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Asymmetric rectified electric and concentration
fields in multicomponent electrolytes with
surface reactions

Nathan Jarvey, Filipe Henrique and Ankur Gupta *

Recent experimental studies have utilized AC electric fields and electrochemical reactions in multicomponent

electrolyte solutions to control colloidal assembly. However, theoretical investigations have thus far been

limited to binary electrolytes and have overlooked the impact of electrochemical reactions. In this study, we

address these limitations by analyzing a system with multicomponent electrolytes, while also relaxing the

assumption of ideally blocking electrodes to capture the effect of surface electrochemical reactions. Through

a regular perturbation analysis in the low-applied-potential regime, we solve the Poisson–Nernst–Planck equa-

tions and obtain effective equations for electrical potential and ion concentrations. By employing a combi-

nation of numerical and analytical calculations, our analysis reveals a significant finding: electrochemical

reactions alone can generate asymmetric rectified electric fields (AREFs), i.e., time-averaged, long-range

electric fields, even when the diffusivities of the ionic species are equal. This finding expands our

understanding beyond the conventional notion that AREFs arise solely from diffusivity contrast. Furthermore,

we demonstrate that AREFs induced by electrochemical reactions can be stronger than those resulting from

asymmetric diffusivities. Additionally, we report the emergence of asymmetric rectified concentration fields

(ARCFs), i.e., time-averaged, long-range concentration fields, which supports the electrodiffusiophoresis

mechanism of colloidal assembly observed in experiments. We also derive analytical expressions for AREFs and

ARCFs, emphasizing the role of imbalances in ionic strength and charge density, respectively, as the driving

forces behind their formation. The results presented in this article advance the field of colloidal assembly and

also have implications for improved understanding of electrolyte transport in electrochemical devices.

1 Introduction

Colloidal particles immersed in an electrolyte aggregate along a
plane near an electrode when an AC field is applied1–8 due to
attractive electrohydrodynamic flows between the particles.2,9

Intriguingly, Woehl et al.10 and Bukosky and Ristenpart11

reported that the planar height at which colloids aggregate
exhibits a bifurcation that depends on the electrolyte type and
the frequency of the AC field. This bifurcation was particularly
surprising because the particles levitate several diameters away
from the electrode.10

Since this discovery, Hashemi et al.12 demonstrated through
direct numerical simulations of the Poisson–Nernst–Planck
(PNP) equations for a binary electrolyte that diffusivity contrast
between anions and cations induces a long-range steady electric
field, also referred to as an asymmetric rectified electric field
(AREF). The strength of the AREF is dependent on the diffusivity
contrast and frequency,13 which consequently determines the

electrophoretic force on the particle and the bifurcation height.
This mechanism was experimentally validated in a study by
Bukosky et al.14 Recently, Hashemi et al.15 have also argued that
AREFs can directly impact or even dominate flows from mechan-
isms such as induced-charged electrophoresis.

While AREFs are able to recapitulate experimental observa-
tions, their direct numerical simulation requires high-order
adaptive meshing,12,16 which poses its own challenge. To this
end, for a binary electrolyte, Hashemi et al.17 performed a
regular perturbation expansion on the PNP equations in the
low-applied-potential limit and showed that AREFs appear at
the second order in applied potential. Balu and Khair,18 in
contrast, performed a singular perturbation expansion in the
thin-double-layer limit and demonstrated that AREFs are recov-
ered at the second order in the ratio between double layer and
cell length. While both of these studies have furthered our
understanding of AREFs, they are limited to binary electrolytes.
Moreover, the aforementioned analyses on AREFs rely on the
ideally blocking electrode approximation, which can be a limit-
ing factor.19–21 Wang et al.20 note that ‘‘the AREF theory assumes
no flux for all ions at the electrodes; essentially, it does not account
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for faradaic reactions (electrochemistry), which will take place at
frequencies below 1 kHz in water’’. In their work, in addition to
the AC electric field, Wang et al.20 employed water splitting
reactions and experimentally demonstrated that colloidal aggre-
gation occurs at the location where the pH of the solution is at its
maximum. A similar influence of pH on colloidal aggregation
was also reported by Rath et al.,22 where the authors employed
the electroreduction of para-benzoquinone while also including
a variable steady component of the applied potential.

Given the increasing interest in utilizing electrochemical reac-
tions for manipulating colloidal assembly, we generalize the
regular perturbation analysis of Hashemi et al.15 in the small
potential limit to multicomponent electrolytes while also relaxing
the ideally blocking electrode assumption. We find that AREFs
can also be induced solely through electrochemical reactions,
even for symmetric diffusivities, and can be stronger than AREFs
created by diffusivity contrast alone. This demonstrates that
AREFs may be present in a wider parameter space than previously
anticipated. In addition to AREFs, we report the formation of
asymmetric rectified concentration fields (ARCFs). While AREFs
induce an electrophoretic force, ARCFs induce a diffusiophoretic
(or osmotic, depending on the definition) force.23–32 We discover
that ARCFs are primarily observed in systems with diffusivity
contrast and that electrochemical reactions do not produce
ARCFs, but can enhance ARCFs caused by diffusivity asymmetry.

The simultaneous inclusion of AREFs and ARCFs could
rationalize recent experimental findings. For instance, the col-
loidal aggregation reported in Wang et al.20 closely resembles the
diffusiophoretic focusing for an acid–base reaction reported in
Shi et al.33 and Banerjee et al.,27 but as their system also includes
an imposed electric field, the authors invoked the phenomena of
electrodiffusiophoresis. Our findings also provide mechanistic
insights into the formation of AREFs and ARCFs. Specifically, we
highlight that the imbalances in ionic strength and charge
density lead to AREFs and ARCFs, respectively. We also provide
convenient analytical expressions for AREFs and ARCFs, which
although valid only in the limiting case of small applied poten-
tials and thin electrical double layers, provide a good starting
point for estimating their spatial variations.

We provide a simplified model for ease of understanding in
Section 2. We outline the problem formulation in Section 3. We
perform a regular perturbation in the low-applied-potential
limit and derive effective equations for AREFs and ARCFs; see
Sections 4 and 5. Next, in Section 6, we validate our numerical
results with analytical calculations and report the dependencies
of AREFs on various parameters. We briefly discuss the factors
which control the strength of ARCFs. Finally, we describe the
limitations of our analysis, outline potential future research
directions, and discuss the implications of our findings on
colloidal assembly and electrochemical devices.

2 Toy model

Before delving into the details of the electrokinetic equations,
inspired by Hashemi et al.,12,15 we propose a toy model that is

able to capture the effect of surface reactions. At the outset, we
would like to clarify that the toy model described here ignores
several complexities that are present in a real system. However,
it provides a convenient choice to grasp the dominant physics
within the system.

We consider a system with a cation and an anion. Both the
ions can move in the z-direction due to an applied sinusoidal
electric field E = E0 cos(ot), where E0 is the amplitude, o is the
frequency and t is time. In addition to the electric field, the
cation also moves in the z-direction due to the presence of a
redox flux field, denoted here as N = N0 cos(ot) = g1E0 cos(ot);
where g1 is a constant. This assumption assumes that the redox
flux is proportional to the electric field, which is valid for small
amplitude oscillations.6 Note that the redox flux is not con-
suming/producing the cation but is rather inducing a velocity
on the cation; see Fig. 1. The two ions have valences of +1 and
�1 and their locations are denoted z+ and z�, respectively. It is
assumed that both the ions are at the location z� = 0 at t = 0.
The cation and anion have diffusivities of D+ and D�,
respectively.

