interval time, exhibiting a
synaptic feature-related enhancement mechanism for the con-
ductance dependence of time intervals (Fig. 4b). Fig. 4c depicts
the STDP characteristics of the present Co–BTA memristor,
with the changes of device conductance presented in the
second and fourth quadrants of the plot. Note that although
the Hebbian rule48 describes four types of learning behaviors of
biological nerve systems, it does not mean that all memristive
synapses working on various switching and carrier transport
mechanisms have to obey these traces exactly. Herein, the
selective in situ activation and time-dependent oxidation of
the Z = 4 redox center accounts for the unique memristive
switching behaviors of the Co–BTA memristor devices, leading
to anomalous STDP curves that cannot be fitted by any of the
existing learning models of the biological Hebbian rule. Never-
theless, this new STDP curve may offer potential possibility to
widen the circuit functionality of artificial memristive synapses.
On the other hand, when a voltage from �0.4 V to 0.02 V is
applied in the step of 0.02 V, as shown in Fig. S14 of the ESI,†
the device is reset from HRS to LRS with the continuous current

Fig. 5 (a) Schematic illustration of a near-sensing system built on a bionic organic memristor. It can perform EEG-based affective computing, benefiting
from a bionic organic memristor network that emulates the intelligent algorithm of the broad learning system. (b) The identification accuracy of the
arousal (top) and valence (bottom) dimensions with increasing interactions. Confusion matrix of (c) the arousal and (d) valence dimensions. (e) Accuracy
comparison of the software-trained model and memristor-trained model on the arousal and valence dimensions.
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variation, showing an ability for multiple conductance state
regulation. It has a total of 288 continuous and adjustable
conductance states (Fig. 4d), of which 16 conductance states
between 0.32 mA and 0.49 mA were used to regulate the weights
for emotion recognition due to their good linear change and
time stability (4104 s, Fig. 4e).

Fig. 5a describes the working principle of the near-sensing
system, which performs EEG-based affective computing by
using the fabricated bionic organic memristor network to
simulate a broad learning system (BLS). As a very popular
artificial intelligence algorithm for processing EEG signals,
BLS has the characteristics of real-time processing, low time
complexity, and few-shot learning, so that its requirements for
computing power and storage capacity of hardware are much
lower than traditional deep learning models.49–51 Our system is
evaluated to recognize four target-emotions, that is happiness,
excitement, sadness, and anger, which are divided into two
categories of arousal dimension (ranging from negative to
positive) and valence dimension (ranging from weak to strong).
The detailed affective computing process is described in the
Experimental section. After 26 times of iterative training (Fig. 5b),
the system achieves exceptional recognition accuracy rates of
95.04% for arousal and 95.02% for valence dimensions on the
testing datasets, which means the built system based on a bionic
organic memristor can successfully achieve high-accuracy emo-
tion recognition through affective computing. The confusion
matrices for the arousal and valence emotional dimensions
are presented in Fig. 5c and d, respectively. Interestingly, the
number and distribution of samples with identification errors
in the confusion matrices are very close (arousal: 59, and 68;
valence: 60, and 68), which prompted us to conduct simulation
on computer software. Fig. 5e shows the recognition results
of the software-execution (arousal: 94.97% � 0.61%; valence:
95.01% � 0.71%), which is almost the same as that of the
memristor-based hardware system, and their weights of the
output layer closely follow a linear narrow distribution ranging
from 0.002 to �0.002 (Fig. S15 of the ESI†). It reveals that
there is a strong linear mapping between the software-trained
weights and the linear conductance of our bionic organic
memristor, allowing the emotion recognition system built on
it to demonstrate the unique ability to realize high-precision
affective computing, which is expected to become an important
component in the next-generation HMI technology.

