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Soma–Iwamoto-type SCO complex
Fe(quinazoline)2[Au(CN)2]2 using the
quinazoline-type ligand†

Kosuke Kitase, *a Daisuke Akahoshib and Takafumi Kitazawaa,c

The Hofmann-type complex and Soma–Iwamoto-type complex

are cyano-bridged coordination polymers and both have been

widely researched. Now we have synthesized a novel Soma–

Iwamoto-type complex, namely Fe(quinazoline)2[Au(CN)2]2. This

complex shows the Soma–Iwamoto-type bilayer with Au–Au inter-

actions and a SCO phenomenon with a gradual change of mag-

netic susceptibility. Fe(H2O)2(quinazoline)2[Au(CN)2]2 has also been

synthesized and crystallized, and has been found to be a mono-

nuclear complex with hydrogen-bonding network interactions.

Introduction

The spin-crossover (SCO) phenomenon involves a reversible
spin transition between high-spin (HS) and low-spin (LS)
states. The Hofmann-type complex is a coordination polymer
comprising central metal ions, such as Fe, Ni, or Cd, bridging
ligands [M(CN)4] (M′ = Ni, Pd, Pt), and aromatic ligands, such
as pyridine or pyrazine. The first Hofmann-type complex
produced was Ni(NH3)2[Ni(CN)4]·2(C6H6), reported by
K. A. Hofmann.1 The first Hofmann-type SCO complex was
Fe(Py)2[Ni(CN)4], reported by Kitazawa et al.2 The Soma–
Iwamoto-type complex is a derivative of the Hofmann-type
complex with the square metal tetracyanide [M(CN)4] replaced
by a linear metal dicyanide [M(CN)2] (M′ = Ag, Au). We suggest
this type complex call “Soma–Iwamoto-type complex” because
the first reported one is [Cd(4,4′-bpy)2{Ag(CN)2}2]

4 and the
second one is [Cd(py)2{Ag(CN)2}2].

5,6 Soma and Iwamoto
reported both complexes. Many laboratories have researched
the Hofmann-type and Soma–Iwamoto-type complexes2–15 due

to their potential to be used as functional materials such as
sensors or switching materials and due to their tunable
properties.

Most reported Hofmann-type or Soma–Iwamoto-type com-
plexes contain pyridine, pyrazine,3 or bipyridine-type7 ligands
with all N atoms coordinated to metal atoms. However, the
Hofmann-type or Soma–Iwamoto-type complexes containing
other N-hetero aromatic ligands, such as imidazole11 or
pyrimidine,12–15 have been reported much less than have com-
plexes using pyridine, pyrazine, or bipyridine-type ligands. We
previously reported Soma–Iwamoto-type SCO complexes using
4-methylpyrimidine13,14 and 4-methoxypyrimidine.15

Quinazoline is a pyrimidine-type ligand, and its relatively
large π-electron system could form relatively strong π–π inter-
actions. Here, we synthesized a Soma–Iwamoto-type SCO
complex, namely Fe(quinazoline)2[Au(CN)2]2 (1‡) and notable
with its quinazoline ligand, and determined structural and
magnetic properties of this complex.

Experimental

Complex 1 was synthesized using Mohr’s salt Fe
(NH4)2(SO4)2·6H2O, L-ascorbic acid, K[Au(CN)2], and quinazo-
line. A yellow powder resulted from mixing Mohr’s salt with
L-ascorbic acid and quinazoline in a solution. Single yellow
crystals of complex 1 were grown using the slow diffusion
method. Yellow single crystals were also obtained using the
filter method, but in an amount so small precluding analyses
other than by single-crystal X-ray diffraction. The X-ray-deter-
mined formula and structure of this complex were different
from the others, so we called it “complex 2”. The details of the
synthesis method used is described in ESI.†

The expected composition of the synthesized powder
complex was confirmed by performing elemental analysis
using J-Science MICRO CORDER JM10, complex 1: anal. calc’d
for C20H12N8FeAu2: C 29.50%, H 1.48%, N 13.76%. Found: C
29.27%, H 1.65%, N 13.73%. This complex was also character-

†Electronic supplementary information (ESI) available. CCDC 2332161–2332165.
For ESI and crystallographic data in CIF or other electronic format see DOI:
https://doi.org/10.1039/d4dt00458b

aDepartment of Chemistry, Toho University, Chiba 274-8510, Japan.