The applied electric field is known to create an electromi-
grative flux, and the induced velocities for the cation and anion

are given by �D�e
kBT

E0 cosðotÞ; where e is the charge on an

electron, kB is Boltzmann’s constant, and T is the temperature.
The velocity induced on the cation due to the reactive flux is
g1

C
E0 cosðotÞ (obtained by equating the convective flux to the

redox flux), where C is the concentration scale of the cations.
This implies that one can write

dzþ
dt
¼ Dþe

kBT
þ g1

C

� �
E0 cosðotÞ; (1a)

dz�
dt
¼ �D�e

kBT
E0 cosðotÞ; (1b)

which upon integration yield z� ¼ �m�
E0

o
sinðotÞ; where mþ ¼

Dþe

kBT
þ g1

C

� �
and m� ¼

D�e

kBT
. By assuming the ions are point

charges, the net electric field induced, Einduced, by the ions at
a location z can be calculated by applying Coulomb’s law. For
|z| c z� and time averaging, it is straightforward to obtain

hEinducedi p E0
2(m+

2 � m�
2), (1c)

where h i represents time averaging and where we have ignored

the higher order terms beyond the second order in
z�
z

� �2
.

Clearly, as per eqn (1c), if g1 = 0 and D+ = D�, the induced
electric field vanishes. If g1 = 0 and D+ a D�, the induced
electric field is an AREF and falls under the scenario described
by Hashemi et al.12,15 However, even if D+ = D�, an AREF is also
possible when g1 a 0; see Fig. 1. This is the key finding that is
explored in this paper, as a surface redox flux can also produce
AREFs without the requirement of asymmetric diffusivities by
enhancing the effective mobility of one ion. We reiterate that
the toy model has its limitations, as it is not able to capture the
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subtle features that we discuss in the remainder of this manu-
script. Before proceeding further, we would like to emphasize
that the mathematical definitions of symbols in Section 2 are
not applicable for the remainder of the article. From the next
section, the symbols will be defined as they are introduced and
will remain valid for the rest of the article.

3 Problem setup
3.1 Dimensional problem

We study a one-dimensional electrochemical system with an
arbitrary number of ions and two electrodes separated by a
distance 2L; see Fig. 2. An AC field of frequency O is applied to
the electrochemical cell. X = 0 is at the centerline of the cell, c is
the length of the concentration boundary layer (conc. BL) and l
is a measure of the length of the electrical double layer (EDL).
Here, we investigate the formation of AREFs and ARCFs in the
presence of surface reactions without imposing any restrictions
on ionic diffusivities.

We seek to describe the spatial and temporal variations of
ionic concentrations and potential in the system to subsequently

determine the AREF and ARCF. Therefore, we write Poisson’s
equation34–36

�e@
2F
@X2

¼ Qe; (2a)

with e being the electrical permittivity of the solvent, F being the
potential, X being the spatial coordinate, and Qe being the
volumetric charge density. Qe ¼

P
i

eziCi; where e is the charge

on an electron and zi and Ci are the valence and concentration of
the ith ion, respectively.

Ion transport is modeled using the Nernst–Planck equations,34–36

i.e.,

@Ci

@t
þ @Ni

@X
¼ 0; (2b)

with Ni as the flux of ion i, given by

Ni ¼ �Di
@Ci

@X
�DizieCi

kBT

@F
@X

; (2c)

where t is time, Di is the diffusivity of the ith ion, kB is Boltzmann’s
constant, and T is temperature. We note that eqn (2b) ignores any
volumetric reactions. The charge flux (or current per unit area) is
evaluated as J ¼

P
i

zieNi.

Eqn (2) are subjected to the following boundary and initial
conditions. The sinusoidal potential boundary conditions are
given as

F(�L,t) = �FD sin(Ot). (3a)

The above equation ignores any native zeta potential of the
electrodes, similar to Hashemi et al.17 We consider a surface
reactive flux condition (i.e., non-ideally blocking) at the two
electrodes

Ni(�L,t) = Ni0 sin(Ot). (3b)

We note that the flux amplitude Ni0 may not be identical at the
two electrodes,37 but is assumed to be the same and time-
independent for simplicity. Typically, Ni0 is dependent on
applied potential and ion concentrations. We would like to
clarify that that the applied flux is dependent on frequency and
has the same sinusoidal dependency as the potential, i.e., it is
assumed that the potential and fluxes are in-phase. The depen-
dency of the amplitude Ni0 on FD is discussed in Sections 4 and
6.4. We also define current amplitude J0 ¼

P
i

zieNi0; see Fig. 2.
At t = 0, the electrical potential is

F(X,0) = 0, (3c)

and the concentrations are given by

Ci(X,0) = Ci0. (3d)

The initial concentrations are required to maintain electroneu-
trality, i.e.,

P
i

ziCi0 ¼ 0.

Fig. 1 Schematic of the toy model. (a) A cation and an anion move in the
z-direction as a response to an electric field E. The cation also moves in
response to a surface redox flux N. Both E and N are sinusoidal in time. N is
proportional to E. The velocity induced by the electric field is dependent
on the charge and the diffusivity of the ion. The velocity induced by surface
reactions on the cation is proportional to the strength of the surface
reaction. (b) The position of the cation (z+) and anion (z�) as a function of
time t. When the diffusivities of each ion are equal and there are no
reactions, the movement of ions has equal amplitude and thus no AREF is
formed. If the diffusivities are unequal or surface reactions are present, the
amplitudes are no longer equal and an AREF is formed.
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3.2 Dimensionless problem

We write dimensionless concentration ci ¼
Ci

C�
; diffusivity Di ¼

Di

D�
; time t ¼ tD�

L2
; potential f ¼ eF

kBT
; spatial coordinate x ¼ X

L
;

charge density re ¼
Qe

eC�
; charge flux j ¼ JL

eD�C�
; species fluxes

ni ¼
NiL

D�C�
; and frequency o ¼ OL2

D�
; where C* is a reference

concentration and D� is a reference diffusivity. We also define

l ¼
ffiffiffiffiffiffiffiffiffiffiffi
ekBT
e2C�

r
as a representative measure of double-layer thick-

ness and k ¼ L

l
. We would like to clarify that l is not the true

Debye length, as it is based on a reference value C* and not the
ionic strength. We make this choice on purpose to decouple the
effects of ionic valences and k. As we will discuss later, the true
Debye length is given by a combination of l and ionic strength.

In dimensionless variables, eqn (2) take the form

�@
2f
@x2
¼ k2re: (4a)

@ci
@t
�Di

@2ci
@x2
�Dizi

@

@x
ci
@f
@x

� �
¼ 0; (4b)

and eqn (3) become

f(�1,t) = �fDsin(ot), (5a)

ni(�1,t) = ni0sin(ot), (5b)

f(x,0) = 0, (5c)

ci(x,0) = ci0, (5d)

where fD ¼
eFD

kBT
, ni ¼ �Di

@ci
@x
�Dizici

@f
@x

, ni0 ¼
Ni0L

D�C�
, j0 ¼

J0L

eD�C�
and ci0 ¼

Ci0

C�
, while we require

P
i

zici0 ¼ 0 to maintain

electroneutrality.

4 Asymptotic solution for small
applied potentials

In this work, we employ a regular perturbation expansion in
the low-applied-potential limit, i.e. fD { 1. While this limit is
not directly observed in experiments (which generally tend to
operate in moderate to large potential limits), it is able to
capture the essential physics of the electrokinetic problem,
albeit qualitatively.7,11,14 This limit is also a common choice
for theoretical developments.17,38–43

The perturbation expansions in powers of fD are f = f(0) +
fDf

(1) + fD
2f(2) + O(fD

3), ci = c(0)
i + fDc(1)

i + fD
2c(2)

i + O(fD
3), ni =

n(0)
i + fDn(1)

i + fD
2n(2)

i + O(fD
3), j = j(0) + fDj(1) + fD

2j(2) + O(fD
3),

and re = r(0)
e + fDr

(1)
e + fD

2r(2)
e + O(fD

3), where the superscripts
(0), (1), and (2) refer to the leading-, first-, and second-order
terms, respectively.