Conclusions

To summarize, we were inspired by the working principle of
LGICs to develop a bionic organic memristor with Co–BTA as
the active material, which exhibits outstanding reliability, high
integration level, ultra-low energy consumption, and ultra-fast
switching speed. Relying on a variety of in situ characterizations
and advanced theoretical calculations, it is explained that these
excellent resistive switching properties originate from a unique
selective in situ activation of redox sites in Co–BTA films.
Among the sites, only the one with Z of 4 is reversibly activated

under bias voltage, while other sites (Z = 2, or 3) remained
stable. This is very similar to how LGICs transmit neural signals
through selective opening and closing to regulate the number
of free ions entering the postsynaptic neuron. Moreover, our
bionic organic memristor possesses the characteristics of a
neuromorphic device, including SRDP, STDP, and 288 contin-
uous conductance states, which lays the foundation for near-
sensor affective computing based on EEG. As we expected, the
built intelligent system can recognize the emotions of happi-
ness, excitement, sadness, and anger with an accuracy of over
95% by simulating the BLS algorithm. This work opens up a
new avenue for the development of an organic memristor,
including the potential bionic molecular designs and prospec-
tive affective computing applications.

Experimental
Synthesis of Co–BTA film

The Co–BTA films were prepared on commercial ITO glass
substrates by using the liquid–solid interface method. Firstly,
CoCl2�6H2O (47.6 mg, Sinopharm) and BTA�4HCl (56.8 mg,
Bide Pharmatech) powders were dispersed in 1000 mL of
deionized water and then ultrasonicated at 100 Hz for 10 min
to obtain a completely dissolved solution (hybrid solution). ITO
glass substrates were ultrasonicated in deionized water, etha-
nol, and acetone for 30 min, respectively. After that, the treated
and cleaned substrates were placed in an undisturbed and
smooth fume cupboard, followed by which 200 mL ammonia
was added to form a liquid–solid interface. Subsequently,
a mixed solution (20 mL) was carefully dropped onto the
ammonia and then left for 3 hours at room temperature to
remove the solution and obtain Co–BTA film. Finally, the film
was washed with deionized water, ethanol, and acetone, respec-
tively. The process described above constituted one cycle of
liquid–solid interface-assisted growth of the Co–BTA film. The
film thickness can be adjusted by repeating several synthetic
cycles.

Characterization of Co–BTA film

Transmission electron microscopy (TEM, Talos F200X G2) was
used to study the nanostructure of Co–BTA film by directly
growing it on copper wire operated at 200 kV. Scanning electron
microscopy (SEM, JSM-7800F) operated at 10 kV was performed
to study the microstructure of the Co–BTA film. Atomic force
microscopy (AFM, MFP-3D) measurements were conducted in
tapping mode to determine the thickness and roughness of the
Co–BTA film. FTIR spectra were obtained by a microscopic
infrared spectrometer (iN10 MX) with nanogram-level detec-
tion sensitivity. X-ray photoelectron spectroscopy (XPS, AXIS
UltraDLD) was carried out using Al Ka X-rays as the excitation
source to verify the elemental composition and chemical
valence of Co–BTA. A confocal microscopy Raman spectrometer
(Raman, Renishaw inVia Qontor) with a laser wavelength at
532 nm was used to clarify the molecular structure. Ultraviolet
and visible spectrophotometer (UV-vis, EV300) was employed to
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study the film structure on high transmittance conductive ITO
substrates.

Fabrication and characterization of a bionic organic memristor
based on Co–BTA

The electrical performance of the Co–BTA devices was analyzed
in the configuration of Au/Co–BTA/ITO in a 32 � 32 crossbar
array with an electrode linewidth of 150 mm. Firstly, after
ultrasonication in deionized water, ethanol, and acetone for
30 min, the SiO2/Si substrate was dried using a nitrogen gun.
Following this, a patterned mask with 32 rectangles (150 mm
width, 350 mm separation, and 2 cm length) was used to mask
the SiO2/Si substrate. The bottom ITO electrode was then
patterned on the SiO2/Si substrate through magnetron sputter-
ing at 0.7 Pa for 30 min. The Co–BTA film, serving as the active
material, was synthesized via the liquid–solid interface method.
Finally, the top electrode Au was deposited onto the Co–BTA
film through magnetron sputtering at 1.3 Pa for 30 min, using
the same mask after rotating 90 degrees. This process resulted
in the formation of the Au/Co–BTA/ITO device in a 32 � 32
crossbar structure. All electrical measurements were conducted
using a Keithley 4200 semiconductor parameter analyzer.
Current–voltage (I–V) curves of the Co–BTA memristor were
recorded in a dc voltage sweep node, by varying the applied
voltages from 0 V to 2 V, 2 V to 0 V, 0 V to �1 V, and �1 V to 0 V,
with a ramping step of �0.02 V. For the retention test, a 0.01 V
voltage pulse was applied periodically (3 s interval) to read the
device currents. Before testing, a positive voltage sweep (from
0 V to 2 V and 2 V to 0 V) was applied to set the device to LRS,
while a negative voltage sweep (0 V to �1 V and �1 V to 0 V) was
applied to reset the device to HRS, respectively. The endurance
performance of the Co–BTA memristor was evaluated by repeat-
edly applying a voltage pulse train, with the pulse amplitude
changing from 0 V to 2 V, 2 V to 0 V, 0 V to �1 V, and �1 V to
0 V in a �0.02 V ramping step and a 0.04 s pulse period,
respectively, to consecutively program the device’s conductance
or resistance states between HRS and LRS in an analog manner.
The device resistance was simply read as the quotient of the
as-read device current divided by the programming voltage.
A voltage pulse, with the pulse period of 150 ns (including
pulse width of 140 ns and pulse interval time of 10 ns) and
an amplitude of 1.5 V, is applied to the device to assess
the transformation speed. The energy consumption can be
calculated from:

E ¼
ðt
0

Vt
2Gtdt (1)

where E is the energy consumption, and Vt is the voltage
applied onto the device at time t while Gt is the device
conductance recorded at time t.

DFT simulation of Co–BTA

The theoretical methodology employed in this study utilizes
density-functional theory (DFT) with the Vienna Ab initio
Simulation Package (VASP) software. The generalized gradient

approximation-Perdew–Burke–Ernzerhof (GGA-PBE) exchange–
correlation functional was used, with k-point sampling at the
Gamma point. The wave function truncation energy was set to
500 eV and a Gaussian broadening with a width of 0.05 eV was
applied. Before static self-consistent calculations, all initial
structures underwent a structure optimization using the GGA-
PBE function.

BLS implementation for emotion recognition

The BLS was used to realize affective computing for human–
machine interaction via a Co–BTA-based organic memristor
network. The original EEG signals are from the publicly avail-
able DEAP dataset.51 Firstly, a bandpass filter (4–45 Hz) coupled
with independent component analysis was used to eliminate
ocular artifacts and high-frequency noise. Subsequently, Butter-
worth bandpass filters decomposed the preprocessed data
into four distinct frequency bands (theta (y) (4–8 Hz), alpha
(a) (8–12 Hz), beta (b) (12–30 Hz), and gamma (g) (30–45 Hz)),
which are closely linked to emotional activities. Lastly, the
differential entropy (DE) features from each trial were captured
using non-overlapping 1-second time windows to capture emo-
tional cues. The DE features were derived from a continuous
random variable X with a probability density function f (x) and a
defined support set S, as described below:

hðXÞ ¼ �
ð
S

f ðxÞ logðf ðxÞÞdx (2)

The DE features of emotional states by traditional strategies are
still susceptible to historical affective expressions. To tackle
this challenge, we introduced a novel module called dynamic
entropy feature smoothing (DEFS) to effectively smooth the DE
features and uncover their temporal characteristics. DEFS is a
dynamic approach that smooths out short-term variations and
highlights long-term patterns in EEG signals, facilitating it to
track the temporal dynamics of emotional information. The use
of DEFS enables better capture of common EEG patterns to
distinguish binary emotion levels on the valence and arousal
emotional dimensions, respectively. Let XDE (i) denote the DE
feature value at time step i of each trial with delay d, so the
smoothed features can be expressed as follows:

�XDEðnÞ ¼
1

d
XDEðnÞ þ XDEðn� 1Þ . . .þ XDEðn� d þ 1Þ½ � (3)

The instances that underwent DEFS were fed into the BLS for
training. To enhance the model’s generalization performance
and robustness, the final recognition performance was con-
firmed by averaging the accuracies obtained from 10-fold
cross-validation experiments on both the valence and arousal
emotional dimensions. The used number of feature nodes is 100
with 10 batches for feature nodes. The number of enhancement
nodes is 100, and the sigmoid transfer function with a shrinkage
factor of 0.9 for establishment. The weights randomly generated
are drawn from the normal distribution on the interval [�1, 1],
and the regularization parameter of ridge regression is 0.001.
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