E-mail: kitazawa@chem.sci.toho-u.ac.jp
bDepartment of Physics, Toho University, Chiba 274-8510, Japan
cResearch Centre for Materials with Integrated Properties, Toho University,

Chiba 274-8510, Japan
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ized by carrying out thermogravimetric (TG) analysis using a
Hitachi High-Technologies Corporation TG/DTA6200 appar-
atus (Fig. S1†) and powder X-ray diffraction (XRD) using a
Rigaku Co. X-ray diffractometer or MAC Science M03XHF22
apparatus (Fig. S3†).

The superconducting quantum interference device method
from Quantum Design MPMS-5S was used to measure the
magnetic susceptibilities of these complexes at temperatures
ranging from room temperature to 4 K under a 0.1 T field and
a cooling rate of 1 K min−1. The sample so analyzed was
placed in a gelatin capsule, which was filled with a plastic
straw, and the capsule was fixed by making a dent near the
capsule inside the straw.

The crystal structure of complex 1 was determined by carry-
ing out single-crystal XRD using a Bruker SMART diffract-
ometer with a Mo-Kα line, and done so at 296 K (HS state),
150 K (intermediate state), and 90 K (LS state). The structure
was solved using SHELX 2014 software.17,18

Results and discussion

We obtained a yellow powder sample of complex 1 and a
yellow crystal of complex 1 using the slow diffusion method.
However, the yellow crystal of Fe(H2O)2(quinazoline)2[Au
(CN)2]2 (2) was obtained using the filter method. That differ-
ence of formula could be explained by the difference in the
concentrations of the ligands during synthesis. The production
of the powder sample and single crystal using the slow
diffusion method involved a high ligand concentration, but a
low ligand concentration was used for the filter method. The
aqueous solution of Mohr’s salt and quinazoline turned yellow
during synthesis of the powder sample and single crystal using
the slow diffusion method. Which indicates that the Fe-quina-
zoline complex had formed. Therefore, we posited that
complex 1 was obtained by replacing some of the quinazoline
ligands of the Fe-quinazoline complex with [Au(CN)2]

− brid-
ging ligands—but that complex 2 was obtained by substituting
quinazoline ligands into a form or forms of the Fe-[Au(CN)2]

−

complex, such as {Fe[Au(CN)2]3}n
n−,16 when producing the

single crystals using the filter method. We determined the pre-
dominance of the substitution by the [Au(CN)2]

− bridging
ligand in the former case to be due to the high quinazoline

concentration, whereas substitution by H2O also occurred in
the latter case due to the low quinazoline concentration.

Fig. 1 displays the crystal structure of complex 1, showing
the Soma–Iwamoto-type double layer with aurophilic inter-
actions. The space group was determined to be P21/c at 296 K,
150 K, and 90 K. The lattice constants were determined to be
as follows: a = 10.8433(10) Å, b = 14.6937(14) Å, c = 14.7279(14)
Å, and β = 93.865(2)° at 296 K; a = 10.698(3) Å, b = 14.331(4) Å,
c = 14.527(4) Å, and β = 94.049(4)° at 150 K; and a = 10.662(3)
Å, b = 14.119(3) Å, c = 14.375(4) Å, and β = 94.257(4)° at 90 K.
The Fe–N bond length was found to be shorter at lower temp-
eratures (Table 1), indicative of the SCO phenomenon between
the HS and LS states. At 150 K, the Fe–N bond length was
observed to be between those at 296 K and 90 K, indicating
the Fe site at 150 K to be a mixture of HS and LS states. Also,
the unit cell was smaller at lower temperatures. The quinazo-
line ligand in complex 1 was disordered in two directions. Due
to steric hindrance, all the quinazoline ligands coordinated
with the metal atom using only their respective 3-position
nitrogens.