In the small potential limit, we assume that the equilibrium
cell potential is 0 and invoke the linearized Butler–Volmer
kinetic equation to write ni0 = fDn(1)

i0 . Thus, neglecting the
equilibrium potential implies that the applied potential is the
overpotential and the fluxes (and consequently the current) are
proportional to the overpotential. This relationship was system-
atically derived by Prieve et al.6 We acknowledge that this assump-
tion ignores the impact of equilibrium cell potential35,36 and also
neglects higher-order effects. These effects can become important
in experimental systems20–22 where the voltage amplitude or the

Fig. 2 Schematic of the model problem. (a) We consider a cell of length 2L with an arbitrary number of ions. X is the spatial coordinate and J0sin(Ot) is
the charge flux due to surface reactions. (b) Zoomed-in schematic of the dashed box. The cell consists of three spatial regions: the electrical double layer
(EDL), a concentration boundary layer (conc. BL), and the bulk. The thickness of the EDL is denoted by l and the thickness of the conc. BL is denoted by c.
Di is the diffusivity of the ith ion, D is a characteristic diffusivity corresponding to the conc. BL length, and O is the frequency of the applied field. We show
that Di asymmetry and surface reactions can cause AREFs, and both attributes do so due to an imbalance in ionic strength. We also show that Di

asymmetry can create an ARCF due to an imbalance in charge, and surface reactions can further enhance them.
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steady bias in the applied potential impacts the reaction rate,
boundary conditions, and leading order solution. Therefore, the
analysis presented here will need to be adjusted to incorporate
these effects. We outline the modifications required to incorpo-
rate these effects in Section 6.4.

4.1 Leading order

The leading-order limit refers to the condition of no applied
potential, and thus the leading-order solutions are set by the
initial conditions

f(0)(x,t) = 0, (6a)

c(0)
i (x,t) = ci0. (6b)

One can also verify that the solution above satisfies the govern-
ing equations and boundary conditions at the leading order.

4.2 First order

At the first order, eqn (4a) takes the form

@2fð1Þ

@x2
¼ �k2rð1Þe : (7a)

For the ith ion, eqn (4b) reduces to

1

Di

@c
ð1Þ
i

@t
¼ @

2c
ð1Þ
i

@x2
þ zici0

@2fð1Þ

@x2
: (7b)

In order to separate temporal and spatial variables, we consider

solutions to eqn (7a) and (7b) of the forms fð1Þðx; tÞ ¼

Im eiotf̂ð1ÞðxÞ
h i

and c(1)
i (x,t) = Im[eiotĉ(1)

i (x)]. The governing equa-

tions with only spatial dependency become

d2f̂ð1Þ

dx2
¼ �k2r̂ð1Þe ; (8a)

ioĉð1Þi

Di
¼ d2ĉ

ð1Þ
i

dx2
þ zici0

d2f̂ð1Þ

dx2
: (8b)

Following a similar process for the boundary conditions listed
in eqn (5), we find the boundary conditions for eqn (8) are

f̂ð1Þ
���
x¼�1
¼ �1; (9a)

� dĉi
ð1Þ

dx
þ zici0

df̂ð1Þ

dx

 !�����
x¼�1

¼ n
ð1Þ
i0

Di
: (9b)

Eqn (8) and (9) enable the determination of ĉ(1)
i and f̂ð1Þ. Since

the variables are periodic at this order, i.e., the average of eiot is 0,
neither an AREF nor an ARCF are observed. Thus, we examine the
second order.

From the results of eqn (8), we write salt concentration or

salt ŝð1Þ ¼
P
i

ĉ
ð1Þ
i ; charge density r̂ð1Þe ¼

P
i

ziĉ
ð1Þ
i ; ionic strength

Î ð1Þ ¼
P
i

zi
2ĉ
ð1Þ
i ; and electric field Êð1Þ ¼ �df̂

ð1Þ

dx
. These variables

are employed at the second order.

4.3 Second order

We time average the governing equations at the second order
over one period of the applied potential such that eqn (4a) reads

d2 fð2Þ
� 	
dx2

¼ �k2 rð2Þe

D E
: (10a)

We add eqn (4b) for all ions and time average to get

d2 sð2Þ
� 	
dx2

� 1

2

d

dx
Re r̂ð1Þe

�Eð1Þ
� �

¼ 0: (10b)

We multiply eqn (4b) by zi, time average, and sum the equations
to obtain

d2 rð2Þe

D E
dx2

þ I0
d2 fð2Þ
� 	
dx2

� 1

2

d

dx
Re Î ð1Þ �Eð1Þ
� �

¼ 0: (10c)

Variables with bar are complex conjugates of variables with hat,
and h i corresponds to time-averaged variables. Note that
eqn (10) are sufficient to determine the presence and forms of
the AREF and ARCF. Further, we determine that diffusivity has
no explicit effect on the second order time-averaged results,
though Di indirectly influences the first-order variables.

The boundary conditions given in eqn (5) at the second
order become

d sð2Þ
� 	
dx

� 1

2
Re r̂ð1Þe

�Eð1Þ
� � !�����

x¼�1

¼ 0; (11a)

d rð2Þe

D E
dx

þ I ð0Þ
d fð2Þ
� 	
dx

� 1

2
Re Î ð1Þ �Eð1Þ
� �0

@
1
A
������
x¼�1

¼ 0; (11b)

hf(2)i|x=�1 = 0. (11c)

We integrate eqn (10b) and (10c) with boundary conditions in
eqn (11a) and (11b) to write

d sð2Þ
� 	
dx

� 1

2
Re r̂ð1Þe

�Eð1Þ
� �

¼ 0; (12a)

� 1

k2
d3 fð2Þ
� 	
dx3

þ I0
d fð2Þ
� 	
dx

� 1

2
Re Î ð1Þ �Eð1Þ
� �

¼ 0; (12b)

where we have also utilized eqn (10a). Note that we define the

ARCF as the salt gradient
d sð2Þ
� 	
dx

. To integrate hs(2)i using eqn (12a),

since the flux of salt is zero at both boundaries at the second order,Ð 1
�1 sð2Þdx
� 	

¼ 0 can be used as a boundary condition.
Similarly, eqn (12b) is a third-order equation in hf(2)i, but we

only have two boundary conditions in eqn (11c). To find the
third boundary condition,37 we note that since the flux of
charge is zero at both boundaries at the second order,Ð 1
�1 rð2Þe dx
D E

¼ 0. By substituting eqn (10a) in the aforemen-

tioned condition, we obtain

d fð2Þ
� 	
dx

�����
x¼1

�
d fð2Þ
� 	
dx

�����
x¼�1

¼ 0: (13)
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Eqn (12b) can thus be solved with eqn (11c) and (13) as
boundary conditions.

Experimentally,8,10,11,14,20,22 the relevant limit is thin EDLs,
or k c 1. In this limit, a singular perturbation is required
where solutions are divided into the EDL regions and the region
outside the EDLs.18,37,44 However, since AREFs occur outside
the EDLs, one can simplify eqn (12b) in the limit k c 1 to
directly write

Eð2Þ
D E

¼ � 1

2I ð0Þ
Re Î ð1Þ �Eð1Þ
� �

; (14)

where Eð2Þ
� 	

¼ �
d fð2Þ
� 	
dx

. We note that eqn (14) is valid only

outside the EDL regions, and thus directly predicts the AREF.
Eqn (14) highlights that the presence of an AREF is only
dependent on the first-order ionic strength and the first-order
electric field. Even further, it is known that as Ē(1) a 0 in the
concentration boundary layer due to the asymmetric boundary
conditions (see eqn (9) and the discussion in Section 6.1.1),
hE(2)i will be nonzero when Î(1) a 0. Physically, this implies that
an imbalance in ionic strength outside the EDL regions creates
an AREF. This is a crucial physical insight that our analysis
reveals. We would like to emphasize that this requirement is
true for an arbitrary number of ions without any restriction on
valences and diffusivities, albeit within the limits of thin
double layers and small potentials.

We provide a brief physical explanation regarding the
requirement of Î(1) a 0 to create an AREF. Physically, EDL
charging and/or redox reactions produce electric currents
which subsequently induce a net electric field in the regions
outside the EDLs. Still, electroneutrality is required to hold in
the regions excluding the EDLs. Therefore, outside the EDLs, the
only possible charge flux is an electromigrative flux, which has a
magnitude that is directly dependent on the local ionic strength.
This induced imbalance in ionic strength produces an asymme-
try in the local conductivity of the electrolyte, which results in a
time-averaged charge flux. An AREF forms to balance this
charge flux.

Eqn (12a) shows that there can be steady salt gradients
at the second order. Since salt gradients give rise to
diffusiophoresis,23–25,27–29,32 the salt gradient or ARCF can
simply be evaluated by utilizing eqn (12a). We emphasize that
ARCFs are also a phenomenon that occurs outside EDLs and
are induced by an imbalance in the first-order charge density;
see eqn (12b). At this point, we note that diffusiophoretic
mobility may vary for different combinations of ions,28 and
calculating a steady concentration field for each ion may be
important in some scenarios. These calculations are straight-
forward, but we do not detail them for brevity.

We summarize the procedure for estimating AREFs and
ARCFs in the form of a flowchart in Fig. 3. Ion valences,
diffusivities, charge fluxes due to surface reactions, relative
double-layer thickness, and frequency are the required inputs
of the first-order solution. At the first order, the Poisson
eqn (4a) and the Nernst–Planck (NP) equation eqn (4b) are
solved together to obtain ion concentrations and potential.

They are subsequently used to determine the first-order charge
density and ionic strength. Once the first-order charge density,
potential (and by extension electric field), and ionic strength are
determined, the AREF is evaluated using eqn (14). A nonzero Î(1)

outside of the EDLs indicates a nonzero hE(2)i, and thus indicates
the presence of an AREF. Similarly, first-order charge density and
potential are used to determine the ARCF using eqn (12a). A
nonzero r̂(1)

e outside the EDLs is a requirement for an ARCF.

4.4 Numerical solution procedure

We first solve eqn (8) with boundary conditions in eqn (9) using
the bvp4c functionality in MATLAB. Di, zi, ci0, n(1)

i0 , k and o are
used as inputs to our code. bvp4c deploys an adaptive grid
meshing in the spatial dimension. We benchmark these numer-
ical results with the results from Hashemi et al.17 for a binary
electrolyte with no reactions and asymmetric diffusivities.

Next, we also use bvp4c to solve eqn (12b) with boundary
conditions set by eqn (11c) and (13). These equations require
the additional input of Î(1)Ē(1), which we calculate from the first-
order equations. Similarly, we solve eqn (12a) with the salt
conservation boundary condition. This calculation requires the
input of r̂(1)

e Ē(1), which we obtain from the first-order equations.
We benchmark our results with the binary electrolyte results
from Hashemi et al.17 Comparisons between numerical and
analytical results are shown in Fig. 4 and 6, and our adaptation
of the analytics from Hashemi et al.17 are given in the Appendix.

5 Analytical solution for symmetric
diffusivities and thin double layers

To make analytical progress, we assume equal diffusivities of all
ions, i.e., Di = 1, and the thin-double-layer limit, i.e., k c 1.
Eqn (4) at first order in fD for the variables r̂(1)

e , Î(1), and

f̂ð1Þ become

�d
2f̂ð1Þ

dx2
¼ k2r̂ð1Þe ; (15a)

ior̂ð1Þe ¼
d2r̂ð1Þe

dx2
þ I ð0Þ

d2f̂ð1Þ

dx2
; (15b)

Fig. 3 Methodology for calculating the AREF and ARCF analytically in
low-potential and thin-double-layer limits for multi-ion electrolytes. The
key finding is that a nonzero first-order ionic strength is a sufficient
criterion to observe an AREF and a nonzero first-order charge density
outside EDLs is a sufficient condition to observe an ARCF.
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ioÎ ð1Þ ¼ d2Î ð1Þ

dx2
þ
X
i

zi
3ci0

d2f̂ð1Þ

dx2
; (15c)

The corresponding boundary conditions for these equations
are given by

f̂ð1Þ
���
x¼�1
¼ �1; (16a)

� dr̂ð1Þe

dx
þ I ð0Þ

df̂ð1Þ

dx

 !�����
x¼�1

¼
X
i

zin
ð1Þ
i0 ; (16b)

� dÎ ð1Þ

dx
þ
X
i

zi
3ci0

df̂ð1Þ

dx

 !�����
x¼�1

¼
X
i

zi
2n
ð1Þ
i0 : (16c)

We require asymmetric solutions to these equations since f̂ð1Þ

has asymmetric boundary conditions. We begin by finding an

expression for r̂(1)
e . As a shorthand notation, let l1 ¼

ffiffiffiffiffi
io
p

and

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ð0Þk2 þ io
p

. Then, by substituting eqn (15a) into
eqn (15b) and integrating, we determine

r̂(1)
e = B sinh(l2x), (17)

where B is an unknown constant. Eqn (17) is utilized in
eqn (15a) and integrated twice to find

f̂ð1Þ ¼ xþ B
k2

l22
x sinh l2ð Þ � sinh l2xð Þ½ �; (18a)

where we have already employed the boundary conditions in
eqn (16a). With functional forms for both f̂ð1Þ and r̂(1)

e , we use
eqn (16b) to show

B ¼ �
l22 j

ð1Þ
0 þ I ð0Þ
h i

I ð0Þk2 sinh l2ð Þ þ l12l2 cosh l2ð Þ
; (18b)

where j
ð1Þ
0 ¼

P
i

zin
ð1Þ
i0 . With the full forms of f̂ð1Þ and r̂(1)

e deter-

mined, we solve for Î(1). Based upon eqn (15c), we observe that
we will require a particular and a homogeneous solution to
determine Î(1) due to the inhomogeneity brought about by the
electromigrative term. Rewriting eqn (15a) in the form of an
operator on the left side, we show

d2

dx2
� l12

� �
Î ð1Þ ¼

X
i

zi
3ci0k2r̂ð1Þe : (19)

Note that from eqn (15a) and (15b),
d2

dx2
� l22

� �
r̂ð1Þe ¼ 0. This

means that we can apply the operator
d2

dx2
� l22

� �
to both sides

of eqn (19) to reach a homogeneous equation. Taking only the
asymmetric solutions for Î(1), we arrive at

Î(1) = F sinh(l1x) + G sinh(l2x), (20a)

where F and G are constants that need to be determined. We
take G such that it cancels out the inhomogeneity in eqn (19),

which results in

G ¼

P
i

zi
3ci0

I ð0Þ
B: (20b)

Next, we apply the boundary conditions in eqn (16c) and
determine

F ¼ �

P
i

zi
2n
ð1Þ
i0 þ

P
i

zi
3ci0

� �
j
ð1Þ
0

.
I ð0Þ

l1 cosh l1
: (20c)

With r̂(1)
e and Î(1) fully determined, we invoke eqn (14) to obtain

an expression for the AREF. We also invoke eqn (12a) to
calculate the ARCF.