Fig. 2 displays the crystal structure of complex 2, showing a
mononuclear complex with a nitrogen atom at the quinazoline
1-position, H2O and CN–H2O hydrogen bond network, and
weak Au–Au interactions (Fig. 3 and Table 3). These inter-
actions seems to stabilize the mononuclear structure. The Fe–

Fig. 1 Crystal structure of complex 1. (Left: ORTEP structure. Right:
packing structure along the X axis.)

Table 1 Bond lengths of complex 1

Average bond lengths/Å

T/K 296(2) 150(2) 90(2)
Fe–Nligand 2.213(14) 2.10(2) 2.024(18)
Fe–Ncyano 2.145(9) 2.034(14) 1.961(12)
Au–C 2.002(13) 2.01(2) 2.007(19)
Au–Au 3.114(8) 3.086(10) 3.040(18)

Fig. 2 Crystal structure of complex 2. (Left: ORTEP structure. Right:
packing structure along the Y axis.)

Fig. 3 Hydrogen bonding network of complex 2.
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N bond length at 296 K and that at 90 K were observed to be
similar, in the 2.1–2.3 Å range (Table 2), indicative of complex
2 not showing the SCO phenomenon, and indicative of the Fe
state being HS at these two temperatures. The space group was
determined to be P1̄ at 296 K and 90 K. The lattice constants
were as follows: a = 7.3203(8) Å, b = 7.8613(8) Å, c = 10.8262(12)
Å, α = 81.6096(19)°, β = 77.6448(18)°, and γ = 79.8104(18)° at
296 K; a = 7.2983(11) Å, b = 7.7651(12) Å, c = 10.7931(17) Å, α =
80.236(4)°, β = 76.919(3)°, and γ = 79.867(3)° at 90 K.

Fig. 4 shows the acquired magnetic susceptibility curve of
complex 1, with the results indicating a gradual occurrence of
SCO between 100 K and 200 K. The magnetic susceptibility
was measured to be 3.6 cm3 mol−1 K at 300 K and 0.28 cm3

mol−1 K at 50 K. The magnetic susceptibility curve of complex
1 showed a two-step transition without a plateau and with the
half transition point, T1/2, at approximately 150 K. The double-
layered structure might have caused this behavior. A small
amount of magnetic susceptibility remained at very low temp-
eratures—perhaps due to supramolecular interactions such as
π–π interactions or due to the presence of slight amounts of
non-SCO impurities as in complex 2, with the former expla-
nation more likely than the latter one as no peak corres-
ponding to complex 2 was observed in the powder X-ray diffr-
action (Fig. S3†).

Yan-Cong Chen et al.8 reported the two complexes to be iso-
structural, but with complex 1 displaying a transition tempera-

ture higher than that that of Fe(isoquinoline)2[Au(CN)2]2. This
behavior has been reported between Fe(4-methylpyridine)2[Au
(CN)2]2 and Fe(4-methylpyrimidine)2[Au(CN)2]2 and can be
explained by the difference in the coordination field between
pyridine and pyrimidine. However, a plateau of the intermedi-
ate state was not observed in the magnetic susceptibility curve
of complex 1, despite the curve for Fe(isoquinoline)2[Au(CN)2]2
showing a plateau at about 120 K. This result indicated the
intermediate state of complex 1 to be less stable than that of
Fe(isoquinoline)2[Au(CN)2]2. Also, complex 2, observed to be
mononuclear, was observed to have a hydrogen-bonding
network, with this feature being specific to pyrimidine-type
complexes due to the additional noncoordinating N atoms.

Conclusions

We have synthesized a novel Soma–Iwamoto-type complex, Fe
(quinazoline)2[Au(CN)2]2 (1). Complex 1 shows a double-
layered structure and a two-step SCO phenomenon. Also, ana-
lysis of a single crystal of Fe(H2O)2(quinazoline)2[Au(CN)2]2
(complex 2) obtained using the filter method shows a mono-
nuclear complex and a hydrogen-bonding network. The differ-
ence between the structures could be explained by different
quinazoline concentrations during their syntheses. Complex 1
and previously reported complex Fe(isoquinoline)2[Au(CN)2]2
are isostructural, yet show different SCO behaviors.
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