The analytical expressions obtained shed light on the physics
of the EDLs and concentration boundary layers. In the experi-
mentally relevant limit of thin double layers relative to the length
of the concentration boundary layer, i.e., o/(I(0)k2) { 1, the
charge density obtained from eqn (17) is entirely screened over
the EDL regions. However, there are salt dynamics introduced by
the surface reactions, resulting in an ionic strength imbalance
over the concentration BL regions, as seen from the homoge-
neous solution in eqn (20a). AREFs, therefore, result from the
simultaneous presence of first-order electric field and ionic
strength. Local maxima of the components of ionic strength
are found over the concentration boundary layer dimensionless
length scale o�1/2; see Fig. 2(b). Simultaneously, surface reac-
tions, an AC field, or both effects can produce a residual electric
field in the concentration boundary layers. In fact, it can be
shown by integrating eqn (15a) and (15b) over the EDLs that in
order for the combination of diffusive and electromigrative
fluxes to match the surface charge flux and the rate of change
of accumulated charge in the EDLs, there must be a homoge-
neous residual electric field in the concentration BLs. As seen

from eqn (18a), this residual field is given by Êð1Þ ¼

�1� Bk2 sinhðl2Þ
l22

a0; which leads to the conclusion that only

a nonzero Î(1) is requisite to lead to an AREF. Additionally, we note
that the charge density is fully screened over the EDLs in this
scenario, meaning no ARCF will develop (see also Section 6.2).

6 Results and discussion
6.1 Asymmetric rectified electric fields (AREFs)

6.1.1 Binary electrolyte. We first analyze the formation of
an AREF due to surface reactions and compare it with the
previously known requirement of diffusivity asymmetry to
produce AREFs.12,17,18 We focus on the limit of k c 1 such that
eqn (14) is valid. We begin by comparing the two mechanisms
for a monovalent binary electrolyte. Fig. 4 displays a comparison
between numerical (orbs) and analytical (solid lines) results
between the two mechanisms for AREF formation, i.e. diffusivity
asymmetry (blue) and surface reactions (pink). Numerical results
are calculated as per the procedure outlined in Section 4.4.
Analytical results are determined by the approach described in
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Section 5. Results by Hashemi et al.17 are employed for the
diffusivity asymmetry case to obtain first-order results which are
subsequently utilized in eqn (14) to obtain the AREF; see the
Appendix for details. The surface reaction case is presented for
j(1)
0 = �0.5 and D1 = D2 = 1, while the diffusivity asymmetry case is

presented for j(1)
0 = 0, D1 = 2 and D2 = 1. We ignore the spatial

regions located between x = �1 to x = �0.9 and x = 0.9 to x = 1 to
focus on the regions outside the EDLs. As evident from Fig. 4, we
obtain excellent quantitative agreement between analytical and
numerical results in all scenarios and for either mechanism.

First, we note that an AREF is present even with symmetric
diffusivities due to the presence of surface reactions, indicating

a wider parameter space that can give rise to AREFs than was
previously anticipated. We observe that both the shape and the
magnitude of the AREF are different for the two formation
mechanisms employed; see Fig. 4(a). Specifically, for the para-
meters chosen, reaction-driven AREFs display a maximum near
the left electrode, while AREFs produced by diffusivity asym-
metry possess a maximum near the right electrode. The mag-
nitude of the AREF maxima with surface reactions is greater
than that of the AREF maxima with asymmetric diffusivities by
roughly a factor of 5.

We discuss the dependency of the maximum value of the
AREF, denoted here by AREFmax, with k in Fig. 4(b). For both
mechanisms, AREFmax decreases in magnitude as k increases.
However, the decrease observed with surface reactions is signifi-
cantly lower than the decrease observed with diffusivity asymme-
try; we find that AREFs with diffusivity asymmetry decay as k�2,
consistent with Balu and Khair.18 Physically, AREF formation due
to diffusivity asymmetry is driven by the currents arising from
the EDLs. An increase in k reduces the volume of charge (and the
current) in the EDLs. Therefore, AREFmax also decreases. On the
other hand, the current produced by surface reactions is not
directly related to k, leading to a weaker dependence of AREFmax

on k. The variation of AREFmax with o is given in Fig. 4(c). The
surface reactions AREFmax is insensitive to the change in o, while
the diffusivity asymmetry AREFmax increases with an increase in
o. For o = 100, AREFmax with reactions is still greater than with Di

asymmetry by roughly a factor of 5.
The results outlined in Fig. 4(b and c) demonstrate that if

surface reactions are present, AREFs could be stronger than the
AREFs created by diffusivity asymmetry alone, at least for the
parameters chosen. To better understand the dependencies of
AREFmax on k and o, we employ numerical results to expand
our parameter sweep to k = 102–104 and o = 10–103 in Fig. 5.
Fig. 5(a) shows the results for AREFs driven by surface reac-
tions. The largest values of AREFmax occur around k = 100 and
o = 100. Additionally, the different contours shown are all
within an order of magnitude of one another, indicating that
AREFmax is weakly dependent on k and o. This weak depen-
dency for a constant reactive charge flux can be understood
through the dependency of first-order ionic strength. A nonzero
Î(1) with surface reactions is impacted strongly by the boundary
conditions n(1)

i0 and weakly due to the effects of k and o, as
shown analytically in eqn (18b) and (20c). Furthermore, our
analysis shows that Ē(1) also has a strong dependency on the
surface reactive flux and a weak dependency on the frequency
of the applied field. These coupled dependencies directly lead
to the non-monotonic behavior observed in Fig. 5(a), and also
explain why AREFmax values are within an order of magnitude
of one another for a wide range of k and o values.

In contrast, Fig. 5(b) shows the contours of AREFmax with k
and o values for AREFs caused by diffusivity asymmetry. Here, a
monotonic increase in AREFmax with an increase in o and a
decrease in k are observed. Unlike the surface reactions case,
the differences in AREFmax are on the scale of several orders of
magnitude between different contours. This indicates a strong
dependency of the AREF on both k and o.

Fig. 4 Analysis of the AREF for a binary electrolyte. (a) hE(2)i vs. x for surface
reactions (pink, left y-axis) and diffusivity asymmetry (blue, right y-axis) cases.
Dependency of the maximum value of the AREF, i.e., hE(2)

maxi = AREFmax on (b) k
with o = 100 and (c) o with k = 100. The solid lines represent analytical solutions
and the orbs are numerical calculations. The pink color represents surface
reactions, and the blue color represents diffusivity asymmetry. All cases have
ions with valences of z1 = 1 and z2 =�1, respectively. Surface reactions have j(1)

0 =
�0.5, D1 = 1, and D2 = 1, while diffusivity asymmetry has j(1)

0 = 0, D1 = 2, and D2 = 1.
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The results outlined in Fig. 4 and 5 emphasize that the
behavior of AREFs with surface reactions is different from the
behavior of AREFs with asymmetric diffusivities alone. Specifi-
cally, we find that the magnitude of an AREF tends to be larger
with surface reactions for the range of parameters explored. In
fact, the maximum values are also insensitive to k and o, meaning
surface reactions are an important mechanism to tune AREFs.
Next, we discuss AREFs in the presence of more than two ions.

6.1.2 Three ions. To move beyond the comparisons out-
lined in the prior subsection, we investigate the parameter
dependencies of AREFmax and its location, denoted here by
xc, for a solution with three ions. We note that xc is a crucial

physical parameter that has been previously observed in
experiments.7,8,11,14,20,22

First, we compare the values of AREFmax obtained from both
numerical simulations and analytical calculations for a three-
ion cell; see Fig. 6(a). To focus on the effect of surface reactions,
we keep diffusivities constant, or D1 = D2 = D3 = 1. We perform a
comprehensive sweep of parameters including o, k, zi and j(1)

0 .
Excellent quantitative agreement is observed between simula-
tions and analytical solutions obtained over the entire space of
parameters. Since the dependency of AREFmax on k and o was
discussed previously, we focus this discussion on the depen-
dency of AREFmax on the other listed parameters. We find that

Fig. 5 Contour plot of the maximum AREF for a binary electrolyte for (a) surface reactions only and (b) diffusivity asymmetry only. Panel (a) is simulated
with j(1)

0 = �0.5, D1 = 1, and D2 = 1, while panel (b) is simulated with D1 = 2, j(1)
0 = 0, and D2 = 1. Both cases have two ions with valences of z1 = 1 and z2 =�1,

respectively. Variation of AREFmax for the surface reactions case alone is less sensitive to changes in k and o than the diffusivity asymmetry case alone.

Fig. 6 Comparison of data for analytical calculations and simulations for an electrolyte solution with three ions for (a) the maximum value of AREF, i.e.,
AREFmax and (b) the location of the maximum AREF near the left electrode, i.e., xc. In both panels, j(1)

0 = �0.01 to �0.85 (orange), k = 50 to 400 (blue), o =
10 to 100 (pink), and both z1 =�3 to 3 and z2 =�2,�3 (green). When not varied, k = 100, o = 100, j(1)

0 =�0.5, z1 = 1, z2 =�1, and z3 = 1. In all cases, we find
that the results from analytics and numerical simulations collapse onto the diagonal, indicating strong agreement between the results of the two
methods.
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AREFmax increases with an increase in j(1)
0 . This trend is

expected since increasing the value of j(1)
0 leads to a larger Î(1),

which dictates the strength of the AREF. The changes in
valence, in contrast, result in a non-monotonic behavior. The
non-monotonic behavior of zi can be explained from the trend
of k. We recall that k�1 is not the true Debye length, but instead
a measure of Debye length in the system. This choice was made
out of mathematical convenience; see Section 3.2. As such, the
green arrow in Fig. 6(a) starts at z1 = �3 and ends at z1 = 3.
Therefore, the true Debye length first increases and then
decreases. In effect, the trend should follow a decrease in k
(i.e., opposite to the blue arrow) and then an increase in k (i.e.,
in the direction of the blue arrow). This is consistent with the
observed behavior of changes in ionic valence.

We now focus on xc closest to the left electrode; see Fig. 6(b).
We observe strong quantitative agreement between simulations
and analytical calculations. An increase in j(1)

0 magnitude moves
the location of the maximum further from the electrode. In
contrast, an increase in o moves the location of the maximum
closer to that of the electrode. Surprisingly, the location of the
maximum yields a non-monotonic behavior with k. We inves-
tigate this in more detail in Fig. 7.

To probe this non-monotonic behavior, Fig. 7 shows the
location of the maximum with k for six different values of
j(1)
0 ranging from �0.005 to �0.75. For small j(1)

0 values, we
observe that the location moves towards the electrode with an
increase in k. However, as j(1)

0 grows, this behavior becomes more
non-monotonic, suggesting that competing effects are present in
the system. In fact, when k values are small, the different curves of
j(1)
0 appear to converge. We believe the non-monotonic behavior

present is due to k driving movement of xc towards the electrode
whereas j(1)

0 is driving xc away from the electrode.
The results described in Fig. 6 demonstrate that the analytical

procedure outlined in this manuscript is able to uncover the
complex dependencies of AREFs on system parameters even for
more than 2 ions. However, our analytical methodology is limited

to the scenario of equal diffusivities. Asymmetric diffusivities can
be included in the analytical formulation, but the relevant physics
are not clearly visible with asymmetric diffusivities. As such, we
solve the case with both asymmetric diffusivities and surface
reactions numerically for convenience. With this in mind, we
next focus on a 5-ion case with both surface reactions and
diffusivity asymmetries.

6.1.3 Five-ion case. We investigate a five-ion problem (Na+,
H+, Ca2+, Al3+, and Cl�, where the diffusivity values for each ion
are taken from literature45) such that only one of the cations is
reactive; a schematic of the problem is provided in Fig. 8(a). We
would like to emphasize that the setup described here is hypothe-
tical and these surface reactions may not be necessarily observa-
ble in a real electrochemical cell. The intent of this exercise is to
study the simultaneous impact of diffusivity asymmetry and sur-
face reactions, such as the ones present in experiments.20–22

We focus on a constant charge flux magnitude due to
surface reactions j(1)

0 . The resulting AREFs given in Fig. 8(b)
show the cases where each of the cations is reactive with j(1)

0 =
�0.5. We note that the maximum AREF values are smaller than
previously discussed scenarios due to the inverse relationship
between AREFmax and I(0); see eqn (14).

We find that the peak AREF location and magnitude is
weakly dependent upon which ion is reacting. Even though
the diffusivity of the H+ ion is larger than the other reacting
ions by approximately one order of magnitude, no appreciable
change in the AREF is observed. This indicates that if ionic
diffusivities are on the same order of magnitude and j(1)

0 = O(1),
estimating AREFs by assuming equal diffusivities could serve as
a good starting point. This underscores the utility of the
analytical procedure outlined in Section 5.

6.2 Asymmetric rectified concentration fields (ARCFs)

We investigate the formation of ARCFs in a binary electrolyte.
We employ eqn (12a) to estimate the ARCF based on first-order
results from (i) numerical calculations described in Section 4.4
and (ii) analytical calculations described in Section 5 and the
Appendix.

We note that ARCFs form when r̂(1)
e a 0 beyond the EDLs. To

this end, we find that surface reactions alone are unable to

produce ARCFs in the limit
ffiffiffiffiffiffiffi
I ð0Þ
p

k�
ffiffiffiffi
o
p

; which is valid in
experiments.10,14,20,22 In this limit, for symmetric diffusivities,

eqn (17) reduces to r̂ð1Þe � � j
ð1Þ
0 þ I ð0Þ

� �sinh ffiffiffiffiffiffiffi
I ð0Þ
p

kx
� �

sinh
ffiffiffiffiffiffiffi
I ð0Þ
p

k
� � ; which

suggests that the charge is only accumulated in the EDLs and
ARCFs do not form. We note that Bazant et al.46 demonstrated
that a region outside the EDLs could accumulate charge for
large potentials even for symmetric diffusivities, but this effect
cannot be captured in our analysis and could be a potential
avenue for future research.

Now, we shift our focus to the case of asymmetric diffusiv-
ities only. We show that r̂(1)

e a 0 outside EDLs for D1 a D2; see
Fig. 9(a). As expected, the magnitude of r̂(1)

e increases with an
increase in D1. This charge imbalance occurs because the

Fig. 7 Dependency of the maximum AREF location on k and j(1)
0 for a

three-ion electrolyte. k vs. xc for j(1)
0 = �0.005, �0.025, �0.01, �0.25, �0.5,

�0.75. For all cases, o = 100, z1 = 1, z2 = �1, z3 = 1, and D1 = D2 = D3 = 1.
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equations for the charge and salt are coupled for asymmetric
diffusivities;15,38 also see the Appendix. The induced ARCFs due to
these charge imbalances are shown in Fig. 9(a). The ARCF is also a
long-range steady field, indicating that it could be important for
relatively large distances away from the electrodes. Interestingly,
the spatial dependency of the ARCF remains identical even if the
values of D1 and D2 are interchanged (results not shown), in
contrast to AREFs.12,15,18 We note that the magnitude of the ARCF
is smaller compared to the AREF; see Fig. 4. While this might
suggest that the role of the ARCF is minor, we note that the shape
of the ARCF is different than the AREF and could thus influence
the regions where the AREF is smaller. We also anticipate that
ARCFs will become stronger in the nonlinear applied potential

limit.46 Furthermore, the relative importance of AREFs and ARCFs
will depend on the interactions between the ionic species and
particles.24 This is particularly important for the phenomena of
electrodiffusiophoresis, where both electrophoresis and diffusio-
phoresis are present.20,21 We emphasize that while surface reac-
tions cannot induce ARCFs on their own, they can enhance ARCFs
caused by diffusivity asymmetry; see Fig. 9(b), which shows the
linear dependency of ARCFmax on j(1)

0 .

6.3 Validity of the proposed framework

Since our work assumes fD { 1, the results are most accurate
up to an applied potential of �25 mV. However, as shown by

Fig. 8 Impact of the reactive ion on the AREF in an electrolyte solution with 5 ions. (a) Schematic of the model problem with H+, Na+, Ca2+, Al3+, and Cl�,
and a reactive charge flux j(1)

0 sin(ot). (b) hE(2)i vs. x with H+ (pink), Na+ (blue), Ca2+ (black), and Al3+ (orange) reacting, respectively. j(1)
0 = �0.5, k = 100, o =

100, cNa0 = 1, cH0 = 1, cCa0 = 1, cAl0 = 1, and cCl0 = 7 in all cases. Results are obtained through numerical simulations.

Fig. 9 Presence of ARCFs. (a) ARCF vs. x for diffusivity asymmetry for D1 = 2 (blue), D1 = 3 (pink), D1 = 4 (black), and D1 = 8 (orange). D2 = 1 in all cases. (b)
ARCFmax vs. �j(1)

0 with both diffusivity asymmetry and surface reactions (only cation reactive). D1 = 1 and D2 = 4. In all cases, analytical results are solid lines
and numerical simulations are orbs. k = 100, o = 1000, z1 = 1, and z2 = � 1.
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Balu and Khair,18 the peak value of AREFs is relatively linear up
to fD = 10. This means that the results shown here may be
extra-polated until applied potentials of �250 mV with a low to
moderate loss in accuracy. With even larger voltages, this
framework is only suitable for a qualitative analysis. The sur-
face reactive flux boundary conditions used in this work break
down when reaction rate is no longer linear with potential; the
potential value at which they break down will depend on the
transfer coefficients and Stern layer thickness,47 and we thus
refrain from making a quantitative estimate of this limit.

6.4 Limitations of the proposed framework

The proposed framework demonstrates that electrochemical
reactions can produce AREFs and that ARCFs are also present
in the system. Further, our work elucidates that imbalances in
ionic strength and charge density outside the EDLs produce
AREFs and ARCFs, respectively. Nonetheless, our work has two
primary limitations.

The first limitation of this work is that it assumes a small
applied potential. In experiments, the voltage applied is signifi-
cantly larger,10,14,20,21 and thus the nonlinear PNP equations
would need to be solved. In this scenario, typically, the thin
EDL limit is invoked and a singular perturbation expansion is
performed.18,37,44,46,48 The analysis for a binary electrolyte with
asymmetric diffusivities and no electrochemical reactions has
been investigated by Balu and Khair.18 Based on the trends
observed in Fig. 4(b), we anticipate that the AREFs due to
chemical reactions will appear at leading- and first-order
expansion terms in the singular perturbation expansion, unlike
asymmetric diffusivities where they are observed at the second-
order,18 though a complete analysis is required to be certain.
For a system with electrochemical reactions and symmetric
diffusivities, the framework proposed in our prior work37 can
be extended.

The second limitation of our work is that it ignores the effect
of equilibrium cell potential. Clearly, the surface reactions
become significant beyond a certain cell voltage. To capture
such an effect, Frumkin–Butler–Volmer kinetics could be
invoked.47,49 In this approach, forward and reverse reactions
are written in terms of overpotential, defined as the difference
between the applied potential and the equilibrium cell
potential. Additionally, a Stern layer needs to be accounted
for in the system to write the Frumkin–Butler–Volmer kinetic
equation. There are two primary differences from the approach
described in this paper. First, the leading order solution
requires the formation of equilibrium double layers. Second,
the boundary conditions for potential will now be written as a
linear potential drop across each Stern layer. We note that our
prior work37 provides a methodology to capture these effects,
while also simultaneously capturing the effect of EDLs and the
region outside EDLs, albeit in the limit of symmetric diffusiv-
ities. To capture these effects for asymmetric diffusivities, the
frameworks laid out by Balu and Khair18 and Jarvey et al.37

would need to be combined, but the analysis is likely to be
limited to a binary electrolyte. For multicomponent electrolytes,
numerical calculations would be required.

We emphasize that while the opportunities outlined above
will improve the accuracy of the current results, qualitatively,
the small potential calculations are able to capture the essential
physics of the system.

7 Conclusion and outlook

In this article, we performed a regular perturbation expansion
in the small-applied-potential limit on the Poisson–Nernst–
Planck equations for multicomponent electrolytes for arbitrary
diffusivities and valences, while also including the effect of
electrochemical surface reactions. Our results highlight that
surface electrochemical reactions are an additional mechanism
for AREF formation. We show that an imbalance in ionic
strength is a prerequisite for a nonzero AREF. Further, we find
that ARCFs may also be present in electrochemical cells and
could induce a diffusiophoretic force on the particles. We show
analytical expressions for AREFs and ARCFs are possible by
further invoking the thin-double-layer limit. AREFs caused by
surface reactions are less sensitive to parameters as compared
to AREFs from diffusivity contrast. Lastly, we find that ARCFs
appear primarily due to diffusivity contrast, though electroche-
mical reactions can enhance them.

Our contributions are directly applicable for the directed
assembly of colloids using electric fields, including ellipsoids,50

colloidal dumbbells,51 colloidal dimers,52 dicolloids,53 Janus
particles,54 patchy anisotropic microparticles,55 and chiral
clusters,56 among others. This assembly method holds great
promise in creating materials with superior optical and elec-
trical properties,52,55–57 such as photonic crystals, microactua-
tors, and colloidal robots. The work presented here can help
estimate the assembly of colloids in an electrochemical cell,
where reactions provide an additional knob to tune colloidal
assembly.19–22

We highlight that the implications of our findings extend
beyond the realm of colloids. Specifically, multicomponent elec-
trolytes and surface reactions are often used in batteries,58,59

faradaic desalination,60,61 carbon dioxide reduction,62 hybrid
capacitors,63 and reversible metal electrodeposition windows.64

While multicomponent electrolytes and surface electrochemical
reactions are prevalent in experimental literature, theoretical
understanding of ion transport in these systems still remains
elusive. In our previous work,37 we analyzed the coupled effects of
electrical double layers and surface electrochemical reactions on
ion transport in multicomponent electrolytes for a DC potential.
This work furthers the literature on AC fields, which have
important implications in electrochemical impedance
spectroscopy44 and transport in porous materials.38–40,65 The
results outlined here are also a potential avenue for improving
upon the modified Donnan potential approach47,60 for modeling
faradaic capacitive deionization.66
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Appendix: adapting results from
Hashemi et al.17

At first order in fD, we directly apply the analytical results of
Hashemi et al.17 Note that their derivation is only valid for
binary electrolytes, and as such is used exclusively to compare
with results for binary electrolytes. To match the formulation
used in their work, we define

kh ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22z1 � z12z2

p
; (21a)

oh ¼
offiffiffi
2
p

k2
; (21b)

b ¼ D1 �D2

D1 þD2
; (21c)

g ¼ z1 þ z2

z1 � z2
; (21d)

where ion 1 is the cation and ion 2 is the anion. We then write
the additional parameters in their analytical solutions such that

D = 1 � 4boh(ig + boh), (22a)

s ¼ 2iboh þ
ffiffiffiffi
D
p

; (22b)

z = 0.5(z1 � z2), (22c)

lþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ioh þ

ffiffiffiffi
D
p

2

s
; (22d)

l� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ioh �

ffiffiffiffi
D
p

2

s
: (22e)

Continuing to build to the forms of the first-order solutions the
authors arrive at, we write

G ¼ s2 þ 2gþ 1� 1

2kh

ðgþ 1Þðs� 1Þ2 l�kh � tanh l�khð Þ
l�3

�

�ðg� 1Þðsþ 1Þ2 lþkh � tanh lþkhð Þ
lþ3

��
;

(23a)

A ¼ s� 1

l�kh cosh l�khð ÞG; (23b)

B ¼ sþ 1

lþkh cosh lþkhð ÞG; (23c)

C ¼ kh�1 �1þ
Að1þ gÞðs� 1Þ sinh l�kh

2l�2

�

þBð1� gÞðsþ 1Þ sinh lþkh
2lþ2

�
:

(23d)

Finally, we write the first order variables

ĉ
ð1Þ
1 ¼� Að�gþsÞsinh l�xkhð ÞþBð1þgÞsinh lþxkhð Þð Þ; (24a)

ĉ
ð1Þ
2 ¼� Að1þgÞsinh l�xkhð Þ�Bð�gþsÞsinh lþxkhð Þð Þ; (24b)

f̂ð1Þ ¼ �z�1 Cxkh�
Að1þgÞðs�1Þsinh l�xkð Þ

2l�2

�

�Bð1�gÞðsþ1Þsinh lþxkð Þ
2lþ2

�
;

(24c)

Êð1Þ ¼ �z�1 Ckh�l�kh
Að1þgÞðs�1Þcosh l�xkð Þ

2l�2

�

�lþkh
Bð1�gÞðsþ1Þsinh lþxkð Þ

2lþ2

�
:

(24d)

To determine the AREF and ARCF from these first-order
results, we employ eqn (14) and (12a). Note that the remainder
of the analytics in Section 5 do not hold for asymmetric
diffusivities, but eqn (14) and (12a) are valid for asymmetric
diffusivities.

Acknowledgements

A. G. thanks the National Science Foundation (CBET – 2238412)
CAREER award for financial support. Acknowledgement is
made to the donors of the American Chemical Society Petro-
leum Research Fund for partial support of this research. N. J.
thanks the ARCS Foundation Scholarship and GAANN fellow-
ship in Soft Materials for financial support. F. H. acknowledges
the Ryland Family Graduate Fellowship for financial assistance.

References

1 P. J. Sides, Langmuir, 2001, 17, 5791–5800.
2 W. Ristenpart, I. A. Aksay and D. Saville, J. Fluid Mech., 2007,

575, 83–109.
3 C. L. Wirth, R. M. Rock, P. J. Sides and D. C. Prieve,

Langmuir, 2011, 27, 9781–9791.
4 C. L. Wirth, P. J. Sides and D. C. Prieve, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2013, 87, 032302.
5 J. D. Hoggard, P. J. Sides and D. C. Prieve, Langmuir, 2008,

24, 2977–2982.
6 D. C. Prieve, P. J. Sides and C. L. Wirth, Curr. Opin. Colloid

Interface Sci., 2010, 15, 160–174.
7 T. J. Woehl, K. L. Heatley, C. S. Dutcher, N. H. Talken and

W. D. Ristenpart, Langmuir, 2014, 30, 4887–4894.
8 S. Saini, S. C. Bukosky and W. D. Ristenpart, Langmuir, 2016,

32, 4210–4216.
9 W. Ristenpart, I. A. Aksay and D. Saville, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2004, 69, 021405.
10 T. Woehl, B. Chen, K. Heatley, N. Talken, S. Bukosky,

C. Dutcher and W. Ristenpart, Phys. Rev. X, 2015, 5, 011023.
11 S. C. Bukosky and W. D. Ristenpart, Langmuir, 2015, 31, 9742–9747.
12 A. Hashemi, S. C. Bukosky, S. P. Rader, W. D. Ristenpart and

G. H. Miller, Phys. Rev. Lett., 2018, 121, 185504.
13 A. Hashemi, G. H. Miller and W. D. Ristenpart, Phys. Rev. E,

2019, 99, 062603.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
0 

Q
ad

o 
D

ir
ri

 2
02

3.
 D

ow
nl

oa
de

d 
on

 0
4/

11
/2

02
5 

4:
47

:1
7 

A
M

. 
View Article Online

https://doi.org/10.1039/d3sm00823a


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 6032–6045 |  6045

14 S. C. Bukosky, A. Hashemi, S. P. Rader, J. Mora, G. H. Miller
and W. D. Ristenpart, Langmuir, 2019, 35, 6971–6980.

15 A. Hashemi, G. H. Miller and W. D. Ristenpart, Phys. Rev.
Fluids, 2020, 5, 013702.

16 M. Mirzadeh and F. Gibou, J. Comput. Phys., 2014, 274,
633–653.

17 A. Hashemi, G. H. Miller, K. J. Bishop and W. D. Ristenpart,
Soft Matter, 2020, 16, 7052–7062.

18 B. Balu and A. S. Khair, J. Eng. Math., 2021, 129, 4.
19 C. A. Silvera Batista, H. Rezvantalab, R. G. Larson and

M. J. Solomon, Langmuir, 2017, 33, 10861–10867.
20 K. Wang, S. Leville, B. Behdani and C. A. S. Batista, Soft

Matter, 2022, 18, 5949–5959.
21 K. Wang, B. Behdani and C. A. Silvera Batista, Langmuir,

2022, 38, 5663–5673.
22 M. Rath, J. Weaver, M. Wang and T. Woehl, Langmuir, 2021,

37, 9346–9355.
23 D. Prieve, J. Anderson, J. Ebel and M. Lowell, J. Fluid Mech.,

1984, 148, 247–269.
24 J. L. Anderson, Ann. Rev. Fluid Mech., 1989, 21, 61–99.
25 S. Shin, E. Um, B. Sabass, J. T. Ault, M. Rahimi, P. B. Warren and

H. A. Stone, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 257–261.
26 D. Velegol, A. Garg, R. Guha, A. Kar and M. Kumar, Soft

Matter, 2016, 12, 4686–4703.
27 A. Banerjee and T. M. Squires, Sci. Adv., 2019, 5, eaax1893.
28 A. Gupta, B. Rallabandi and H. A. Stone, Phys. Rev. Fluids,

2019, 4, 043702.
29 A. Gupta, S. Shim and H. A. Stone, Soft Matter, 2020, 16,

6975–6984.
30 H. C. Chu, S. Garoff, R. D. Tilton and A. S. Khair, Soft Matter,

2022, 18, 1896–1910.
31 A. Ganguly and A. Gupta, Phys. Rev. Fluids, 2023, 8, 014103.
32 R. R. Raj, C. W. Shields and A. Gupta, Soft Matter, 2023, 16, 892–904.
33 N. Shi, R. Nery-Azevedo, A. I. Abdel-Fattah and T. M. Squires,

Phys. Rev. Lett., 2016, 117, 258001.
34 W. Deen, Analysis of Transport Phenomena, Oxford University

Press, 2012.
35 A. Bard and L. Faulkner, Electrochemical Methods: Funda-

mentals and Applications, John Wiley & Sons, Incorporated,
2nd edn, 2000.

36 J. Newman and K. Thomas-Alyea, Electrochemical Systems,
Wiley, 2012.

37 N. Jarvey, F. Henrique and A. Gupta, J. Electrochem. Soc.,
2022, 169, 093506.

38 F. Henrique, P. J. Zuk and A. Gupta, Soft Matter, 2022, 18,
198–213.

39 F. Henrique, P. J. Zuk and A. Gupta, Electrochim. Acta, 2022,
433, 141220.

40 R. de Levie, Electrochim. Acta, 1963, 8, 751–780.
41 H. J. Keh and Y. K. Wei, Langmuir, 2000, 16, 5289–5294.
42 A. Hollingsworth and D. Saville, J. Colloid Interface Sci.,

2003, 257, 65–76.
43 J. Krozel and D. Saville, J. Colloid Interface Sci., 1992, 150,

365–373.
44 B. Balu and A. S. Khair, J. Electroanal. Chem., 2022,

911, 116222.
45 W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC

press, 2016.
46 M. Z. Bazant, K. Thornton and A. Ajdari, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2004, 70, 021506.
47 P. Biesheuvel, Y. Fu and M. Z. Bazant, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2011, 83, 061507.
48 B. Balu and A. S. Khair, Soft Matter, 2018, 14, 8267–8275.
49 M. Z. Bazant, K. T. Chu and B. J. Bayly, SIAM J. Appl. Math.,

2005, 65, 1463–1484.
50 M. Mittal and E. M. Furst, Adv. Funct. Mater., 2009, 19,

3271–3278.
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